TOWARDS A MODEL OF EXPLORATION IN
COMPUTER-AIDED DESIGN

J. S. Gero

This paper draws a distinction between search and exploration in design. Search is a pro-
cess for locating values of variables in a defined state space whilst exploration is a process
for producing state spaces. The paper proceeds to elaborate two exploration processes
applicable in computer-aided design: emergence and evolutionary combination.

1. Introduction

Design distinguishes itself from other complex human intellectual activities
in a number of important and significant ways. Design is that activity which
is primarily concerned with changing the world.

Design can be initially characterised as an intentional, purposeful activity.
This implies that we can model design as being goal-oriented, but as we
shall see unlike problem solving which is also a goal-oriented activity, the
goals in designing are not fixed and determining them is part of designing.
Design is also a constrained activity, i.e. there are constraints which limit
the designer’s ability to achieve goals. Some of these constraints are based
on the behaviour of the physical world, others are based on the designer’s
perceptions and interpretations of design situations, others are implicit in the
representations and processes utilised. Design can be conceived as a decision
making activity. This implies that choices exist; in computational terms
this implies variables, the values of which have to be decided. (Variables in
design include both descriptors and the relationships between them.) As is
suggested later the variables themselves may be treated as the values for
other variables. Search is the common process used in finding values for
symbolic variables. We will be suggesting that the process of determining
the space within which to search is a form of exploration. In addition to
exploration and search design involves learning where learning implies a
restructuring of the knowledge used. What defines the goals, the constraints,
the knowledge, the processes and the focus of design depends on the context
within which the designer operates. This context depends largely on the
designer’s perceptions of what makes up the context. These perceptions
change as design occurs resulting in a perceived change of context.

From a computational viewpoint design can be treated paradigmatically
as a process of producing variables, determining relationships between them
and finding values for some of those variables such that useful values are
determined for some other of those variables. In design the variables can be
conveniently categorised into a number of classes, the three most significant

316 J. S. GERO

of which are those variables which define structure, those variables which
define behaviour and those variables which define function. The variables
used to describe structure are also often called design or decision variables,
whilst those used to describe behaviour are also often called performance,
objective or criteria variables.

One useful way to provide a framework for design is through the con-
ceptual schema design prototypes (Gero, 1987; 1990) which articulates a
function-behaviour-structure + knowledge + context framework. Thus, the
state space representation of designs has three subspaces or abstractions:
the structure space, S (often called the decision space); the behaviour space,
B (often called the performance space); and the function space, F' (which
defines the artefact’s teleology). Figure 1 shows these three subspaces which
constitute the state space of designs.

Whilst there are transformations which map function to behaviour and
vice-versa and structure to behaviour and vice-versa, there are no trans-
formations which map function to structure directly. This is a version of the
no-function-in-structure principle (de Kleer and Brown, 1984; Gero, 1990)
where the teleology of an artefact is not found in its structure but is a contex-
tual interpretation of its behaviour. The corollary: no-structure-in-function
also holds. This may, at first glance, be counter-intuitive. The reason is that
in human experience once a phenomenological connection between function
and structure is made it is hard to unmake it. Thus, it appears that there
is some sort of causal transformation between function and structure rather
than a phenomenological one. The transformation which maps structure to
behaviour is a causal one.

Often only the structure and behaviour spaces are considered in computa-
tional models although function provides an important articulation of ideas
about design. Typical computational models of design can be grouped based
on the processes they utilise under such processes as simulation, optimiza-
tion, generation, decomposition, constraint satisfaction, and more generally
search and exploration. All of these share one concept in common, namely
that structures are produced in a design process and their resultant beha-
viours are evaluated. It is only recently that the function of the artefact being
designed is beginning to be brought into the computational model (Gane-
shan et al., 1991; Garcia and Howard, 1991; Rosenman, 1991; Rosenman et
al., 1993).

In this paper we will focus on the exploration aspect of designing from a
computational viewpoint. We will provide formalisable computational con-
structs for exploration and its supporting processes. In particular, we will
present and examine two generic processes which allow exploration to occur.
The first is emergence and the second is combination. As we shall see al-
though these processes are very different their application results in changes
which match the notion of exploration we will be using in this paper.

