
TOWARDS A MODEL OF EXPLORATION INCOMPUTER-AIDED DESIGNJ. S. GeroThis paper draws a distinction between search and exploration in design. Search is a pro-cess for locating values of variables in a de�ned state space whilst exploration is a processfor producing state spaces. The paper proceeds to elaborate two exploration processesapplicable in computer-aided design: emergence and evolutionary combination.1. IntroductionDesign distinguishes itself from other complex human intellectual activitiesin a number of important and signi�cant ways. Design is that activity whichis primarily concerned with changing the world.Design can be initially characterised as an intentional, purposeful activity.This implies that we can model design as being goal-oriented, but as weshall see unlike problem solving which is also a goal-oriented activity, thegoals in designing are not �xed and determining them is part of designing.Design is also a constrained activity, i.e. there are constraints which limitthe designer's ability to achieve goals. Some of these constraints are basedon the behaviour of the physical world, others are based on the designer'sperceptions and interpretations of design situations, others are implicit in therepresentations and processes utilised. Design can be conceived as a decisionmaking activity. This implies that choices exist; in computational termsthis implies variables, the values of which have to be decided. (Variables indesign include both descriptors and the relationships between them.) As issuggested later the variables themselves may be treated as the values forother variables. Search is the common process used in �nding values forsymbolic variables. We will be suggesting that the process of determiningthe space within which to search is a form of exploration. In addition toexploration and search design involves learning where learning implies arestructuring of the knowledge used. What de�nes the goals, the constraints,the knowledge, the processes and the focus of design depends on the contextwithin which the designer operates. This context depends largely on thedesigner's perceptions of what makes up the context. These perceptionschange as design occurs resulting in a perceived change of context.From a computational viewpoint design can be treated paradigmaticallyas a process of producing variables, determining relationships between themand �nding values for some of those variables such that useful values aredetermined for some other of those variables. In design the variables can beconveniently categorised into a number of classes, the three most signi�cant

316 J. S. GEROof which are those variables which de�ne structure, those variables whichde�ne behaviour and those variables which de�ne function. The variablesused to describe structure are also often called design or decision variables,whilst those used to describe behaviour are also often called performance,objective or criteria variables.One useful way to provide a framework for design is through the con-ceptual schema design prototypes (Gero, 1987; 1990) which articulates afunction-behaviour-structure + knowledge + context framework. Thus, thestate space representation of designs has three subspaces or abstractions:the structure space, S (often called the decision space); the behaviour space,B (often called the performance space); and the function space, F (whichde�nes the artefact's teleology). Figure 1 shows these three subspaces whichconstitute the state space of designs.Whilst there are transformations which map function to behaviour andvice-versa and structure to behaviour and vice-versa, there are no trans-formations which map function to structure directly. This is a version of theno-function-in-structure principle (de Kleer and Brown, 1984; Gero, 1990)where the teleology of an artefact is not found in its structure but is a contex-tual interpretation of its behaviour. The corollary: no-structure-in-functionalso holds. This may, at �rst glance, be counter-intuitive. The reason is thatin human experience once a phenomenological connection between functionand structure is made it is hard to unmake it. Thus, it appears that thereis some sort of causal transformation between function and structure ratherthan a phenomenological one. The transformation which maps structure tobehaviour is a causal one.Often only the structure and behaviour spaces are considered in computa-tional models although function provides an important articulation of ideasabout design. Typical computational models of design can be grouped basedon the processes they utilise under such processes as simulation, optimiza-tion, generation, decomposition, constraint satisfaction, and more generallysearch and exploration. All of these share one concept in common, namelythat structures are produced in a design process and their resultant beha-viours are evaluated. It is only recently that the function of the artefact beingdesigned is beginning to be brought into the computational model (Gane-shan et al., 1991; Garcia and Howard, 1991; Rosenman, 1991; Rosenman etal., 1993).In this paper we will focus on the exploration aspect of designing from acomputational viewpoint. We will provide formalisable computational con-structs for exploration and its supporting processes. In particular, we willpresent and examine two generic processes which allow exploration to occur.The �rst is emergence and the second is combination. As we shall see al-though these processes are very di�erent their application results in changeswhich match the notion of exploration we will be using in this paper.

