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Abstract.  This paper presents a representation of shapes and shape semantics and processes for the 
emergence of shape semantics.  Constraints on the behaviours of shapes are used to define shape 
semantics, in particular visual symmetry and visual rhythm  A process model of emergence of shape 
semantics which relies on this representation is developed.  Discovery of symmetry in architectural plans 
is demonstrated. 

 
1  Introduction 
Drawn shapes play a critical role not only in representing a design concept but also in 
allowing the designer to reinterpret them to develop new ideas.  In the conceptual and 
creative aspects of designing this reinterpretation of what has been drawn appears to 
play an important role (Schön, 1983).  Working in some visual medium - drawing - the 
designer sees what is there, draws in relation to it, and sees what has been drawn, 
thereby informing further designing.  In all this seeing, the designer not only visually 
registers information but also constructs and discovers its meaning - identifies patterns.  
Emergence of shape semantics is the phenomenon of making explicit meaningful visual 
patterns which were not explicitly indicated, by grouping explicit or implicit structures 
of objects in defined ways.  In this paper we define visual patterns from shapes as shape 
semantics when the patterns are grouped into predefined labelled categories.  There is a 
wide variety of reinterpretations possible.  Emergence of shape semantics in design 
plays an important role in organising decisions, providing order, and generating the 
final form of design results from a designer's interpretation of drawings.   
 
When we think of designing as a conversation with materials conducted in the medium 
of drawings and crucially dependent on seeing, we note that current CAAD systems are 
unable to aid the designer in the manipulation of visual patterns and in the recognition 
of emergent structures because they are not represented.  Current CAAD systems have 
limitations in the interpretation of shapes to capture visual patterns from shapes which 
are perceivable by human beings.  This is one obstacle in using computers to provide 
assistance to human creativity.  Thus the major aim of this paper is to build 
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computational models for emergence of shape semantics and thus to improve the 
capability of CAAD systems. 
 
Symbolic models related to shapes and shape emergence have been presented by Stiny 
(1980; 1985; 1993) and by Krishnamurti (1980; 1981). A computational model for 
shape emergence has been developed by Gero (1992), Gero and Yan (1993, 1994) and 
Liu (1993).  However, there has been little work dealing with emergence of shape 
semantics at a symbolic, computational level.  Interest in shape semantics is found in 
Schön's work (Schön and Wiggins, 1992) and in the work of Masaki, Gero and Purcell 
(1997): the designer not only visually registers information but also constructs 
meanings of shapes - identifies patterns and gives them meanings beyond themselves 
during the design process.  In psychology, the laws of perception in Gestalt theory have 
been used for figure perception (Arnheim, 1966).  Some principles from these laws of 
perception can be applied to perceive shape semantics in architectural designs (Meiss, 
1986).  Clark and Pause (1985) analysed existing architectural designs and classified 
the drawings into formative ideas.  Some of these formative ideas match the concepts in 
shape semantics described in this paper.  Recently, Gero and Jun (1995a, 1995b) have 
developed symbolic representations of shape semantics. 
 
In this paper we present a contribution which assists in the discovery of shape 
semantics.  It is concerned with a general process model of emergence of shape 
semantics.  We wish to discover emergent shape semantics derivable from the initial 
two dimensional shapes. 
 
2.  Shape Semantics 
2.1  Definitions 
From seeing what was intended to be drawn, intentional and/or unintentional patterns of 
shapes are identified.  The patterns can be grouped into dominant themes or formative 
ideas which can conceivably be used in the generation of designs when designers want 
to adapt the patterns for designing.  A formative idea is understood to be a concept 
which a designer can use to influence or give form to a design.  The ideas provide ways 
to organize decisions, to provide order and to consciously generate form.  Two types of 
shape semantics are dealt with.  A primary shape semantics is a predefined visual 
pattern of relationships of shapes which is represented explicitly and intentionally by 
designers for their own purpose.  An emergent shape semantics is a predefined visual 
pattern of shapes that exists only implicitly in the relationships of shapes, and is never 
explicitly input and is not represented at input time. 
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Gero and Yan (1994) give the following definitions. 
A primary shape is a shape that is initially represented explicitly and thus can be 

input and manipulated by specifying its behaviours. 
An emergent shape is a shape that exists only implicitly in a primary shape and is 

never explicitly input and is not represented at input time. 
A polyline shape is composed of a set of straight lines. 
A bounded polyline shape is an enclosed polyline shape, for any point on the 

boundary of which there exists at least one circuit composed of line segments 
which start from and end at the point without covering any line segment more 
than once, 

A shape (in this paper) is a bounded polyline shape. 
 
Figure 1(a) shows examples of primary shapes, primary shape semantics (symmetries) 
in Figure 1(b) and emergent shape semantics in Figure 1(c).  Shape semantics 
emergence is the process of recognizing emergent shape semantics and primary shape 
semantics from primary shapes and /or emergent shapes. 
 