EXPLORATION IN COMPUTER-AIDED DESIGN 317

o BiA SaA

> F, > Bj > S

p

Fig. 1. The three subspaces of function, F', behaviour, B, and structure, S, which
constitute the state space of designs

Logan and Smithers (1989) and Smithers (1992) have presented cogent
arguments as to why design is not search and why design is more like explora-
tion. They have presented a process model of design as exploration and have
given hand-worked examples of designing in a blocks world. In this paper
we aim to characterise exploration initially in terms of a state-space repres-
entation before developing and describing the computational constructs of
interest.

2. Search and Exploration

Since there is very little work on computational characterisations of function,
function variables and their processes, we will restrict our discussions, in
general, to structure and behaviour only.

2.1. SEARCH IN DESIGN

Search, as a computational process, requires that the state spaces of be-
haviour and structure be well-defined, i.e. that all the states be directly
specifiable a priori. In design this implies that the variables which define
the structure and the behaviour are known a priori as are the relationships
between them. Search then determines feasible, satisficing or, in appropriate
circumstances, optimal values for structure variables which produce desired
behaviours, Figure 2. In those situations where the values of the variables
are in the domain of natural numbers the search problem can be cast as an
optimal design problem. Under these conditions the optimization processes
are the search processes. When the values of the variables are in the domain
of symbols then a wide variety of artificial intelligence approaches based on
various forms of reasoning are available to search for symbolic values.

How does search contribute to design? In that aspect of designing when
all the variables (at some level of granularity) have been produced and the
relationships between them are known then search is a most appropriate
process. Whilst search does not provide an adequate paradigm for design

318 J. S. GERO

®IA “A

)Bi)Sp

Fig. 2. Search is carried out within a fixed design state space. The structure space
is searched, guided by the performance in the behaviour space.

such situations do occur at the base of many design activities. Search does
form the basis of that class of design defined as ‘routine design’. Thus, in a
sense, search is a foundational, necessary but not sufficient, process for any
computational model of design. What search fails to deal with is the process
of producing variables and determining relationships between them.

2.2. EXPLORATION IN DESIGN

Exploration in design can be characterised as a process which creates new
design state spaces or modifies existing design state spaces. New state spaces
are rarely created de novo in design rather existing design state spaces are
modified. The result of exploring a design state space is an altered state
space.

For a given set of variables and processes operating within a bounded con-
text or focus any computational model will construct a bounded (although
in some cases countably infinite) state space. Exploration in design can be
represented in such a state space by a change in the state space. Explora-
tion maps onto the concept of non-routine design (Gero and Maher, 1992).
Any of the subspaces in Figure 1 for function, behaviour or structure could
be changed although, in general, in design it is the structure space that is
changed. Exploring the structure space introduces new structure variables
which may, although not necessarily, introduce new behaviours associated
with those variables. Exploring the behaviour space introduces new beha-
viour variables which may, although not necessarily, introduce new functions
and structures associated with those variables. Exploring the function space
introduces new function variables which may, although not necessarily, in-
troduce new behaviours associated with those variables, i.e.

B..: it
Snew { exisiting
BneW

EXPLORATION IN COMPUTER-AIDED DESIGN 319

A A

> >

Original state space New additive state space

Fig. 3. The additive state space view.

S it
BneW { exlsiting
Snew

Fexisitin
g
BneW — {F

new

B..: it
FneW { exisiting
BneW

where — means implies.

There are two classes of state-space change possible: addition and substi-
tution. This is based on Stevens’ two forms of psychological representational
scales (Stevens, 1957). The additive view is presented conceptually in Fig-
ure 3 where the new state space S, totally contains the original state space
S,y i.e. S, C S, and S, — S, # O

The implication of the additive view is that variables are added to the
existing stock of variables. Gero and Kumar (1993) have demonstrated how
the addition of structure variables allows design spaces that contain infeas-
ible behaviour spaces to be made feasible. Further, they demonstrated how
the addition of structure variables can improve the behaviour of an already
optimized design.

The substitutive view of state-space change is presented conceptually in
Figure 4 where the new state space .5, does not cover the original state space
So, i.e. 8 € 9,,.

The implication of this substitutive view is that some existing variables
are deleted and others added. There is no nexus between the number of
existing variables deleted and the number of new variables added. As will
be seen later this view matches the concept of emergence.