EXPLORATION IN COMPUTER-AIDED DESIGN 317
Fb B j

S q

Fa B i S pFig. 1. The three subspaces of function, F , behaviour, B, and structure, S, whichconstitute the state space of designsLogan and Smithers (1989) and Smithers (1992) have presented cogentarguments as to why design is not search and why design is more like explora-tion. They have presented a process model of design as exploration and havegiven hand-worked examples of designing in a blocks world. In this paperwe aim to characterise exploration initially in terms of a state-space repres-entation before developing and describing the computational constructs ofinterest. 2. Search and ExplorationSince there is very little work on computational characterisations of function,function variables and their processes, we will restrict our discussions, ingeneral, to structure and behaviour only.2.1. Search in designSearch, as a computational process, requires that the state spaces of be-haviour and structure be well-de�ned, i.e. that all the states be directlyspeci�able a priori. In design this implies that the variables which de�nethe structure and the behaviour are known a priori as are the relationshipsbetween them. Search then determines feasible, satis�cing or, in appropriatecircumstances, optimal values for structure variables which produce desiredbehaviours, Figure 2. In those situations where the values of the variablesare in the domain of natural numbers the search problem can be cast as anoptimal design problem. Under these conditions the optimization processesare the search processes. When the values of the variables are in the domainof symbols then a wide variety of arti�cial intelligence approaches based onvarious forms of reasoning are available to search for symbolic values.How does search contribute to design? In that aspect of designing whenall the variables (at some level of granularity) have been produced and therelationships between them are known then search is a most appropriateprocess. Whilst search does not provide an adequate paradigm for design

318 J. S. GERO
B j

S q

B i S p

•
•

•
•

•
•

•Fig. 2. Search is carried out within a �xed design state space. The structure spaceis searched, guided by the performance in the behaviour space.such situations do occur at the base of many design activities. Search doesform the basis of that class of design de�ned as `routine design'. Thus, in asense, search is a foundational, necessary but not su�cient, process for anycomputational model of design. What search fails to deal with is the processof producing variables and determining relationships between them.2.2. Exploration in designExploration in design can be characterised as a process which creates newdesign state spaces or modi�es existing design state spaces. New state spacesare rarely created de novo in design rather existing design state spaces aremodi�ed. The result of exploring a design state space is an altered statespace.For a given set of variables and processes operating within a bounded con-text or focus any computational model will construct a bounded (althoughin some cases countably in�nite) state space. Exploration in design can berepresented in such a state space by a change in the state space. Explora-tion maps onto the concept of non-routine design (Gero and Maher, 1992).Any of the subspaces in Figure 1 for function, behaviour or structure couldbe changed although, in general, in design it is the structure space that ischanged. Exploring the structure space introduces new structure variableswhich may, although not necessarily, introduce new behaviours associatedwith those variables. Exploring the behaviour space introduces new beha-viour variables which may, although not necessarily, introduce new functionsand structures associated with those variables. Exploring the function spaceintroduces new function variables which may, although not necessarily, in-troduce new behaviours associated with those variables, i.e.Snew �! �BexisitingBnew

EXPLORATION IN COMPUTER-AIDED DESIGN 319
Original state space New additive state space

S o S nFig. 3. The additive state space view.Bnew �! �SexisitingSnewBnew �! �FexisitingFnewFnew �! �BexisitingBnewwhere �! means implies.There are two classes of state-space change possible: addition and substi-tution. This is based on Stevens' two forms of psychological representationalscales (Stevens, 1957). The additive view is presented conceptually in Fig-ure 3 where the new state space Sn totally contains the original state spaceSo, i.e. So � Sn and Sn � So 6= �The implication of the additive view is that variables are added to theexisting stock of variables. Gero and Kumar (1993) have demonstrated howthe addition of structure variables allows design spaces that contain infeas-ible behaviour spaces to be made feasible. Further, they demonstrated howthe addition of structure variables can improve the behaviour of an alreadyoptimized design.The substitutive view of state-space change is presented conceptually inFigure 4 where the new state space Sn does not cover the original state spaceSo, i.e. So 6� Sn.The implication of this substitutive view is that some existing variablesare deleted and others added. There is no nexus between the number ofexisting variables deleted and the number of new variables added. As willbe seen later this view matches the concept of emergence.Thus, exploration precedes search and it, e�ectively, converts one for-mulation of the design problem into another. If the �nal formulation is the

