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Abstract. This paperintroducesnotions of creativity andcreativedesignas a form of computational
exploration. Exploration is used asreeansof defining spacesvhich arethen searchedlt is shownthat
schemas provide an opportunity to describe exploration. Emergsrcprocessvhich modifies schemas
is describedas a ‘creative process'.Visual emergencas elaboratedand other forms of emergenceare
described. The role of emergence in creative design is presented.
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1. INTRODUCTION

The conceptof creativity lie within both socialand cognitive views of the world. The
social view holds that creativity is only embodiedin an artifact or an act and is a
characteristidoestowedon that artifact or act by society. This view has a degreeof
attractiveness as it divorces the creator fromdheated'and only assessethe ‘created'.
The cognitive view holds that there are some things aboubtative actsof the creator
which play a significant role in thereativenessf the resultingartifact or act. Thesetwo
views are complementaryatherthan contradictory.In this paperwe shall be concerned
more with the cognitive view played out with a cognisance of the social view.

Gardner (1993) has suggestedt thereare sevenintelligencesn orderto providea
more adequate view of cognition. These are:

(i) language intelligence
(i) logic and mathematics intelligence
(iii) spatial thinking intelligence
(iv) musical intelligence
(v) bodily-kinesthetic intelligence
(vi) interpersonal intelligence
(vii) intrapersonal intelligence.

As a consequencef multiple intelligenceswe can postulatethat an individual who is
creative in one intelligence need not necesshglgreativein any other. Further,thatthe
cognitive processesf creativity in oneintelligenceneednot necessarilyapply in others.
Psychologists studying creativity have suggested that:

"...creativity is necessarily an interaction, a dynamic, among three discrete constituents:
¢ The individual with his or her distinctive abilities, style needs, desires and programme;
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¢ The particular domain or discipline of knowledge witkhich that personis trainedand
within which that person now works;

¢ The field — that collection of individuaBndinstitutions which offer training, positions,
andawards,andwhich eventuallymakedecisionsaboutthe merits (or lack of merit) of
particular products fashioned by the individual.” [Gardner, 1995]

Further, Gardner [1995] states that:

"... the individuals whom we consider the most creative ... actually chhagatureof the
domain. As aconsequencehe next generatiorof individualswill actually study a domain
that has been somewhat differently configured.”

In this paperl put forward the thesisthat the first two of the three of Gardner's
constituentscan be exploredand better understoodthrough the use of computational
models. Whilst many people equatedesign with creativity, here a distinction will be
drawn between the two.

Design,in one sense,can be conceivedof as a purposeful, constrained,decision
making, exploration and learning activity. Decision makinglies a setof variables the
valuesof which haveto be decided.Searchis the commonprocess usedn decision
making. Explorationhereis akin to changingthe problemspaceswithin which decision
making occurs. Learningimplies a restructuringof knowledge.The designeroperates
within a context which partially dependson the designer’sperceptionsof purposes,
constraintsandrelatedcontexts.Theseperceptionschangeas the designer explorethe
emergingrelationshipsbetweenputative designsand the context and as the designer
learnsmore about possibledesigns.Whilst much more can be said about design this
provides a sufficient context for what follows.

2. MODEL OF CREATIVE DESIGN

Creativity, it has beensuggestedjs not simply concernedwith the introduction of
somethingnew into a design,althoughthat appeardo be a necessargonditionfor any
procesghat claimsto be labelledcreative.Rather,the introduction of ‘somethingnew’
should lead ta resultthatis unexpectedaswell asbeingvaluable).More formally we
can describeoutine designingas following a definedschemawvherethe expectationof
what follows is defined by thechemaCreativedesigning,which is part of non-routine
designing,can be describedas perturbing the schemato produce unexpectedand
incongruougesults.Thesenew resultsare still understandableither in the currentor
shifted context.

Although the boundarybetweenroutine and creativedesigningis difficult to define
there is less difficulty in articulating differences between processes usedimduetion
of routine and creative designs.