Thus, exploration precedes search and it, effectively, converts one for-
mulation of the design problem into another. If the final formulation is the

320 J. S. GERO

> >

Original state space New substitutive state space

Fig. 4. The substitutive state space view.

accepted one we say that it is well-structured in contrast to the previous
formulations which we would call ill-structured. This notion of structuring
refers not to the definedness of any formulation but to the distance from
the final formulation. The reason for the distinction between definedness
and structuring is to recognise that all computational constructs need to
be well defined but need not match the semantics of what is being repres-
ented. Part of designing involves determining what to design for (function
or teleology), determining how to measure satisfaction (behaviour), and de-
termining what can be used in the final artefact (structure). Exploration is
the process which supports these design determinations. Having made these
decisions via exploration then search takes over.

The next sections introduce and describe two computational processes
which can be used as exploration processes.

3. Emergence as Exploration in Design
3.1. EMERGENCE

A property that is not represented explicitly is said to be an emergent prop-
erty if it can be made explicit. There are three views of emergence: compu-
tational emergence; thermodynamic emergence; and emergence relative to a
model (Cariani, 1992). Computational emergence is the view that novel be-
haviours can emerge as a result of local computational interactions (Forrest,
1990; Steels, 1991; Langton, 1989). This is one of the approaches to the field
of artificial life. Thermodynamic emergence is the view that thermodynamic
theory may be used to describe how new, stable behaviours and structures
can arise at loci removed from known equilibrium. Fmergence relative to a
model sees emergence as a deviation of the structure or behaviour of a sys-
tem from an observer’s model of it. It is this latter view of emergence that
we wish to use in this paper.

We suggest that emergence is one computational process which is capable

EXPLORATION IN COMPUTER-AIDED DESIGN 321

r T

4 LA
L 4

(a) (b)

Fig. 5. (a) Single visual form; (b) seven copies of the single form in particular
locations such that a number of visual forms emerge.

of supporting exploration in design. It is a process capable of modifying
the state space under consideration and matches the concept of a designer
changing his or her context. Emergence, in the way described in this paper,
matches the substitutive state space view.

Emergence is a well recognised phenomenon in visual representations of
structure although it is not limited to that field. We will use visual emergence
as the vehicle tointroduce and describe the computational process suggested.
Consider the visual form in Figure 5(a), if a designer locates seven of these
in a particular configuration as shown in Figure 5(b) it is possible to see,
cognitively, a number of emergent forms.

One computational model of form emergence is based on notions drawn
from fixation where a particular representation is taken to prevent other
views from being ‘seen’. Thus, the model separates out representation, schemas
in representations and processes operating on those representations and in-
troduces an alternate representation which eliminates the fixation (Gero and
Yan, 1993). More will be said on this later in the paper. It is sufficient to
state at this stage that at least one implemented computational model ex-
ists for shape or form emergence capable of ‘discovering’ the two emergent
squares in Figure 5(b).

3.2. EMERGENCE IN DESIGN

Emergence plays an important role in design both within a domain and
within a design. Emergence allows for new views of existing situations to
come into being and thus becomes a way of changing the direction or focus
of a design. More formally, emergence allows for new instances of the schema
under consideration to be found; instances which were not previously rep-
resented. For example, consider Figure 6, the two triangles labeled T'1 and
T2 have been drawn, triangle labeled T3 is a third triangle which was not

322 J. S. GERO

A~]
TI

RS I

Fig. 6. The two triangles T'1 and T2 are drawn whilst triangle T'3 emerges.

Fig. 7. A sixteen-sided form produced using a schema of a sixteen-sided form.

drawn but emerges. Triangle T'3 is a new instance of a triangle schema and
it now can be used in the design.

Emergence allows for new schemas to emerge, schemas which were not
in the original representation. For example, consider Figure 7 which shows
a sixteen-sided form. Figure 8 shows two squares which emerge from the
original form. The square is a new schema discovered using a form of data-
driven or feature-driven search to produce it.

The emergent squares now provide design opportunities not available
when the form was viewed as a sixteen-sided form only. For example, the
two squares may be rotated with respect to each other or they may be
separated and so on. What is important is that a new design space has been

Fig. 8. Two four-sided forms which emerge from the sixteen-sided form shown in
Figure 7, discovered using an emergence process (Gero and Yan, 1993).

EXPLORATION IN COMPUTER-AIDED DESIGN 323

A

.