320 J. S. GERO
Original state space New substitutive state space

S o S nFig. 4. The substitutive state space view.accepted one we say that it is well-structured in contrast to the previousformulations which we would call ill-structured. This notion of structuringrefers not to the de�nedness of any formulation but to the distance fromthe �nal formulation. The reason for the distinction between de�nednessand structuring is to recognise that all computational constructs need tobe well de�ned but need not match the semantics of what is being repres-ented. Part of designing involves determining what to design for (functionor teleology), determining how to measure satisfaction (behaviour), and de-termining what can be used in the �nal artefact (structure). Exploration isthe process which supports these design determinations. Having made thesedecisions via exploration then search takes over.The next sections introduce and describe two computational processeswhich can be used as exploration processes.3. Emergence as Exploration in Design3.1. EmergenceA property that is not represented explicitly is said to be an emergent prop-erty if it can be made explicit. There are three views of emergence: compu-tational emergence; thermodynamic emergence; and emergence relative to amodel (Cariani, 1992). Computational emergence is the view that novel be-haviours can emerge as a result of local computational interactions (Forrest,1990; Steels, 1991; Langton, 1989). This is one of the approaches to the �eldof arti�cial life. Thermodynamic emergence is the view that thermodynamictheory may be used to describe how new, stable behaviours and structurescan arise at loci removed from known equilibrium. Emergence relative to amodel sees emergence as a deviation of the structure or behaviour of a sys-tem from an observer's model of it. It is this latter view of emergence thatwe wish to use in this paper.We suggest that emergence is one computational process which is capable

EXPLORATION IN COMPUTER-AIDED DESIGN 321
(a) (b)Fig. 5. (a) Single visual form; (b) seven copies of the single form in particularlocations such that a number of visual forms emerge.of supporting exploration in design. It is a process capable of modifyingthe state space under consideration and matches the concept of a designerchanging his or her context. Emergence, in the way described in this paper,matches the substitutive state space view.Emergence is a well recognised phenomenon in visual representations ofstructure although it is not limited to that �eld. We will use visual emergenceas the vehicle to introduce and describe the computational process suggested.Consider the visual form in Figure 5(a), if a designer locates seven of thesein a particular con�guration as shown in Figure 5(b) it is possible to see,cognitively, a number of emergent forms.One computational model of form emergence is based on notions drawnfrom �xation where a particular representation is taken to prevent otherviews from being `seen'. Thus, the model separates out representation, schemasin representations and processes operating on those representations and in-troduces an alternate representation which eliminates the �xation (Gero andYan, 1993). More will be said on this later in the paper. It is su�cient tostate at this stage that at least one implemented computational model ex-ists for shape or form emergence capable of `discovering' the two emergentsquares in Figure 5(b).3.2. Emergence in designEmergence plays an important role in design both within a domain andwithin a design. Emergence allows for new views of existing situations tocome into being and thus becomes a way of changing the direction or focusof a design. More formally, emergence allows for new instances of the schemaunder consideration to be found; instances which were not previously rep-resented. For example, consider Figure 6, the two triangles labeled T1 andT2 have been drawn, triangle labeled T3 is a third triangle which was not

322 J. S. GERO
T1 T2

T3Fig. 6. The two triangles T1 and T2 are drawn whilst triangle T3 emerges.
Fig. 7. A sixteen-sided form produced using a schema of a sixteen-sided form.drawn but emerges. Triangle T3 is a new instance of a triangle schema andit now can be used in the design.Emergence allows for new schemas to emerge, schemas which were notin the original representation. For example, consider Figure 7 which showsa sixteen-sided form. Figure 8 shows two squares which emerge from theoriginal form. The square is a new schema discovered using a form of data-driven or feature-driven search to produce it.The emergent squares now provide design opportunities not availablewhen the form was viewed as a sixteen-sided form only. For example, thetwo squares may be rotated with respect to each other or they may beseparated and so on. What is important is that a new design space has been

Fig. 8. Two four-sided forms which emerge from the sixteen-sided form shown inFigure 7, discovered using an emergence process (Gero and Yan, 1993).