One useful way to provide a framewddk designis throughthe conceptuakchema
design prototypes[Gero, 1990] which articulates a function-behaviour-structurer
knowledge framework. Thus, the state space representationof designs hasthree
subspaces oabstractionsthe structurespace,S (often called the decisionspace);the
behaviourspace,B (often called the performancespace);and the function space,F
(which definesthe artefact’'steleology). Figure 1 shows thesethree subspacesvhich
constitute the state space of designs.

Whilst there are transformations which map functiobebaviour andrice-versaand
structure to behaviour and vice-versa, there are no transformations which map fianction
structure. This is a version of the-function-in-structurgrinciple [de Kleer and Brown,



1984; Gero, 1990] where the teleology of an artefagbigound in its structurebut is a
contextualinterpretationof its behaviour. The corollary: no-structure-in-functioralso
holds. This may, at first glance, be counter-intuitive. The reasonis that in human
experience once a phenomenological connection between function and structureiis made
Is hard to unmake it.

Often only the structure and behaviour spaces are considered in compuiatdekd
although function provides an important articulation of ideas about design. Typical
computationalmodelsof designcan be groupedundersuch processes asmulation,
optimization, generation,decomposition,constraint satisfaction,and more generally
search and exploration. All of these share one concept in conmaume]ythat structures
are produced in a design process and their resultant behaviours are evaluated.
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Fig. 1. The threesubspacesf function (F), behaviour(B) and structure(S) which constitutethe state
space of designs, plus the locus of the transformations between them.

2.1 Creativity and Humour

Oneview of creativityis thatit is involved with the productionof an unexpectedesult
throughthe confluenceof two schemas.The first schemaprovidesa set of routine
expectationsthe secondschemais neededto understandthe unexpectedresult. The
unexpectedesultcanbe producedin a numberof different ways describedaterin this
paper.

A model for creative design can be found by analogy to models of humour. Humour

“... arisesfrom the view of two or more inconsistentunsuitable,or incongruouspartsor
circumstancesgonsideredas unitedin [a] complexobjector assemblagepr asacquiringa
sort of mutualrelationfrom the peculiarmannerin which the mind takesnotice of them”
[Beattie, 1776].

Here is an exampleof the two schemaparadigmof humour: An unskilled man,
desperate for work, turng at a constructionsite and asksthe foremanif thereareany
jobs available. The foreman thinks le@ks unintelligent,and doesn’tbelievehe hasthe
gualifications or knowledge for a job but, beilagompassionatperson,decidesto give
him a chance He says,“I'll give you a job if you cantell me the differencebetween
girder andjoist.” The manscratchesis headandsays,“Easy! Can't be caughtout by
that one. Everyoneknows the difference... Goethe wrote Faust and Joyce wrote
Ulysses’ Herethe responsentroducesnew variableswhich requirea new schemato
understand them.

A model of creativedesignbasedon an analogywith humouris presentedn Figure
2. This model inheres nparticularprocessbut providesa frameworkfor computational
processesapableof producing unexpecteddesignsand of finding schemaswhich
support them.
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Fig. 2. A model of creative design based on an analogy with humour (after [Suls, 1972]).
2.2 Creativity and Schemas

Schemasare knowledge structures which when cued provide a framework with
expectations of what is to come. The particular approach to computergeatidedesign
suggestedhereis basedon the use ofschemago comprehendind explain someof the
processes involved. Theaeetwo classesf processesvhich affect schemasn creative
design. The first class of processes involvelangewhich addsto an existingschema.
This can occur when a new variable is addedto a design description. This addition
extendsthe scheman a homogeneoushannersuchthatthe previousschemais wholly
contained within the new schema, Figure 3. The effect ofghisat the previousschema
can now only partially explain the current situation.
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Fig. 3. Additive schemas where each successive schema entirely contains the previous schema.



The second class of processes involves a change atiidtitutesa new schemdor the
previouslyexistingschemaThis canoccurin a numberof ways but perhapsthe most
creativeis not when newvariablesare introducedwhich cannotbe explainedby the
existing schema but rather whenew 'view' of the existing situationallows new ideas
to emerge- ideaswhich canonly be understoodthroughthe use ofa totally different
schemao the currentone, Figure 4. This matchesthe conceptof emergenceof which
more will said later.