Fig. 9. The structure state spaces of the original and emergent forms.

constructed from these particular emergent forms. If we let be the state
space of the structure of the original form and be the state space of the
structure of the emergent square forms then

SENSE=0

Figure 9 shows this conceptually. Even though the structure state space may
not intersect, as we stated earlier, this does not necessarily mean that the
behaviour and function state spaces of the emergent structures have any
new variables introduced into them.

From this characterisation we can see that emergence meets the require-
ments of being an exploration process in that it changes the state space.

It is worth examining the differences between schemas and simple rep-
resentations. A schema (in the Kantian sense) is the conceptual abstraction
of entities. In this sense schemas allow for the structured representation of
descriptions. For example we can have a schema for triangles and another
for squares as well as one for polyline shapes. Before we discuss schema
emergence we need to draw a distinction between structure emergence and
schema emergence.

Let us consider again the situation in Figure 6. A new structure, 7T°3,
emerges which has the same schema as the original structures, i.e.

SN S £ O

However, if we let S7 be the original schema and SZ be the schema of the
emergent structure then there are three situations possible.

if 55N S8 #0

and SN S =5;

324 J. S. GERO

N

. gy .
- - -

Fig. 10. State space representations of schemas:

(a) Emergent structure has same schema as original structure. (b) Emergent struc-
ture has schema related to schema of original structure. (c) Emergent structure has
schema unrelated to schema of original structure.

then the schema of the original structure and the emergent structure are the
same. This is the case for the emergent triangle in Figure 6.

if S;NS:#0
and S;NSE# S

then the schema of the emergent structure is different to that of the original
structure but there is some overlap between them. This is the case for the
emergent squares in Figure 8.

it §5N S5 40

then the schema of the emergent structure is both different to that of the
original structure and there is no overlap between them. This is the case for
the emergent squares in Figure 5.

These three cases are shown in Figure 10.

3.3. PROCESS MODEL OF EMERGENCE

One approach to the development of a process model of emergence is to
re-examine concepts associated with fixation. Fixation occurs when some
aspect of the representation of a situation prevents us from viewing that
situation in another way (Weisberg and Alba, 1981). We can see a demon-
stration of this in Edward de Bono’s ‘tennis game problem’ (de Bono, 1972).

Suppose you need to schedule the games in a competition for your ten-
nis club. You have 97 players registered. The first question to ask is how
many games need to be scheduled and therefore to determine how long the
competition will last. One way to determine how many games need to be
scheduled is as follows. You need to know that each game produces one
winner and one loser; only winners proceed to the next round to play other

EXPLORATION IN COMPUTER-AIDED DESIGN 325

No of Bye No of Cumulative
Round players player games no of games

1 97 1 48 48

«—

2 49 1 24 72
3 25 Vlz 84
5 7 %3 93

6 4 %2 95
7 2 f//l 96

Fig. 11. Calculating the total number of games needed to be scheduled.

winners until you reach the final game. The winner of the final game is the
club champion.

Since you need to have even numbers of players to produce games whenever
you have an odd number of players, one player has a ‘bye’ and automatically
goes into the next round as if he or she were a winner. The winners from
each game go into the next round. These two rules are applied iteratively.
Figure 11 shows the application of these rules to determine the number of
games which need to be scheduled. Clearly, for each competition which has
a different number of entrants a new set of calculations will be needed.

We can characterise the schema being used here as the ‘winning game’
schema, i.e. each game produces a winner who proceeds to the next round.
Another schema may be characterised as the ‘losing game’ schema. Here,
each game produces one loser. Irrespective of how often a player has won,
a single loss forces them out of the competition. Only one player, the club
champion, loses no games. Since each game produces one loser and only one
player has no losses the number of games to be scheduled is: 97 — 1 = 96 or,
more generally, the number of players minus one.

Adopting the winning game schema prevents you from using the losing
game schema which, in this case, is a superior approach to the solution
of this simple problem. Fixation occurs when one schema prevents the use
of another schema. We can extend the notion of fixation to be applied to
those situations where any form of representation of features prevents the
representation of other features. This will allow us to utilise a single concep-
tual framework to describe process models for both structure and schema
emergence.

326 J. S. GERO

primary shapes

shape hiding

implicit shapes

shape emergence

emergent shapes

Fig. 12. A process model of shape emergence. Rounded blocks show representations,
squared blocks show processes.