EXPLORATION IN COMPUTER-AIDED DESIGN 323
Ss

o

Ss
eFig. 9. The structure state spaces of the original and emergent forms.constructed from these particular emergent forms. If we let be the statespace of the structure of the original form and be the state space of thestructure of the emergent square forms thenSso \ Sse = �Figure 9 shows this conceptually. Even though the structure state space maynot intersect, as we stated earlier, this does not necessarily mean that thebehaviour and function state spaces of the emergent structures have anynew variables introduced into them.From this characterisation we can see that emergence meets the require-ments of being an exploration process in that it changes the state space.It is worth examining the di�erences between schemas and simple rep-resentations. A schema (in the Kantian sense) is the conceptual abstractionof entities. In this sense schemas allow for the structured representation ofdescriptions. For example we can have a schema for triangles and anotherfor squares as well as one for polyline shapes. Before we discuss schemaemergence we need to draw a distinction between structure emergence andschema emergence.Let us consider again the situation in Figure 6. A new structure, T3,emerges which has the same schema as the original structures, i.e.Sso \ Sse 6= �However, if we let Sso be the original schema and Sse be the schema of theemergent structure then there are three situations possible.if Sso \ Sse 6= �and Sso \ Sse = Sso

324 J. S. GERO
Ss

o
Ss

o
Ss

e
Ss

e

Ss
o

Ss
eFig. 10. State space representations of schemas:(a) Emergent structure has same schema as original structure. (b) Emergent struc-ture has schema related to schema of original structure. (c) Emergent structure hasschema unrelated to schema of original structure.then the schema of the original structure and the emergent structure are thesame. This is the case for the emergent triangle in Figure 6.if Sso \ Sse 6= �and Sso \ Sse 6= Ssothen the schema of the emergent structure is di�erent to that of the originalstructure but there is some overlap between them. This is the case for theemergent squares in Figure 8.if Sso \ Sse 6= �then the schema of the emergent structure is both di�erent to that of theoriginal structure and there is no overlap between them. This is the case forthe emergent squares in Figure 5.These three cases are shown in Figure 10.3.3. Process model of emergenceOne approach to the development of a process model of emergence is tore-examine concepts associated with �xation. Fixation occurs when someaspect of the representation of a situation prevents us from viewing thatsituation in another way (Weisberg and Alba, 1981). We can see a demon-stration of this in Edward de Bono's `tennis game problem' (de Bono, 1972).Suppose you need to schedule the games in a competition for your ten-nis club. You have 97 players registered. The �rst question to ask is howmany games need to be scheduled and therefore to determine how long thecompetition will last. One way to determine how many games need to bescheduled is as follows. You need to know that each game produces onewinner and one loser; only winners proceed to the next round to play other

EXPLORATION IN COMPUTER-AIDED DESIGN 325
Round

1

2

3

4

5

6

7

No of
players

97

49

25

13

7

4

2

Bye
player

1

1

1

1

1

0

No of
games

48

24

12

6

3

2

1

Cumulative
no of games

48

72

84

90

93

95

96Fig. 11. Calculating the total number of games needed to be scheduled.winners until you reach the �nal game. The winner of the �nal game is theclub champion.Since you need to have even numbers of players to produce games wheneveryou have an odd number of players, one player has a `bye' and automaticallygoes into the next round as if he or she were a winner. The winners fromeach game go into the next round. These two rules are applied iteratively.Figure 11 shows the application of these rules to determine the number ofgames which need to be scheduled. Clearly, for each competition which hasa di�erent number of entrants a new set of calculations will be needed.We can characterise the schema being used here as the `winning game'schema, i.e. each game produces a winner who proceeds to the next round.Another schema may be characterised as the `losing game' schema. Here,each game produces one loser. Irrespective of how often a player has won,a single loss forces them out of the competition. Only one player, the clubchampion, loses no games. Since each game produces one loser and only oneplayer has no losses the number of games to be scheduled is: 97� 1 = 96 or,more generally, the number of players minus one.Adopting the winning game schema prevents you from using the losinggame schema which, in this case, is a superior approach to the solutionof this simple problem. Fixation occurs when one schema prevents the useof another schema. We can extend the notion of �xation to be applied tothose situations where any form of representation of features prevents therepresentation of other features. This will allow us to utilise a single concep-tual framework to describe process models for both structure and schemaemergence.