Fig. 4. Substitutive schemas where only a part, or none, of the previous sshesntinedwithin the
current schema.

3. CREATIVITY AND EMERGENCE

Whilst thereare many processesapableof beingcalled'creative'in the sensethat they
introduceeithernew variablesor new schemasnto the design[Gero, 1994a,1994b],
perhaps the most intriguing and interesting are those associatezhveithence.

3.1 Emergence

A propertythatis only implicit, ie. not represente@xplicitly, is saidto be anemergent
property if it canbe madeexplicit. Emergences consideredo play animportantrole in

the introduction of new schemasand consequentlynew variables. Emergenceis a
recognisecphenomenorin visual representationsf structure.lt mapsdirectly onto the
conceptof changingschemassince a new schemais generallyneededto describethe

emergenproperty.Considerthe caseof the threeequilateraltrianglesshown in Figure
5(a).

€Y (b)

Fig. 5. (a) Three equilateral triangles, which are the only shapes explicitly represgnt€che emergent
form in the shape of a trapezoid moving that shape from being implicit to being explicit.

If the schemais concernedwith trianglesthen only triangleswill be found. However,
anotherschemdor the structurewill find the trapezoidin Figure 5(b) which was not
explicitly represented in Figure 5(a). A more striking example of visual emergante



foundin Figure 6. Considerthe objectin Figure 6(a). It is copiedinto three different
locations as shown in Figure 6(b). Human observers can readily see the ‘phfanitosn’
of the star-of-David and various triangles. In order to see theseschemasare needed
and a computationalmodel of emergencemust be able to utilise this concept[Gero,
Damskiand Jun, 1995]. It is suggestedhat emergencas an important creativedesign
process.

3.2 Graphical and Visual Emergence
Visual emergenceis one of paradigmsobservedin creative designing [Schén and

Wiggins, 1992]. It has the capacity alow designerdo look at unexpectedr emergent
visual structuresrom whatis in front of them.As a consequenceyther alternativedor

developing the design become possible.
(a) (b)

Fig. 6. (a) Single object. (b) Configurationof three copiesof the object resultingin a number of
emergent forms, the most prominent of which is the 'Star of David'.

Graphical or shapeemergencas the process ofmaking explicit graphical shapes
which were not explicitly representegpreviously. This is becominga widely studied
phenomena in cognitive scienardis being modelledin computationaterms[Gero and
Yan, 1994]. It forms the basis ofoneform of creativeinteractionamongstdesignersas
well within an individual designer.

Visual semantic emergend&ero andJun, 1995a]is the process oimaking explicit
visual patterns,which were not previously indicated,by grouping explicit or implicit
structures of objects in defined ways. It is a phenomenon experienadichbynans. In
particular,this phenomenornasbeenstudiedby Gestaltpsychologistswho formulated
variouslaws governingfigure perceptionPalmer,1983]. Some principles containedin
theselaws of perceptioncan be appliedto architecturaland graphic art design[Meiss,
1986]. Various typesf emergentvisual semanticxan be explainedusing theselaws of
perception.There is a vast collection of possible visual semanticswhich could be
emerged. Four classe$ shapesemanticof architecturaldesignare of interestthrough
interpretationsof the visual patterns from plans, facadesand perspectives:visual
symmetry, visual rhythm, visual movement and visual balance.



Thereare now formal definitions of eachof theseconceptdGero and Jun, 1995a].
Figure 7 showsan architecturalplan from which many of thesevisual semanticcanbe
readily emerged.

Fig. 7. The plan of the Indian Institute of Managemenbf Ahmedabadn India, designedby Louis I.
Kahn, from which many emergent visual semantics can be discovered (after [Gero and Jun, 1995b])

Such conceptscan be seento apply in three dimensionsalso. Figure 8 shows
emergentiisual movementn the Templeof Thebesin threedimensionslt can be seen
not only in the plan in the upper left corner but also in the isometric section.