(a)

(b) (c)

(i)

(ii)

(iii)

(iv)

(i)

(ii)

 
 

Figure 1: (a) Primary shapes, (b) primary shape semantics; (i) primary T shape 
reflectional symmetry or translational symmetry and (ii) primary L shape reflectional 
symmetry and (c) examples of emergent shape semantics; (i) emergent three T shapes 
translational symmetry, (ii) emergent reflectional symmetry, (iii) emergent L shape 
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translational symmetry and (iv) emergent reflectional symmetry or translational 
symmetry. 
 
 
 
 
 
2.2  Shape semantics from architectural drawings 
Visual similarities appear in many architects' works, independent of time, style, 
location, function or type of building.  These visual similarities can be conceptualized 
and predefined into various architectural shape semantics which play a dominant role in 
generating building designs.  There are many types of shape semantics in architectural 
design but here we deal with only four types of shape semantics of architectural designs 
through interpretations of the visual patterns from plans and facades: visual symmetry, 
visual rhythm, visual movement and visual balance. 
 
2.2.1  Visual symmetry 
Visual symmetry has been used extensively  from ancient architecture to modern times.  
An object is defined as symmetrical to the extent that it satisfies symmetry operations 
such as isometric transformation: translation, reflection, rotation and composition of 
these (Mitchell, 1990). Each type of symmetry has been used for various purposes in 
different buildings.  Figure 2(a) shows emergence of reflectional symmetry.  Two 
buildings are reflected by a symmetrical axis.   
 

                    
                                  (a)                                                          (b) 
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(c) 

 
Figure 2: Emergence of symmetry in architectural plans: (a) reflectional symmetry: 
Salk Institute (Louis Kahn, 1959-1965); (b) rotational symmetry: Suntop Homes (Frank 
Lloyd Wright); (c) translational symmetry: Project for the new offices of the Bank of 
Gothard in Lugano (Mario Botta, 1982). 
 
Figure 2(b) illustrates rotational symmetry in the plan for Suntop Homes in which four 
identical apartments are rotated through 90° to one another.  Translational symmetry is 
shown in Figure 2(c). 
 
2.2.2  Visual rhythm 
Visual rhythm in shapes is the patterns of relationships of equivalent shapes or groups 
of shapes in which the patterns are formed by regular repetitions along one or more 
axes.  Therefore, the emergence of visual rhythm of architectural shapes may be 
discovered when regular repetitions of visual patterns of equivalent shapes exist.  
Figure 3(a) exemplifies the regular repetition of a unit shape (rectangle) in certain 
directions.  Many examples of visual rhythm can be emerged from the facade of the 
Concours for 800 apartments at Strassburg as shown in Figure 3(b). 
 

 
(a) 
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(b) 

 
Figure 3: Emergence of visual rhythm in architectural plans: (a)Akasaka Prince Hotel 
(Kenzo Tange, 1972-1982); (b) the facade of the Concours for 800 apartments at 
Strassburg (Le Corbusier, 1951). 
 
2.2.3  Visual movement 
Visual movement is recognised when incremental changes of an attribute of structure 
occur in space as well as in form.  Visual movement in architectural design is 
discovered when groups of similar or proximate shapes occur with some regularity.  
Visual movement is defined as a pattern of relationships of equivalent or similar shapes 
or groups of shapes such that the pattern contains a transformed or regular repetition 
along one or more axes.  Figures 4(a) and 4(b) show that similar shapes are grouped in 
size.   Visual movement emerges in the direction  from larger shapes to smaller shapes, 
in general. 
 

     
                                   (a)                                                                   (b) 
 
Figure 4: Emergence of visual movement in architectural plans: (a) Holy Trinity 
Ukrainian Church (Radoslav Zuk, 1977); (b) Temple in Tarxien (Unknown, 2100BC-
1900BC). 
 
2.2.4  Visual balance 
Visual balance is recognised when a structure has perceptual or conceptual equivalent 
weight on either side of an axis of balance.  In general, balance is classified into two 
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kinds: visual balance and conceptual balance.  Only visual balance is described here. 
Figure 5(a) exemplifies the essence of the idea of balance by geometry with two 
complete and different geometric forms.  Figure 5(b) shows that a new extended 
building is balanced by the older building along a balance axis. 
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                                     (a)                                                             (b) 
 
Figure 5: Emergence of visual balance in architectural plans: (a) Architectural Setting 
(Donato Bramante, 1473); (b) Olivetti Training School (James Stirling, 1969). 
 
3.  Symbolic Representation of Shape Semantics 
3.1  A symbolic representation for shapes 
3.1.1  Introduction 
Using infinite maximal lines as representative primitives, the general form of the 
symbolic representation of shapes is (Gero, 1992; Gero and Yan, 1994) 
 S = { Nl ; constraints} 
where Nl  is the number of infinite maximal lines constituting shape S and the  
constraints, which constrain behaviours or properties resulting from the infinite 
maximal lines, based upon which particular shapes are defined. 
 