326 J. S. GERO
primary shapes

shape hiding

implicit shapes

shape emergence

emergent shapesFig. 12. A process model of shape emergence. Rounded blocks show representations,squared blocks show processes.3.3.1. Structure emergenceA process model for structure emergence has been developed by Gero andYan (1993) for the emergence of shapes. It has two fundamental steps: shapehiding and shape emergence. Shape hiding changes the representation ofshapes such that the original or primary shapes are no longer speci�callyrepresented, i.e. are hidden. To do this, an alternate representation is used.This produced implicit shapes only. Shape emergence applies shape schemasto the implicit shapes to determine whether new shapes (additional to theprimary shapes) can emerge. Figure 12 provides an outline of this process.This can be generalised beyond shapes as shown in Figure 13.Whilst such a model has been developed and implemented for two-dimen-sional closed shapes it does not appear to have been implemented elsewherealthough we can readily conceive of its application in other domains. Con-sider the domain of structural engineering applied to buildings. The engineercommences with a set of parallel frames which are used to support both ver-tical and lateral loads, Figure 14.In order to provide lateral stability the engineer adds horizontal bracingat each oor to produce the engineering structure shown in Figure 15. Nowanother set of frames emerges, frames which are not explicitly represented asframes initially, Figure 16. Subject to an appropriate representation theseemergent frames can be found using the same schema as for the primaryframes.The model in Figures 12 and 13 can be described as follows:

EXPLORATION IN COMPUTER-AIDED DESIGN 327
primary structures

structure hiding

implicit structures

structure emergence

emergent structuresFig. 13. A process model of structure emergence.where � = subscripta = subscript for alternatee = subscript for emergento = subscript for original or primaryR� = representationSs� = a structureSsk = a schemaThe primary or original structure can be described in the original repres-entation asSs�=0(R�=0 j Ss�=0)The primary structure can be described in an alternate representation asSs�=0(R�=a j Ss�=0)and all the implicit instances of the schema in that representation can bedescribed asSs�=e(R�=a j Ss�=0)where Ss�=0 � Ss�=e.However, it is possible to provide di�erent schemas so that other struc-tures may emergeSs�=e(R�=a j Ss�=a)

328 J. S. GERO
Fig. 14. Building structure as a set of parallel load resisting frames.3.3.2. Schema emergenceThe same concepts may be applied to the emergence of schemas althoughdi�erent processes are required. Figure 17 shows a process model of schemaemergence analogous to the structure emergence process model of Figure 13.The primary or original schema can be described in the original repres-entation and original structure asSs�=0(R�=0 j Ss�=0)The original schema can be described in an alternate representation asSs�=e(R�=a j Ss�=0)or Ss�=e(R�=a j Ss�=0)New schemas can be derived from the new representation and possible al-ternate structures and can be described asSs�=e(R�=a j Ss�=a) �! Ss�=e(R�=a j Ss�=e)Processes for structure emergence have been developed for the case of struc-tures of two-dimensional closed shapes. A data-driven process for schemaemergence has been developed for schemas describing two-dimensional closedshapes (Gero and Yan, 1993). This process can be described in terms of theconcept of schema classes. A schema class is de�ned by the set of commonattributes of a class of schemas. Individual schemas are instances of the

EXPLORATION IN COMPUTER-AIDED DESIGN 329
Fig. 15. Building structure with horizontal lateral bracing added.schema class with additional constraints. In this case the common attrib-utes are that all the individual schemas in the class describe two-dimensionalclosed shapes. Instances of the schema de�ne a state space of structures. Aschema class is used to �nd schemas implicit in a representation.Take for example a representation of shapes based on bounding lines.There may be a schema associated with three bounding lines and someconstraints called a triangle. This schema can be used as a means to searchthe data in that representation for matching instances. Alternately, we mayde�ne a schema class based only on bounding lines closing and search thedata for any member of that schema class and �nd, for example, closedshapes with four bounding lines, two of which are parallel. This becomes a`new' schema which can be used to search the data for instances of itself.3.4. Emergence as exploration in designWe treat exploration as being concerned with determining spaces withinwhich search then takes place. Exploration may be considered as being akinto determining which variables are going to be used in describing a design.Structure emergence takes an existing structure state space and modi�es itby adding to it. The modi�cation can involve the introduction of both newdescriptor variables and new relationship variables. The modi�cation canbe either additive or substitutive depending on how it is treated. Schemaemergence also takes an existing state space and modi�es it. Both of theseforms of emergence meet the de�nition of exploratory processes.