3.3.1. Structure emergence

A process model for structure emergence has been developed by Gero and
Yan (1993) for the emergence of shapes. It has two fundamental steps: shape
hiding and shape emergence. Shape hiding changes the representation of
shapes such that the original or primary shapes are no longer specifically
represented, i.e. are hidden. To do this, an alternate representation is used.
This produced implicit shapes only. Shape emergence applies shape schemas
to the implicit shapes to determine whether new shapes (additional to the
primary shapes) can emerge. Figure 12 provides an outline of this process.

This can be generalised beyond shapes as shown in Figure 13.

Whilst such a model has been developed and implemented for two-dimen-
sional closed shapes it does not appear to have been implemented elsewhere
although we can readily conceive of its application in other domains. Con-
sider the domain of structural engineering applied to buildings. The engineer
commences with a set of parallel frames which are used to support both ver-
tical and lateral loads, Figure 14.

In order to provide lateral stability the engineer adds horizontal bracing
at each floor to produce the engineering structure shown in Figure 15. Now
another set of frames emerges, frames which are not explicitly represented as
frames initially, Figure 16. Subject to an appropriate representation these
emergent frames can be found using the same schema as for the primary
frames.

The model in Figures 12 and 13 can be described as follows:

EXPLORATION IN COMPUTER-AIDED DESIGN 327

primary structures

structure hiding

;

structure emergence

emergent structures

Fig. 13. A process model of structure emergence.

where « = subscript
a = subscript for alternate
e = subscript for emergent
o = subscript for original or primary
R, = representation
S? = astructure
S7 = aschema

The primary or original structure can be described in the original repres-
entation as

s—o(Ra=o0| Si—o)

The primary structure can be described in an alternate representation as

a=0(Ra=a | S3=0)
and all the implicit instances of the schema in that representation can be
described as

ngze (Ra:a | SZ:O)

where S7_y C S5_..
However, it is possible to provide different schemas so that other struc-
tures may emerge

ng:e (Ra:a | ng:a)

328 J. S. GERO

Fig. 14. Building structure as a set of parallel load resisting frames.

3.3.2. Schema emergence

The same concepts may be applied to the emergence of schemas although
different processes are required. Figure 17 shows a process model of schema
emergence analogous to the structure emergence process model of Figure 13.

The primary or original schema can be described in the original repres-
entation and original structure as

Sa=0(Ra=0| 55=0)
The original schema can be described in an alternate representation as
Sa=c(Ra=a | Si=o)
or
So=e(Ra=a | 5%=0)
New schemas can be derived from the new representation and possible al-
ternate structures and can be described as

Sosz:e(Rozza | S) — Sosz:e(Rozza | ng:e)

a=a

Processes for structure emergence have been developed for the case of struc-
tures of two-dimensional closed shapes. A data-driven process for schema
emergence has been developed for schemas describing two-dimensional closed
shapes (Gero and Yan, 1993). This process can be described in terms of the
concept of schema classes. A schema class is defined by the set of common
attributes of a class of schemas. Individual schemas are instances of the

EXPLORATION IN COMPUTER-AIDED DESIGN 329

e

Fig. 15. Building structure with horizontal lateral bracing added.

schema class with additional constraints. In this case the common attrib-
utes are that all the individual schemas in the class describe two-dimensional
closed shapes. Instances of the schema define a state space of structures. A
schema class is used to find schemas implicit in a representation.

Take for example a representation of shapes based on bounding lines.
There may be a schema associated with three bounding lines and some
constraints called a triangle. This schema can be used as a means to search
the data in that representation for matching instances. Alternately, we may
define a schema class based only on bounding lines closing and search the
data for any member of that schema class and find, for example, closed
shapes with four bounding lines, two of which are parallel. This becomes a
‘new’ schema which can be used to search the data for instances of itself.

3.4. EMERGENCE AS EXPLORATION IN DESIGN

We treat exploration as being concerned with determining spaces within
which search then takes place. Exploration may be considered as being akin
to determining which variables are going to be used in describing a design.
Structure emergence takes an existing structure state space and modifies it
by adding to it. The modification can involve the introduction of both new
descriptor variables and new relationship variables. The modification can
be either additive or substitutive depending on how it is treated. Schema
emergence also takes an existing state space and modifies it. Both of these
forms of emergence meet the definition of exploratory processes.

330 J. S. GERO

Fig. 16. Building structure with emergent frames highlighted.