3.1.2  Constraints on infinite maximal lines 
Three classes of constraints on infinite maximal lines are summarised from Gero and 
Yan's work (1994): geometrical constraints on slopes, topological constraints on 
intersections, and dimensional constraints on the lengths of line segments. 
 
1. Geometrical constraints  
 The parallelarity on any li and lj is denoted as li // lj.  
 The perpendicularity on any li and lj is denoted as li ⊥ lj.  
 The skewness on any li and lj is denoted as li × lj.  
 The coincidence on any li and lj is denoted as li = lj.  
Where l denotes an infinite maximal line. 
 
Intersection ijk is implied by geometrical properties of infinite maximal lines. The order 
of the subscripts of ijk is not significant, i.e. ijk and ikj represent the same intersection. 
 lj × lk => ijk. 
 lj ⊥ lk => ijk. 
Where A => B means A implies B. 
However, ijk does not exist if lj // lk  ∨ lj = lk. 
 
2. Topological constraints  
There are three kinds of intersection groups (Gero and Yan, 1994): ordinary groups, 
adjacent groups, and enclosed groups. 
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a. An ordinary group is represented by a pair of parenthesis, "(" and ")", in which 
any two intersections in the group represents a line segment.  The order of 
intersections in this group is of no significance. 
b. An adjacent group is represented by a pair of angle brackets, "〈" and "〉", in which 
only two adjacent intersections can represent a line segment.  The order of 
intersections in this group is significant.   
c. An enclosed group is represented by a pair of square brackets, "[" and "]". An 
enclosed group represents a circuit of line segments, i.e., a bounded polyline shape. 

 
3. Dimensional constraints  
The dimensional property is the length of a line segment which embeds in an infinite 
maximal line.  The segment which is defined by its bounding two intersections is 
represented as (ijk, ijp).  The segment, (ijk, ijp), is embedded in the infinite maximal line 
lj.  The length of a segment (ijk, ijp) is represented as d(ijk, ijp).  Examples of 
dimensional constraints are: 
 two line segments are of equal length, d(ijk, ijp) = d(ijs, ijr); 
 one line segment's length is k times that of another, d(ijk, ijp) = kd(ijs, ijr). 
 
3.1.3  Features of properties 
1. Features of intersections. 

a. ijk is equivalent to ikj. 
b. iij and iik are called collinear intersections in li . 
c. iijk exists when li, lj and lk are concurrent. 
 

2. Features of segments. 
a. The midpoint of a segment , (ijk, ijp), is represented as i(ijk, ijp)M: 

 ∃ ijr ∈ (ijk, ijp)  ∧  d(ijk, ijr) = d(ijr, ijp)  
 => ijr becomes i(ijk, ijp)M, 
 where ijr denotes any intersection within an infinite maximal line, lj. 

b. The perpendicular bisector of a segment, (ijk, ijp), is represented as l
(iij, ipq)
M   : 

 ∃ i(ijk, ijp)M  ∧  (ijk, ijp) ⊥lm => lm becomes l
(iij, ipq)
M   .  

lm is an infinite maximal line passing through a midpoint of a segment.  There is an 
infinite number of lms.  On the other hand, lM is an infinite maximal line 
perpendicularly passing through a midpoint of a segment.  There is only one lM. 
 
3.2  A symbolic representation for shape semantics 
3.2.1  Introduction 
The general symbolic representation of shape semantics constructed of shapes is 
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 ℑ = {Ns;  constraints}  
 
where Ns is the number of shapes involved in the shape semantics ℑ and the 
constraints, which constrain behaviours or properties resulting from the shapes, based 
upon which particular shape semantics are defined.   
 
3.2.2  Visual symmetry  
When the constraints on shapes are isometric transformational constraints, a class  of 
symmetry exists.  Therefore the symbolic representation of symmetry, denoted as S, is  
 
 S = {Ns ;  Ci}.  
 
where Ci are isometric transformational constraints. 
 
There are four types of constraints on isometric transformations (Baglivo and Graver, 
1983) in dealing with symmetry: translational constraints (denoted by τ), rotational 
constraints (denoted by σ), reflectional constraints (denoted by ρ), and glide reflectional 
constraints (denoted by γ).  Thus, the symbolic representation of symmetry can be 
extended into 
 
 S = {Ns ;  τ,  σ,  ρ, γ}. 
 
Whenever symmetry is discovered, there is an isometric operator (denoted by ϕ).  
Therefore the following reasoning is possible. 
 
 ϕ(Si) = (Sj)  <=> Symmetry exists between Si and Sj. 
 Where <=> means logical equivalence. 
 
For example, let  li, lj, lk  belong to Si and lp, lq, lr  belong to Sj.  The representation of 
two primary triangles is 
 
 Si = {3; [iij, iik, ijk]}, 
 Sj = {3; [ipq, ipr, iqr]}. 
 
Transformational relationships are implied when ϕ(Si) = (Sj) exists. 