Fig. 8. Visual movement in the southern temple of Thebes (after [Gero and Jun, 1995a])

3.3 Using Visual Emergence

Figure 9(a) shows the primary shape as drawn by the designer. This shpptehtilly
a number of emergent semantioag of which is visual rhythm. The designermay now
choose to make use of this new interpretation of what was drawmumberof different
ways. A new visuathythm which hasequivalenttopologicalconstraintss generatedy
reshaping the unit of group as shoinrFigure 9b). Therefore the representatiof this
new visual rhythm is changed based on reshaping the unit.

Figure 9(c) shows a new visual rhythm obtained by changingthe topological
constraintson groupsin the existing rhythm in Figure 9(a). Figure 9(d) shows a new
visual rhythmproducedby changingthe topologicalconstraintson relationshipbetween
adjacent groups [Gero and Jun, 1995a].
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Figure 9: Use of emergentvisual rhythmin design: (a) discoveredvisual rhythm; (b) generatingnew
visual rhythmby reshapingunit of rhythm; (c) generatingnew visual rhythmby changingtopological
constrainton group; and (d) generatingnew visual rhythm by changingtopological constrainton
relationship between group (after [Gero and Jun, 1995a]).
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3.4 Other Forms of Emergence

All of the abovehas concentratecbn both visual emergenceand on emergencen the
structure ordescriptivepart of the design.Thereare examplesof function emergencén
the literature, Figures 10 and 11, but no computational models for function emergence.

O

Fig. 10. Fixed structure used in function emergence (after [Finke, 1990]).

Forms of emergenceother thanin the visual domain are now being explored. Of
particular interest is the emergerafeschemaghemselvesSchemasvhich arethe basis
of arepresentatiorof a designhave beershownto emergewhen geneticengineering
principles are applied in evolutionary design [Schnier and Gero, 1995].
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Fig. 11. Various functions the structure in Figure 10 could serve, suchlasv(epunge (furniture), (b)
global earrings (jewellery), (c) water weigher (scientific instrumentspddpableagitator(appliance),(€)
snow sled (transportation)(f) rotating masher(tools and utensils),(g) top or spinner(toys andgames)
and (h) slasher basher (weapons) (after [Finke, 1990]).

4. EVOLUTION IN CREATIVE DESIGN
4.1 Evolution and Genetic Engineering

Computational models of evolution are the foundation of the @ielgeneticalgorithms’.
Genetic algorithms, originally developég Holland [1975], model naturalselectionand

the process ofevolution. Conceptually, genetic algorithms use the mechanismsof
inheritance, genetic crossover and natural selection in evolving individuals that, over time,
adaptto their environment.They canalso be considerech searchprocess searchingor

better individuals in the space of all possible individuals.

The terminologyof geneticrepresentations basedon naturalgeneticsIn geneticsa
set of genes is analogous to a string of symbaddmiartificial geneticsystem.Genescan
take values. A gene can be considered as an instruction in a recipe. The pbsityeme
in the string is identified separatelyfrom the gene’sfunction. A genotypeconsists of a
finite set of genes.The information representedn a genecan be seenas a set of
instructions or procedures for the productairthe phenotypewhich is the realisationof
the genotype.The phenotypds the resultingdesign.The fithessof the phenotypen its
environment is used to determine the probability of that phenoggresicmaterialbeing
propagatednto the next generationThe process oimoving from one generationto the
next involves the crossover of the genetic material in one genotype with that of ainother,
a manner analogous to natural genetic propagation.

Geneticengineeringn designis derivedfrom geneticengineeringnotions relatedto
human interventionin the geneticsof natural organisms.In the geneticsof natural
organismswe distinguishthreeclassesthe geneswhich go to make the genotype,the
phenotype which is the organic expressabrgenotype andthe fitnessof the phenotype
in its environment.When there is a unique identifiable fitness which is performing
particularly well or particularly badly amongstall the fithessesof interest we can
hypothesizehat thereis a uniquecausefor it andthatthis unique causecan be directly



related to the organism’s genes which appear in a structured forng@nit$ype Genetic
engineeringin concernedwith locating those geneswhich producethe fithess under
consideration and in modifying those genes in some appropriate mannas. fidnisally
done in a stochasticprocesswhere we concentrateon populationsrather than on
individuals.