4. Evolutionary Combination as Exploration in Design
4.1. EVOLUTIONARY COMBINATION

Combination is one way of changing a state space. A number of conceptu-
ally similar processes exist for combination largely based on analogy (Qian
and Gero, 1992) and case-based reasoning (Riesbeck and Schank, 1989).
Another basis of change produced by combination leads to the concept of
evolution and an analogy with natural evolution and evolutionary processes.
Woodbury (1989) was one of the early proponents of using formal models
of evolution in design, although the concept has been discussed informally
for some time (Steadman, 1979).

One common interpretation of computational models based on the genetic
processes of crossover (= combination) and mutation is that of a model of
search (Goldberg, 1989). However, it will be argued in the next section
that the field of genetic algorithms can be applied to exploration as well
as search. We suggest that evolutionary combination is one computational
process which is capable of supporting exploration in design. It is a process
capable of modifying the state space under consideration and matches the
concept of a designer changing his or her context. Evolutionary combination,
as described in this paper, matches the substitutive state space view.

In genetic algorithms, a population of ‘organisms’ (usually represented
as bit strings) is modified by the probabilistic application of the genetic op-
erators from one generation to the next. The basic algorithm where P(t) is
the population of strings at generation ¢, is given below.

EXPLORATION IN COMPUTER-AIDED DESIGN 331

primary schema

schema hiding

implicit schemas

schema emergence

emergent schemas

Fig. 17. A process model of schema emergence.

t=20
initialize P(t)
evaluate P(t)
while (termination condition not satisfied) do
begin
select P(t + 1) from P(t)
recombine P(t + 1)
evaluate P(t + 1)
t=t+1
end

Evaluation of each string which corresponds to a point in a state space is
based on a fitness function that is problem dependent. This corresponds to
the environmental determination of survivability in natural selection. Selec-
tion is done on the basis of relative fitness and it probabilistically culls from
the population those points which have relatively low fitness. Recombina-
tion, which consists of mutation and crossover, imitates sexual reproduction.
Mutation, as in natural systems, is a very low probability operator and just
flips a specific bit. Crossover in contrast is applied with high probability. It
is a structured yet randomized operator that allows information exchange
between points. Simple crossover is implemented by choosing a random point
in the selected pair of strings and exchanging the substrings defined by that
point. Figure 18 shows how crossover mixes information from two parent
strings, producing offspring made up of parts from both parents.

332 J. S. GERO

Crossover Points

Parents [

Offspring ﬁ_
D

Fig. 18. Crossover of the two parents A and B produces the two children C and D.
Each child consists of parts from both parents which leads to information exchange.

4.2. EVOLUTIONARY COMBINATION IN DESIGN

When using the concepts embodied in genetic algorithms it is necessary
to distinguish the genotype where the genetic material is represented from
the phenotype which is the structure resulting from the expression of the
genotype in some form. In natural genetics the genotype contains the chro-
mosomes with their constituent genes and the phenotype is the resulting
organism. One of the challenges in using genetic algorithms in design is to
find an appropriate representation for the genotype. A number of researchers
have suggested that shape grammars may be a useful representation.

Shape grammars were introduced into the architectural literature as a
formal method of shape generation. They provide a recursive method for
generating shapes and are similar to phrase structure grammars, but defined
over alphabets of shapes and generate languages of shapes (Stiny and Gips,
1978). A set of grammatical rules map one shape into a different shape. These
rules define the set of possible mappings or transformations. More formally, a
shape grammar is the quadruple (V;, V,,,, R, I). Where V; is a set of terminal
shapes or terminals and V,,, a set of nonterminal shapes or markers. V; and
Vin provide the primitive shape elements of a shape grammar. R is a set of
rules consisting of two sides, each side of which contains members of V;UV,,.
If the left hand side of a rule matches a shape, applying the rule results in
replacing the matching shape with the right hand side of the rule. I is the
initial shape, a subset of V; U V), and starts the shape generation process.
This models a design system where the rules embody generalized design
knowledge and a sequence of rule applications generates a design.

We model routine design with a fixed set of shape grammar rules and
encode the possible execution order (application sequence) of these rules
for manipulation by the genetic algorithm. The set of optimal structures

EXPLORATION IN COMPUTER-AIDED DESIGN 333

Parents Offspring

=) A [e]e]
=[] l+

Crossover point Crossov!