 

 ϕ(Si) = (Sj)  => ϕ(one of ls ∈ Si) = (one of ls ∈ Sj),  
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 ϕ(Si) = (Sj)  => ϕ(one of is ∈ Si) = (one of is ∈ Sj). 
 
Let the following corresponding infinite maximal lines and corresponding intersections 
be inferred when ϕ(Si) = (Sj). 
 
 Corresponding infinite maximal lines: 
  li↔lp, lj↔lq, lk↔lr. 
 Corresponding intersections: 
  iij↔ipq, iik↔ipr, ijk↔iqr. 
 
Isometric transformational constraints concern the structures within which 
corresponding infinite maximal lines and corresponding intersections are organised.  
They are represented as groups of corresponding intersections or topological properties 
of segments consisting of corresponding intersections. 
  
1. Translational constraint (τ) 
The translational constraint makes use of the concept of constructed segments. 
Constructed segments are segments constructed between corresponding intersections. 
Let iab corresponds to icd. The constructed segment is implied and represented as 
follows: 
 
 iab ↔ icd => c(iab, icd). 
 
In the above example three constructed segments are inferred from corresponding 
intersections as follows: 
 
 iij↔ipq => c(iij, ipq), 
 iik↔ipr => c(iik, ipr), 
 ijk↔iqr => c(ijk, iqr). 
 
Given two congruent shapes, translational symmetry exists when any group of two 
constructed segments which are decomposed into four corresponding intersections 
forms part of a parallelogram.  The other two sides of the parallelogram must be the 
corresponding sides from each of the two congruent shapes (Baglivo and Graver, 1983) 
as shown in Figure 6, 
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l i

iij

iik l q
ipq

l p

ipr

l r

iqr

l j

l k

jki
S i

Sj

 
Figure 6: Translational symmetry constraint represented graphically 

 
2.  Reflectional constraint (ρ) 
Given two congruent shapes, reflectional symmetry exists when a group of two 
constructed segments which are decomposed into four corresponding intersections 
forms the parallel pair of lines of a trapezoid.  The other two sides of the trapezoid must 
be the corresponding sides from each of the two congruent shapes and the midpoints of 
constructed segments are collinear (Jenkins, 1983) and perpendicular bisectors of all 
constructed segments are coincident (March and Steadman, 1974; Baglivo and Graver, 
1983).  Figure 7 illustrates the constraints for reflectional symmetry and the midpoints 
of constructed segments are collinear. This implies that the perpendicular bisectors of 
all  constructed segments are coincident. The axis of reflection, L, is regarded as the 
perpendicular bisectors of all constructed segments. Figure 7 shows the axis of 
reflectional symmetry. 
 

l j

l k

jki

L

iik

l i

iij

l r
l p

l q

ipr

iqr

ipq

S i Sj

 
Figure 7: Reflectional symmetry constraint represented graphically 

 
3. Rotational constraint (σ)  
Given two congruent shapes, rotational symmetry exists when the perpendicular 
bisectors of all constructed segments are concurrent (March and Steadman, 1974; 
Baglivo and Graver, 1983), as shown in Figure 8. The concurrency point is the 
rotational centre. 
 
4. Glide reflectional constraint (γ ) 
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Given two congruent shapes, glide reflectional symmetry exists when the midpoints of 
constructed segments connecting corresponding intersections in the two congruent 
shapes are collinear and perpendicular bisectors of all constructed segments are not 
coincident (March and Steadman, 1974; Baglivo and Graver, 1983) as shown in Figure 
9. 
 

l i

iij

iik

l j

l k

jki

l q

ipq

l p ipr

l r

iqr

S i
Sj

 
Figure 8: Rotational symmetry constraint represented graphically 

 
 

 
Figure 9: Glide reflectional symmetry constraint represented graphically 

 
3.2.3 Visual Rhythm 
Visual rhythm is defined as a pattern of relationships of equivalent objects or groups of 
objects such that the pattern contains a regular repetition along one or more axes.  An 
object may be a single line segment, a shape or a group of line segments.  Therefore, the 
emergence of visual rhythm may be discovered when such repetitions of visual patterns 
of objects can be found. 
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 Equivalent objects or equivalent groups of objects are treated as the unit of visual 
rhythm when the units are repeated.  The group, G, is represented by the number of 
objects (no), number of constraints (nc) and constraints on units.   
 
 G = no (nc; constraints on units). 
 
Therefore, the representation of visual rhythm becomes a special case of the general 
expression for shape semantics, ie 
 
 R = Ng (Nc; Cr ) 
 
where R denotes visual rhythm, Ng  is the number of groups which produce the 
repeating patterns, Nc is the number of constraints and Cr is the rhythm constraints on 
groups.  For generality a group may contain a single line segment, a single enclosed 
shape, a group of line segments or a group of enclosed shapes. 
 
1. Constraints 
Five symbols, , , ,  and , are used to represent topological constraints on 
objects in visual rhythm here (Gero and Jun, 1995a), many other constraints are 
possible.  These five describe the following topological constraints on objects. 
 