330 J. S. GERO
Fig. 16. Building structure with emergent frames highlighted.4. Evolutionary Combination as Exploration in Design4.1. Evolutionary combinationCombination is one way of changing a state space. A number of conceptu-ally similar processes exist for combination largely based on analogy (Qianand Gero, 1992) and case-based reasoning (Riesbeck and Schank, 1989).Another basis of change produced by combination leads to the concept ofevolution and an analogy with natural evolution and evolutionary processes.Woodbury (1989) was one of the early proponents of using formal modelsof evolution in design, although the concept has been discussed informallyfor some time (Steadman, 1979).One common interpretation of computational models based on the geneticprocesses of crossover (� combination) and mutation is that of a model ofsearch (Goldberg, 1989). However, it will be argued in the next sectionthat the �eld of genetic algorithms can be applied to exploration as wellas search. We suggest that evolutionary combination is one computationalprocess which is capable of supporting exploration in design. It is a processcapable of modifying the state space under consideration and matches theconcept of a designer changing his or her context. Evolutionary combination,as described in this paper, matches the substitutive state space view.In genetic algorithms, a population of `organisms' (usually representedas bit strings) is modi�ed by the probabilistic application of the genetic op-erators from one generation to the next. The basic algorithm where P (t) isthe population of strings at generation t, is given below.

EXPLORATION IN COMPUTER-AIDED DESIGN 331
primary schema

schema hiding

implicit schemas

schema emergence

emergent schemasFig. 17. A process model of schema emergence.t = 0initialize P (t)evaluate P (t)while (termination condition not satis�ed) dobeginselect P (t + 1) from P (t)recombine P (t + 1)evaluate P (t + 1)t = t+ 1endEvaluation of each string which corresponds to a point in a state space isbased on a �tness function that is problem dependent. This corresponds tothe environmental determination of survivability in natural selection. Selec-tion is done on the basis of relative �tness and it probabilistically culls fromthe population those points which have relatively low �tness. Recombina-tion, which consists of mutation and crossover, imitates sexual reproduction.Mutation, as in natural systems, is a very low probability operator and justips a speci�c bit. Crossover in contrast is applied with high probability. Itis a structured yet randomized operator that allows information exchangebetween points. Simple crossover is implemented by choosing a random pointin the selected pair of strings and exchanging the substrings de�ned by thatpoint. Figure 18 shows how crossover mixes information from two parentstrings, producing o�spring made up of parts from both parents.

332 J. S. GERO
Crossover Points

A

C

B

D

Parents

OffspringFig. 18. Crossover of the two parents A and B produces the two children C and D.Each child consists of parts from both parents which leads to information exchange.4.2. Evolutionary combination in designWhen using the concepts embodied in genetic algorithms it is necessaryto distinguish the genotype where the genetic material is represented fromthe phenotype which is the structure resulting from the expression of thegenotype in some form. In natural genetics the genotype contains the chro-mosomes with their constituent genes and the phenotype is the resultingorganism. One of the challenges in using genetic algorithms in design is to�nd an appropriate representation for the genotype. A number of researchershave suggested that shape grammars may be a useful representation.Shape grammars were introduced into the architectural literature as aformal method of shape generation. They provide a recursive method forgenerating shapes and are similar to phrase structure grammars, but de�nedover alphabets of shapes and generate languages of shapes (Stiny and Gips,1978). A set of grammatical rules map one shape into a di�erent shape. Theserules de�ne the set of possible mappings or transformations. More formally, ashape grammar is the quadruple (Vt; Vm; R; I). Where Vt is a set of terminalshapes or terminals and Vm a set of nonterminal shapes or markers. Vt andVm provide the primitive shape elements of a shape grammar. R is a set ofrules consisting of two sides, each side of which contains members of Vt[Vm.If the left hand side of a rule matches a shape, applying the rule results inreplacing the matching shape with the right hand side of the rule. I is theinitial shape, a subset of Vt [Vm and starts the shape generation process.This models a design system where the rules embody generalized designknowledge and a sequence of rule applications generates a design.We model routine design with a �xed set of shape grammar rules andencode the possible execution order (application sequence) of these rulesfor manipulation by the genetic algorithm. The set of optimal structures