Parents ‘ Offspring
g > [A]e)
>8] +[I

) m MV

ra

@

r point

Fig. 19. Generating new grammar rules by crossover, different crossover points
produce different offspring rules.

for this fixed grammar defines a space of feasible solutions corresponding
to a space of behaviours. The goal is to find the execution order of the
grammar rules which will optimize a set of behaviours. In this fixed scheme,
additive and substitutive processes are absent. However, when in addition
to the application sequence, we allow the grammar itself to be encoded
for manipulation by the genetic algorithm, we evolve new grammars and
associated rule application sequences to improve on the best possible designs
that could be generated by the fixed grammar. That is, instead of optimizing
a plan of application of some fixed set of rules, the computational model
evolves new rules and optimizes application sequences for those new rules
to generate novel and ‘more optimal’ solutions. By more optimal we mean
that the optimal behaviours produced by the application of the new rules
are better than those produced by the application of the original rules.

The primary process in genetic algorithms is crossover which combines
parts of the genotypes of the two parents-this is the basis of evolutionary
combination in design.

4.3. PROCESS MODEL OF EVOLUTIONARY COMBINATION

In order to change the state space the grammar needs to be changed. New
grammars are generated from the original grammar, through mutation and
crossover of rules. That is, rules from the original grammar serve as a basis
for the generation of new grammar rules and are produced by cutting and
splicing, i.e. combining, the original rules. Consider the two rules labeled
‘parents’ in Figure 19, choosing the crossover point as indicated produces
the new rules labeled ‘offspring.” Different crossover points produce different
‘offspring’ rules leading to a number of different grammars. Recombination
therefore plays an important part in the process of learning, helping to
generate different grammars and thus different structures and behaviour
spaces to explore.

When modeling a design process using a (shape) grammar and its associ-

334 J. S. GERO

Gy

Fig. 20. New state spaces generated when the grammar G; is evolved into the
grammar G;41.

ated language, we are restricted by the choice of grammar. The design task
in this situation is a planning task: to plan a sequence of rule applications
that will generate a desired behaviour from the resultant shape. In this case
the structure and behaviour spaces are fixed and defined by the grammar.
We can encode the task for the genetic algorithm by numbering the rules
and representing an individual as a finite length string of these numbers.
However, such an encoding can result in nonviable individuals since a rule
application called for in an individual may not match its left hand side with
any part of the shape generated so far. Instead we use an encoding where the
interpretation is context dependent. We allow the grammar itself to evolve
while generating a sequence of rule applications. Since every grammar defines
a state space, the genetic algorithm now explores a number of structure and
behaviour spaces in parallel. This expands the number of possible designs
and in the case of our system, produces better, more optimal shapes and
associated behaviours that were not possible before.

4.4. EVOLUTIONARY COMBINATION AS EXPLORATION IN DESIGN

Since every grammar defines a state space, evolutionary combination which
produces new grammars explores a number of structure and behaviour spaces
in parallel, Figure 20.

Evolutionary combination can be extended through the use of muta-
tion. In genetic algorithms all mutations are homogeneous, i.e. they produce
rules which could possibly have been produced by evolutionary combination.
However, as discussed earlier it is possible to produce mutations which are
heterogeneous, i.e. they produce rules which could not possibly have been
produced by evolutionary combination. Such a situation opens up another
dimension of exploration since it requires additional knowledge in order to
produce the phenotype and possibly check for its behaviour.

EXPLORATION IN COMPUTER-AIDED DESIGN 335

- E
adi -

Fig. 21. Graphical model of state space exploration where S; is state space ¢ and
E; is exploration j.

5. Towards a Model of Exploration in Computer-Aided Design

We have distinguished the two concepts of search and exploration. Search
may be treated as the process of looking for appropriate states in a state
space conception of the design. Exploration may be treated as the process
which determines and to an extent produces the state space within which to
explore. In some sense then exploration may be conceived of as meta-search
in that in computational terms all the state spaces which could possibly
be produced by a set of exploration processes is determined a priori by the
initial state space and those processes.

A simple model of exploration in computer-aided design can be graph-
ically presented as in Figure 21 where new state spaces are produced by
exploration processes and these state spaces are searched once they are pro-
duced.