 O1 is left of O2, ie, τ(O1) = O2  =>  O1  O2  =>  O2 is right of O1. 
 O1 is below O2, ie, τ(O1) = O2  =>  O1  O2. 
 O1 is above O2, ie, τ(O1) = O2  =>  O1  O2. 

 O1 is below left of O2, ie, τ(O1) = O2  =>  O1  O2.  =>  O2 is above right of O1. 
 O1 is above left of O2, ie, τ(O1) = O2  =>  O1  O2  =>  O2 is below right of O1. 
Where Oi denotes objects and τ(Oi) = Oj means Oi is translated into Oj. 
 
 For example, R = Ng {Nc; (G)} represents Ng identical groups translated from left 
to right Nc times.  For simplicity we will write this as R = Ng {Nc (G)} eliding the ";".  
When a group is a group of enclosed shapes, the same symbols are used for topological 
constraints on shapes.  Figure 10(b) shows a visual rhythm represented by R = 5{4 
(G)}.  Representation of the group as shown in Figure 10(a) is defined as follows: 
 

G = 3(, )   
=> S1  S2  S3 
=> τ1(S1) = S2 and S1 is left of S2  ∧  τ2(S2) = S3 and S2 is above left of S3 
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(b)

(a)

 
Figure  10: Visual rhythm discovered in a facade (a) grouping of units, and (b) the discovered 

visual rhythm. 
 
2. Examples 
Various types of visual rhythm as repeating units of group of enclosed shapes are 
shown in Figure 11.  The representation of each type of visual rhythm shown in Figure 
11 is as follows: 

Figure 11(a): 

 Unit = , 
 Group of units: G = 7(2, , 2, ), 
 Representation of visual rhythm: R= 2[3{2(G)} ]; 
 
Figure 11(b): 

 Unit = , 
 Group of units: G = 2(), 
 Representation of visual rhythm: R = 2[4{3(G)} ]; 
 
Figure 11(c): 

 Unit = , 
 Group of units: G = 3(2) 
 Representation of visual rhythm: R = 8{7(G)}; 
 
Figure 11(d): 
 Unit = 

, 
 Group of units: G = 8(4, 3), 
 Representation of visual rhythm: R = 4{3(G)}. 
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(a)

(b)

(c)

(d)  
Figure 11: Examples of various types of visual rhythm as repeating groups of shapes 
 
3.3  Process model 
This computational model of shape semantics involves three processes as shown in Figure 
12: (1) object correspondence: process 1; (2) grouping: process 2; and (3) shape semantics 
emergence: process 3.  Given alternate representations, new interpretations become 
possible (Gero, et al 1995).  Interpretation is the process of inferring results from a 
primary shape in a particular representation.  Whenever the representation is changed, it 
may be possible to find some emergent properties from that representation.  In this process 
the notion of infinite maximal lines is used as primitives of representation and emergent 
structures are found from that representation.  Explicit structures are structures that exist 
explicitly in primary shapes.  Emergent structures are structures that exist only implicitly 
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in primary shapes, and are never explicitly input and are not represented at input time.  
Corresponding infinite maximal lines and intersections are found through the process of 
object correspondence.  Infinite maximal lines and intersections of infinite maximal lines 
are considered as structures of objects.  Corresponding structures of objects are inferred by 
constraints on structures of objects resulting from behaviours of infinite maximal lines.  
After searching corresponding infinite maximal lines and intersections, corresponding 
intersections are grouped by the grouping process.  If groups satisfy constraints on various 
types of shape semantics, then these shape semantics are emerged in the process of shape 
semantics emergence. 
 

primary shapes

emergent structures

shape semantics emergence 

    groups

emergent shape semantics

explicit structures

grouping

corresponding structures

object correspondence process 1

process 2

process 3

 
 

Figure 12: A computational process model of shape semantics emergence 
 
3.3.1 Object correspondence 
Object correspondence confirms that structures of one object are equivalent to structures 
of another object in terms of topology and geometry. As a consequence, corresponding 
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infinite maximal lines and intersections are found. There are three main steps for 
examining corresponding structures in explicit structures and emergent and explicit 
structures:  

(I) finding corresponding structures in explicit structures - explicit structure 
correspondence, denoted P1;  

(ii) finding corresponding structures in emergent and explicit structures - emergent 
structure correspondence, denoted P2; and  

(iii) finding corresponding structures in emergent shapes or emergent shapes and 
primary shapes - emergent shapes correspondence, denoted P3, as shown in Figure 
13. 