EXPLORATION IN COMPUTER-AIDED DESIGN 333
A A B

B B C

A B C

B A B

A A B

B B C

A A C

B B B

Parents

Crossover point

Offspring Parents Offspring

Crossover pointFig. 19. Generating new grammar rules by crossover, di�erent crossover pointsproduce di�erent o�spring rules.for this �xed grammar de�nes a space of feasible solutions correspondingto a space of behaviours. The goal is to �nd the execution order of thegrammar rules which will optimize a set of behaviours. In this �xed scheme,additive and substitutive processes are absent. However, when in additionto the application sequence, we allow the grammar itself to be encodedfor manipulation by the genetic algorithm, we evolve new grammars andassociated rule application sequences to improve on the best possible designsthat could be generated by the �xed grammar. That is, instead of optimizinga plan of application of some �xed set of rules, the computational modelevolves new rules and optimizes application sequences for those new rulesto generate novel and `more optimal' solutions. By more optimal we meanthat the optimal behaviours produced by the application of the new rulesare better than those produced by the application of the original rules.The primary process in genetic algorithms is crossover which combinesparts of the genotypes of the two parents-this is the basis of evolutionarycombination in design.4.3. Process model of evolutionary combinationIn order to change the state space the grammar needs to be changed. Newgrammars are generated from the original grammar, through mutation andcrossover of rules. That is, rules from the original grammar serve as a basisfor the generation of new grammar rules and are produced by cutting andsplicing, i.e. combining, the original rules. Consider the two rules labeled`parents' in Figure 19, choosing the crossover point as indicated producesthe new rules labeled `o�spring.' Di�erent crossover points produce di�erent`o�spring' rules leading to a number of di�erent grammars. Recombinationtherefore plays an important part in the process of learning, helping togenerate di�erent grammars and thus di�erent structures and behaviourspaces to explore.When modeling a design process using a (shape) grammar and its associ-

334 J. S. GERO
G1

G2

G i

GnFig. 20. New state spaces generated when the grammar Gi is evolved into thegrammar Gi+1.ated language, we are restricted by the choice of grammar. The design taskin this situation is a planning task: to plan a sequence of rule applicationsthat will generate a desired behaviour from the resultant shape. In this casethe structure and behaviour spaces are �xed and de�ned by the grammar.We can encode the task for the genetic algorithm by numbering the rulesand representing an individual as a �nite length string of these numbers.However, such an encoding can result in nonviable individuals since a ruleapplication called for in an individual may not match its left hand side withany part of the shape generated so far. Instead we use an encoding where theinterpretation is context dependent. We allow the grammar itself to evolvewhile generating a sequence of rule applications. Since every grammar de�nesa state space, the genetic algorithm now explores a number of structure andbehaviour spaces in parallel. This expands the number of possible designsand in the case of our system, produces better, more optimal shapes andassociated behaviours that were not possible before.4.4. Evolutionary combination as exploration in designSince every grammar de�nes a state space, evolutionary combination whichproduces new grammars explores a number of structure and behaviour spacesin parallel, Figure 20.Evolutionary combination can be extended through the use of muta-tion. In genetic algorithms all mutations are homogeneous, i.e. they producerules which could possibly have been produced by evolutionary combination.However, as discussed earlier it is possible to produce mutations which areheterogeneous, i.e. they produce rules which could not possibly have beenproduced by evolutionary combination. Such a situation opens up anotherdimension of exploration since it requires additional knowledge in order toproduce the phenotype and possibly check for its behaviour.

EXPLORATION IN COMPUTER-AIDED DESIGN 335
S 0

time

S 1
S 2

S n

E 1

E 2

E nFig. 21. Graphical model of state space exploration where Si is state space i andEj is exploration j.5. Towards a Model of Exploration in Computer-Aided DesignWe have distinguished the two concepts of search and exploration. Searchmay be treated as the process of looking for appropriate states in a statespace conception of the design. Exploration may be treated as the processwhich determines and to an extent produces the state space within which toexplore. In some sense then exploration may be conceived of as meta-searchin that in computational terms all the state spaces which could possiblybe produced by a set of exploration processes is determined a priori by theinitial state space and those processes.A simple model of exploration in computer-aided design can be graph-ically presented as in Figure 21 where new state spaces are produced byexploration processes and these state spaces are searched once they are pro-duced.Let Si be the state space i which is de�ned by the variables and theirrelationships within it. In more general terms it could be de�ned by a setof schemas over those variables as well as the variables themselves. Let Ejbe the exploration processes used to change Sj�1 into Sj . Then a simplestatement of the exploration model isSj = Ej(Sj�1)The state spaces are de�ned in terms of function, behaviour and structure al-though the emphasis in this paper has been on exploring via structure. Else-where, we have suggested how `new' behaviours may be introduced (Geroand Maher, 1992). ReferencesCariani, P.: 1992, Emergence and arti�cial Life, in Langton, C., Taylor, C., Farmer, J. D.and Rasmussen, S. (eds), Arti�cial Life II, Addison-Wesley, Reading, Massachusetts,pp. 775{797.