Let S; be the state space ¢ which is defined by the variables and their
relationships within it. In more general terms it could be defined by a set
of schemas over those variables as well as the variables themselves. Let E;
be the exploration processes used to change S;_; into S;. Then a simple
statement of the exploration model is

Sj = Ej(Sj-1)

The state spaces are defined in terms of function, behaviour and structure al-
though the emphasis in this paper has been on exploring via structure. Else-
where, we have suggested how ‘new’ behaviours may be introduced (Gero
and Mabher, 1992).

References

Cariani, P.: 1992, Emergence and artificial Life, in Langton, C., Taylor, C., Farmer, J. D.
and Rasmussen, S. (eds), Artificial Life 11, Addison-Wesley, Reading, Massachusetts,
pp. 775-797.

336 J. S. GERO

de Bono, E.: 1972, Personal communication, Forrest, S. (ed.), Emergent Computation,

Elsevier, New York.

Ganeshan, R., Finger, S. and Garrett, J.: 1991, Representing and reasoning with design
intent, in Gero. J. S. (ed.), Artificial Intelligence in Design ’91, Butterworth-Heinemann,
737-755.

Garcia, A. C. B. and Howard, C.: 1991, Building a model for augmented documentation, in
Gero, J. S. (ed.), Artificial Intelligence in Design ’91, Butterworth-Heinemann, 723-736.

Gero, J. S.: 1987, Prototypes: a new schema for knowledge-based design, Working Pa-
per, Architectural Computing Unit, Department of Architectural Science, University of
Sydney, Sydney.

Gero, J. S.: 1990, Design prototypes: a knowledge representation schema for design, A7
Magazine, 11(4): 26-36.

Gero, J. S. and Kumar, B.: 1993, Expanding design spaces through new design variables,
Design Studies 14(2): 210-221.

Gero, J. S. and Maher, M. L.: 1992, Mutation and analogy to support creativity in
computer-aided design, in Schmitt, G. N. (ed.), CAAD Futures 91, Vieweg, Wiesbaden,
pp- 261-270.

Gero, J. S. and Yan, M.:1993, Shape emergence by symbolic reasoning, Working Paper,
Key Centre of Design Computing, University of Sydney, Sydney.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading.

Langton, G. L.: 1989, Artificial Life, Addison-Wesley, Reading.

Logan, B. and Smithers, T.: 1989, The role of prototypes in creative design, Preprints Mod-
eling Creativity and Knowledge-Based Creative Design, University of Sydney, Sydney,
Australia, 233-248.

Qian, L. and Gero, J. S.: 1992, A design support system using analogy, in Gero, J. S.
(ed.), Artificial Intelligence in Design 92, Kluwer, Dordrecht, pp. 795-813.

Riesbeck, C. and Schank, R.: 1989, Inside Case-Based Reasoning, Lawrence Erlbaum,
Hillsdale, New Jersey.

Rosenman, M. A.: 1991, Incorporating intent in design data exchange standards, in Gero,
J. S. and Sudweeks, F. (eds), Preprints [JCAI-91 Workshop on Artificial Intelligence
in Design, University of Sydney, Sydney, pp. 51-56.

Rosenman, M. A., Gero, J. S. and Hwang, Y-S.: 1993, Representation of multiple concepts
of a design object based on multiple functions, Management of Information Technology
for Construction (to appear).

Smithers, T.: 1992, Design as exploration: puzzle-making and puzzle-solving, AID’92
Workshop on Search-Based and Ezploration-Based Models of Design Process (available
from the Department of Artificial Intelligence, Edinburgh University), pp. 1-21.

Steadman, P.: 1979, The Fvolution of Designs, Cambridge University Press, Cambridge.

Steels, L..: 1991, Towards a theory of emergent functionality, in Meyer, J.-A. and Wilson,
S. W. (eds), From Animals to Animats, MIT Press, Cambridge, pp. 451-461.

Stevens, S. S.: 1957, On the psychophysical law, Psychological Review, 14: 153-181.

Stiny, G. and Gips, J.: 1978, Algorithmic Aesthetics: Computer Models for Criticism and
Design in the Arts, University of California Press, Berkeley and Los Angeles, California.

Weisberg, R. W. and Alba, J. W.: 1981, An examination of the alleged role of ‘fixa-
tion’ in the solution of several ‘insight’ problems, Journal of Frperimental Psychology,
110(2): 169-192.

Woodbury, R. F.: 1989, Design genes, Preprints Modeling Creativity and Knowledge- Based
Creative Design, University of Sydney, Sydney, pp. 133-154.