 
 Given two shapes, congruent corresponding structures are found when the number of 
infinite maximal lines, the number of intersections, geometrical properties of infinite 
maximal lines and dimensional constraints on segments in each infinite maximal line are 
equivalent. Explicit structure correspondence is the process of examining corresponding 
structures in explicit structures.  In order to determine explicit structure correspondence, 
the number of infinite maximal lines and number of intersections in primary shapes, are 
checked first.  After that, geometrical constraints on infinite maximal lines, such as 
parallelarity, perpendicularity, skewness and coincidence, are compared between two 
shapes.  If those conditions are equivalent, explicit structure correspondence is satisfied. 
 

primary shapes

explicit structures

re-representation

emerged and explicit
        structures

object correspondence

corresponding structures

shape emergence

emergent shapes

P1

P2

P3

 
 
Figure 13: A process of object correspondence: P1- explicit structure correspondence; P2- 
emergent structure correspondence; and P3- emergent shapes correspondence. 
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 After explicit structure correspondence is determined, the enclosed intersection group is 
destroyed or relaxed into an ordinary intersection group through re-representation  (Gero 
and Yan, 1994).  If explicit structure correspondence is satisfied, then corresponding 
structures in emergent and explicit structures in two shapes are examined through 
emergent structure correspondence. Corresponding infinite maximal lines are inferred. 
Corresponding intersections are inferred resulting from corresponding infinite maximal 
lines.  Inference rules are introduced in the next section. 
 
 When explicit structure correspondence is not satisfied two primary shapes do not 
correspond.  However, there is the possibility for corresponding shapes to exist between 
explicit and emergent structures.  For example, given two primary shapes as shown in 
Figure 14(a), the number of infinite maximal lines are different.  As a result, 
corresponding structures do not exist in these two primary shapes.  Therefore, explicit 
structure correspondence is not satisfied. 

 

S1 S2
S1 S2

(a) (b)  
 

Figure 14: (a) Two primary shapes and (b) infinite maximal line representation of two primary 
shapes. 

 
 Through infinite maximal line representation, the enclosed intersection group is 
destroyed or relaxed into an ordinary intersection group as shown in Figure 14(b).  As a 
consequence, emergent shapes from a primary shape S1, S1-1 and S1-2, are found and 
correspondence between emergent shapes and primary shapes is examined as shown in 
Figure 15. 
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S2

S1-1

          

S2

S1-2

 
                            (a)                                                                     (b) 
 
Figure 15: Correspondence between emergent shapes, S1-1 and S1-2, and a primary shape, S2. 

 
 If explicit structure correspondence is not satisfied, then emergent shapes are inferred 
through shape emergence (Gero and Yan, 1994) and corresponding structures  between 
emergent shapes or emergent shapes and primary shapes are examined in the process of 
emergent shapes correspondence. 
 
 The number of  intersections in each infinite maximal line, denoted as Ni , and the 
number of segments in each infinite maximal line, denoted as Nk, play major roles in 
finding corresponding infinite maximal lines. Corresponding infinite maximal lines in 
congruent objects are inferred by the following rule.   
 
 R1: Nia = Nip  ∧  Nka = Nkp  ∧  (∀d(iab, iac) ∈ la  =  ∀d(ipq, ipr) ∈ lp) 

 =>  la ↔ lp. 
 Where Nia and Nip is number of intersections in la and lp respectively and  
 Nka and Nkp is number of segments in la and lp respectively and  

 ∀d(iab, iac) ∈la means all dimensional constraints in la. 
 
Finally, corresponding intersections are inferred by applying the following rule.  
 
 R2:  li ↔ lp  ∧  lj ↔ lq  ∧  li  × lj  ∧  lp × lq   =>  iij ↔ ipq. 

 
3.3.2. Grouping 
Grouping is the process of searching various types of groups of line segments, enclosed 
shapes and groups of enclosed shapes resulting from grouping corresponding intersections 
(Gero and Yan, 1994).  Grouping adjacent intersections may form enclosed shapes 
otherwise only line segment or groups of line segments are formed.  There are two types 
of groupings:  
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(i) line segments grouping and  
(ii) shape grouping as shown in Figure 16. 

corresponding structures

line segments grouping shape grouping

groups of line segments
groups of shapes

 
Figure 16: Process of grouping 

 
 Line segments grouping is grouping adjacent intersections which results in an ordinary 
group of intersections.  For example, grouping iab, iac, icd does not form an enclosed shape 
but a group of line segments because there is no closure: 
 
 G (iab, iac, icd) => Lg = {3; (iab, iac, icd)} 
 where G denotes grouping operator and Lg denotes groups of line segments. 
 
 On the other hand, shape grouping is grouping adjacent intersections which results in 
an enclosed group of intersections.  For example, grouping the intersections iab, ibd, iad 
forms a triangle because la, lb and ld exist and intersect each other, ie: 
 
 G (iab, ibd, iad) => S = {3; [iab, ibd, iad]} 
 
 Corresponding shapes and line segments are found through this process. 
 
3.3.3. Shape semantics emergence 
The process of shape semantics emergence is illustrated in Figure 17.  Various types of 
symmetries are discovered by applying rules to congruent shape groups.  These types of 
symmetries are also used when inferring different types of shape semantics.  In particular, 
translational symmetry is used in the discovery of visual rhythm. 
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Figure 17: Process of shape semantics emergence 

 
Different types of visual symmetries are discovered by applying rules to congruent groups, 
in which all structures are found by congruent object correspondence and are grouped.  Let 
two congruent shapes be S1 and S2 and la, lb, lc, ld belong to S1 and lp, lq, lr, ls belong to 
S2.  The representation of two primary four-sided shapes is 
 
 S1 = {4; [iac, iad, ibd, ibc]} 
 S2 = {4; [ipr, ips, iqs, iqr]}. 
 