Organisms which perform well (or badly) in the fithe$snterestare segregatedrom
these organisms which do not exhithiat fitnessor do so only in a minimal sense.This
bifurcatesthe populationinto two groups. The genotypesof the former organismsare
analysedto determinewhether they exhibit common characteristicswhich are not
exhibitedby the organisman the latter group, Figure 12. If they are disjunctive,these
genes are isolated on the basis that they are respoiwsiltie performanceof the fithess
of interest. In natural genetic engineering these isolated geneithard¢he putativecause
of positiveor negativefitness.If negativethen theyare substitutedor by “good” genes
which do not generate the negative fitness. If they are associated with positivettiéyess
are reusedin other organisms.lt is this latter purposewhich mapson to our area of
interest.

The analogin designis that high performancen desirablefithessescan be tracedto
particular genesor genesequencesvhich the systemwould like to keepin order to
increase the probabilitthat highly performingdesigns woulde produced.Thesegenes
are ‘engineered'to becomea single evolvedgeneandbecomepart of the pool of genes
from which a designis producedAs a consequencehe likelihood of producingnovel
designs is greatly increased.

TOTAL POPULATION

‘‘good’’ genotvpes ““bad’’ aenotvpes
Figure 12. The genotypes of the ‘good’ memberpagdulationall exhibit genecombinations X, which

are not exhibited by the genotypes of the ‘bad’ members. These gene combinations are thimtenest of
in genetic engineering (Gero and Kazakov 1995).

4.2 Computational models
The computational model of genetic engineering wsetbe easilyillustratedasfollows.

Let us commence with a singbenotypicbuilding block andthat a designis assembled
from combinations of this building block using the 8 rules shown in Figure 13.
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Figure 13. The assembly (transformation) rules used in the example (Gero and Kazakov,
1995).

design 1 design 2 design 3

E good ﬂ good bad

{1,12,2,8,54,4,2,857 {1,2,18,2,855,6,6,8,1} {3,2,2,6,58,2,1,4,4,3,:

design 4 design 6

bad
neutral

{6:4,1,28,5,4,2,8,53,3} \ {34.82816573} 1532343565,1,6,2}

design 5

&

design 7 design 9
neutral

{3.1,8,55,6,4,6,1,1,3,
design 10

bad

{2,3,7,5,1,2,8,3,1,6,2,1}

{1,6,4,2,7)3,4,8,6,1,6,2} {6,4,1,2,3,4,5,2,1,7,4}

Composite building block A
{2,8,5}

=

Figure 14. The identification of the pattern {2,8,5} and corresponding composite building
block A in the genotypes of “good” designs.

Any design can be coded as a sequence of thesausddto assemblet. Assumewe
are trying to produce a design which has the maximum number of holes irtliahedch
design contains not more than 20 blocks. We start the bydeneratinga setof coding
sequences and corresponding designs Figure 14. Then we notaadnaber(4) of the

11



designs have the maximal number of holes (designs 1aad#—the“good” sampling

set) containthe compositebuilding block A and that for three of them their coding
sequences contain the pattern {2,8,5}. We alstice that only a few (nonein this case)

of the designs without holes (designs 3, 5, 8 and 10—the “bad” sampling set) contain this
block and nonecontainthis patternin their coding sequenceThen we can generatethe

next population of coding sequences udimgidentified sequencg2,8,5} asanewrule

which uses the composite building block A in the design. Assuming that we esgphay
optimization methodto generatethis new populationwe can expectthat the “good”
sampling set from the new population is bethemthe previousone (thatis, the designs
which belongto it haveon averagemore holesthanthe onesfrom the previous“good”
sampling set). Then we again try to identify the patterns which are more likely to be found
in designsfrom this “good” sampling set than from the “bad” one. This time these
patterns may contain the previously identified patters as a componentvé&lyameratea

new population of designs usinghese additional pattern sequencef rules as an
additional assembly rule and so on.