336 J. S. GEROde Bono, E.: 1972, Personal communication, Forrest, S. (ed.), Emergent Computation,Elsevier, New York.Ganeshan, R., Finger, S. and Garrett, J.: 1991, Representing and reasoning with designintent, inGero. J. S. (ed.), Arti�cial Intelligence in Design '91, Butterworth-Heinemann,737{755.Garcia, A. C. B. and Howard, C.: 1991, Building a model for augmented documentation, inGero, J. S. (ed.), Arti�cial Intelligence in Design '91, Butterworth-Heinemann, 723{736.Gero, J. S.: 1987, Prototypes: a new schema for knowledge-based design, Working Pa-per, Architectural Computing Unit, Department of Architectural Science, University ofSydney, Sydney.Gero, J. S.: 1990, Design prototypes: a knowledge representation schema for design, AIMagazine, 11(4): 26{36.Gero, J. S. and Kumar, B.: 1993, Expanding design spaces through new design variables,Design Studies 14(2): 210{221.Gero, J. S. and Maher, M. L.: 1992, Mutation and analogy to support creativity incomputer-aided design, in Schmitt, G. N. (ed.), CAAD Futures '91, Vieweg, Wiesbaden,pp. 261{270.Gero, J. S. and Yan, M.:1993, Shape emergence by symbolic reasoning, Working Paper,Key Centre of Design Computing, University of Sydney, Sydney.Goldberg, D. E.: 1989,Genetic Algorithms in Search, Optimization and Machine Learning,Addison-Wesley, Reading.Langton, G. L.: 1989, Arti�cial Life, Addison-Wesley, Reading.Logan, B. and Smithers, T.: 1989, The role of prototypes in creative design, Preprints Mod-eling Creativity and Knowledge-Based Creative Design, University of Sydney, Sydney,Australia, 233{248.Qian, L. and Gero, J. S.: 1992, A design support system using analogy, in Gero, J. S.(ed.), Arti�cial Intelligence in Design '92, Kluwer, Dordrecht, pp. 795{813.Riesbeck, C. and Schank, R.: 1989, Inside Case-Based Reasoning, Lawrence Erlbaum,Hillsdale, New Jersey.Rosenman, M. A.: 1991, Incorporating intent in design data exchange standards, in Gero,J. S. and Sudweeks, F. (eds), Preprints IJCAI-91 Workshop on Arti�cial Intelligencein Design, University of Sydney, Sydney, pp. 51{56.Rosenman, M. A., Gero, J. S. and Hwang, Y-S.: 1993, Representation of multiple conceptsof a design object based on multiple functions, Management of Information Technologyfor Construction (to appear).Smithers, T.: 1992, Design as exploration: puzzle-making and puzzle-solving, AID'92Workshop on Search-Based and Exploration-Based Models of Design Process (availablefrom the Department of Arti�cial Intelligence, Edinburgh University), pp. 1{21.Steadman, P.: 1979, The Evolution of Designs, Cambridge University Press, Cambridge.Steels, L.: 1991, Towards a theory of emergent functionality, in Meyer, J.-A. and Wilson,S. W. (eds), From Animals to Animats, MIT Press, Cambridge, pp. 451{461.Stevens, S. S.: 1957, On the psychophysical law, Psychological Review, 14: 153-181.Stiny, G. and Gips, J.: 1978, Algorithmic Aesthetics: Computer Models for Criticism andDesign in the Arts, University of California Press, Berkeley and Los Angeles, California.Weisberg, R. W. and Alba, J. W.: 1981, An examination of the alleged role of `�xa-tion' in the solution of several `insight' problems, Journal of Experimental Psychology,110(2): 169{192.Woodbury, R. F.: 1989, Design genes, Preprints Modeling Creativity and Knowledge-BasedCreative Design, University of Sydney, Sydney, pp. 133{154.