After shape hiding (Gero and Yan, 1994) emergent structures can be made explicit, so the 
representation of this example now becomes 
 
 S1={4; (ibd, iab, ibc, icd, iac, iad)} 
 S2={4; (iqs, ipq, ipr, iqr, irs, ips)}. 
 
 Let corresponding infinite maximal lines and intersections be: 
 
 la ↔ lp, lb ↔ lq, lc ↔ lr, ld ↔ ls, and 
 iab ↔ ipq, iac ↔ ipr, iad ↔ ips, ibc ↔ iqr, ibd ↔ iqs, icd ↔ irs.  
 
Following corresponding shapes are discovered by grouping some of corresponding 
intersections: 



 

25 

 
 G1 (iab, iac, ibc) => S1-1 = {3; [iab, iac, ibc]} 
 G2 (ipq, ipr, iqr) => S2-1 = {3; [ipq, ipr, iqr]}. 
 
The following constructed segments are implied by corresponding intersections. 
 
 iab ↔ ipq => c(iab, ipq),  
  iac ↔ ipr => c(iac, ipr), 
 ibc ↔ iqr => c(ibc, iqr). 
 
 Symmetries are discovered if one of following rules is satisfied: 
 
 R3:  c(iab, ipq) // c(iac, ipr) // c(ibc, iqr) ∧ la // lp,  lb // lq,  lc // lr 

 = > 
 c(iab, ipq) ∪ c(iac, ipr) => {4 ; [iab, ipq, iac, ipr] ; la // lp, c(iab, ipq) // c(iac, ipr)}, 
 c(iab, ipq) ∪ c(ibc, iqr) => {4 ; [iab, ipq, ibc, iqr] ; lb // lq, c(iab, ipq) // c(ibc, iqr)}, 
 c(iac, ipr) ∪ c(ibc, iqr) => {4 ; [iac, ipr, ibc, iqr] ; lc // lr, c(iac, ipr) // c(ibc, iqr)}, 
 =>  Sτ (translational symmetry). 

Translational symmetry is discovered when R3 is satisfied as shown in Figure 18. 
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                               (a)                                                                      (b) 
Figure 18: Translational symmetry is illustrated graphically: (a) two primary four sided shapes and 
(b) one translational symmetry from (a). 
 
 R4:  c(iab, ipq) // c(iac, ipr) // c(ibc, iqr) 
 = > 
 c(iab, ipq) ∪ c(iac, ipr) => {4 ; [iab, ipq, iac, ipr] ; c(iab, ipq) // c(iac, ipr)}, 
 c(iab, ipq) ∪ c(ibc, iqr) => {4 ; [iab, ipq, ibc, iqr] ; c(iab, ipq) // c(ibc, iqr)}, 
 c(iac, ipr) ∪ c(ibc, iqr) => {4 ; [iac, ipr, ibc, iqr] ; c(iac, ipr) // c(ibc, iqr)}, 
 ∧  ic(iab, ipq)M, ic(iiac, ipr)M, and ic(ibc, iqr)M lie in a certain lm. 
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 ∧  lM1 = lM2 = lM3, 

 ( Let lc
(iab, ipq)

M    be lM1,  lc(iiac, ipr)  ,M) be lM2 and lc
(ibc, iqr)

M    be lM3) 
 =>  Sρ (reflectional symmetry). 
         (L (reflectional axis) = lM1 = lM2 = lM3). 

Reflectional symmetry is discovered when R4 is satisfied as shown in Figure 19. 
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                               (a)                                                                      (b) 
Figure 19: Reflectional symmetry is illustrated graphically: (a) two primary four sided shapes and 
(b) one reflectional symmetry from (a). 
 
 R5:  ∃ iM1M2M3, 

 ( Let lc
(iab, ipq)

M    be lM1,  lc(iiac, ipr)  ,M) be lM2 and lc
(ibc, iqr)

M    be lM3) 
 =>  Sσ (rotational  symmetry). 
          (rotational point is iM1M2M3). 

Rotational symmetry is discovered when R5 is satisfied as shown in Figure 20. 
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                               (a)                                                                      (b) 
Figure 20: Rotational symmetry is illustrated graphically: (a) two primary four sided shapes and 
(b) one rotational symmetry from (a). 
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 R6:  ic(iab, ipq)M, ic(iiac, ipr)M, and ic(ibc, iqr)M lie in a certain lm 
 ∧ NOT lM1 = lM2 = lM3, 

 ( Let lc
(iab, ipq)

M    be lM1,  lc(iiac, ipr)  ,M) be lM2 and lc
(ibc, iqr)

M    be lM3) 
 =>  Sγ (glide reflectional symmetry). 