4.3 Examples from case-based design

Case-basedlesign is a computationalprocess concernedwith re-using previously
produceddesigns, called cases,in the developmentof a new design. A particularly
difficult problemin case-basedesign[Maheretal., 1995] isthat of finding a suitable
meansof adaptinga caseafterit has beenselectedas having analogoudeaturesto the
design problem at hand.

“Case adaptation can be simply stated as making changes to a recalled case so thatgadin
the currentsituation. Recognisingwhat needsto changeandhow thesechangesare madeare the
major considerationsAdapting designcasesis more than the surfaceconsiderationof making
changes to the previous design, it is a design process itself.” [Maher et al., 1995]

We use the engineeredyenes(there it mapsonto the conceptof geneevolution) to
evolve a representation tife selectedcases.This representatioms thenusedto produce
new designs which have features which are derived from the cases.

In orderto commencewe usea basic coding, which will be evolvedto producea
representationf the casesfoundedon turtle graphicswith four different basic genes.
This codingis able to representany two dimensionalorthogonalshapes such afoor
plans. Figure 15 shows the two rooms plans whichhereaseghat have beerselected.
Figure 16 shows the evolution of a engineered gene which is usedr@ptesentatioof
the cases.

Figure 15. Room plans as cases [Gero and Schnier, 1995].

12
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Figure 16. Evolving a representation: part of the evolution of the evolved gene 363 [Gero
and Schnier, 1995].

The cases nedd be adaptedo the following designrequirementso producea floor
plan with six rooms, fixed room areas, and minimal overall wall length
The engineered genes are now used to produce new designs with the characteristics of the
cases, Figure 17.

Figure 17. Novel floor plans, using design knowledge from the cases [Gero and Schnier, 1995].
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5. DISCUSSION

From a computationaliewpoint designcanbe treatedparadigmaticallyas a process of
producing variables, determining relationships between them and finding valsesier
of those variablessuch that useful values are determinedfor some other of those
variables.In designthe variablescan be conveniently categorisednto a number of
classesthe threemostsignificantof which are thosevariableswhich define structure,
thosevariableswhich define behaviour andhosevariableswhich define function. The
variablesusedto describestructureare also often called designor decisionvariables,
whilst thoseusedto describebehaviourare also often called performance pbjective or
criteria variables.

Most computer-aidedesignsystems uséhe computationaprocess okearchasthe
primary synthesis mechanism. Search, as a computafiornass requiresthat the state
spacesof behaviour andstructure be well-defined, ie. that all the statesbe directly
specifiable a priori. In design this implies that the variables which define the stracture
the behaviourare known a priori as are the relationshipsbetweenthem. Searchthen
determinesfeasible, satisficing or, in appropriatecircumstancespptimal values for
structure variables which produce desired behaviours. Much of current dessgnchs
focussed omepresentationand processesoundedon the design-as-searcpharadigm.
Thereare good reasons fothis. Much of designcan be readily characterizedn this
mannerand as a consequencswift progresscanbe achievedn the researchneededto
underpin the development of design support tools. The entiredfieldsignoptimization
is founded on the design-as-search paradigm.

However, as statedearlier in this paper, creative design involves not just search
within a defined space but also the introduction of either new variablfesroschemas-
a processcalled exploration.Explorationin designcan be characterisechs a process
which creates new design state spaces or modifies existing design state spactateNew
spacesare rarely createdde novo in designrather existing design state spacesare
modified. The resultof exploring a designstatespaceis an alteredstatespace.For a
given setof variablesand processe®peratingwithin a boundedcontextor focusany
computational model will construct a bounded (although in some cases coumiali)
state space. Exploration in design can be represented in stathspaceby a changen
the statespace Emergences a basicexplorationprocesshowever,A numberof other
computational processes support this concept of exploration. They include:

adaptation
analogy
combination
evolution

first principles
mutation.

Whilst the conjunction of the two concepts of computers and credgsignappearto be
far apart thigpaperhasshownthatthey canbe directly connectedand that the computer
canplay a usefuland evensignificantrole in helping us understanccreativedesignas
well as contributing to the production of creative designs.
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