Glide reflectional symmetry is discovered when R6 is satisfied as shown in Figure 21. 
 
 Visual rhythms are discovered as repetitions of congruent object groups.  They are 
found when equivalent translational constraints exist over congruent object groups.  A 
visual rhythm is discovered when the following rule is satisfied. 
 
 R7:  τi(Gi) = Gi+1, τi+1(Gi+1) = Gi+2, ....... 
 ∧  τi = τi+1 = τi+2 = ...... 
 =>  ∃ R 
 (where Gi, Gi+1, Gi+2, .... are congruent object groups). 
 
Figure 22 shows two different types of visual rhythms for i=1, ..., 5 having different 
constraints: Figure 22(a) has  constraint and Figure 22(b) has  constraint.  The 
congruent object group in Figure 22 is . 
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Figure 21: Glide reflectional symmetry is illustrated graphically: (a) two primary four sided shapes 
and (b) one glide reflectional symmetry from (a). 
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(a) 

     
(b) 

Figure 22: Two different types of visual rhythm are illustrated with the same congruent object 
groups. 

 
3.4  Self symmetry 
Self symmetries are symmetries discovered within an individual shape.   
 
Features of self symmetry 

1. If a self symmetry is reflectional symmetry, then the axis of symmetry passes 
through the centre of gravity. 
2. If a self symmetry is rotational symmetry, then the centre of symmetry is 
congruent with the centre of gravity. 
3. If a self symmetry is translational symmetry, translated parts in a shape are 
distinguished by an axis passing through the centre of gravity. 

 
Let lg be an infinite maximal line passing through a centre of gravity denoted, as ig.  
There is an infinite number of lgs.  On the other hand, lG is the infinite maximal line 
passing through a centre of gravity and satisfying certain conditions of interest here.  
We call lG the self symmetry axis.  There are three kinds of lGs. 
 
lG exists when the following rules are satisfied: 

1. lG passes through a centre of gravity and midpoints of segments, as shown in 
Figure 23. 
 
Midpoints of two segments, i(iik, ikp)M and i(iip, ipq)M, and ig are collinear  =>  ∃ lG. 
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Figure 23: Inferring lG from a centre of gravity and midpoints of segments. 
 

2. lG passes through a centre of gravity and intersections, as shown in Figure 24. 
 
Two intersections, ijk and ipq, and ig are collinear  =>  ∃ lG. 
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Figure 24: Inferring lG from a centre of gravity and intersections. 

 
3. lG passes through a centre of gravity and one midpoint of a segment and one 
intersection, as shown in Figure 25. 
 
Midpoints of one segment in each shape, i(iik, iik)M and i(ipk, iqk)M, one intersection in 
each shape, iij, and ig are collinear  =>  ∃ lG. 
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Figure 25: Inferring lG from a centre of gravity and one midpoint of a segment and 
one intersection. 
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If lG exists, then divide given primary shape into two shapes about lG.  Through the 
process of object correspondence and visual symmetry emergence various self 
symmetries are discovered. 
 
4  Architectural example 
The architectural plan for the Bio-2 Complex in the Headquarters for Bayer AG 
designed by James Stirling, Michael Wilford and Associates is analysed to discover 
various types of symmetries.  The Bio-2 Complex building is one of various laboratory 
complexes in the headquarters for Bayer AG.  The overhead view and plan of the Bio-2 
Complex are shown in Figures 26(a) and (b).  Through the process of visual symmetry 
emergence, all possible symmetries are discovered from this example.  Among them, 
some of symmetries are shown in Figures 26(c), (d) and (e).  Choosing only some 
symmetries to work with depends on the designer's interest.  Figure 26(c) shows self 
reflectional symmetry is discovered by the process of self symmetry axis inference.  In 
addition to self symmetry, some parts of this plan have reflectional symmetry about the 
same axis of self symmetry as shown in Figure 26(d).  Rotational symmetry is 
discovered as shown in Figure 26(e).  Four sided polygons in this plan are rotated at the 
centre of rotation.  The centre of rotation is inferred by the rotational constraints. 
 
The symbolic representation of the shape in Figure 27 is 
 
S = {39; [i515, i1015, i1016, i1115, i1116, i1217, i1216, i1416, i1421, i1221, i1220, i1120, i1126, i826, 
i827, i927, i930, i1330, i1331, i1831, i1832, i3237, i3637, i1836, i1835, i1335, i1334, i934, i933, i2933, 
i629, i628, i228, i223, i2338, i2838, i2339, i1939, i1938, i2238, i222, i224, i224, i627, i727, i726, i426, 
i420, i320, i321, i121, i116, i316, i317, i417, i416, i516], l1 // l3 // l4 // l5 // l7 // l8 // l10 // l11 // l12 
// l14,  l15 // l16 // l17 // l20 // l21 // l26 // l27,   l1 ⊥ l15}. 
 
This representation is based on walls between the inner and outer spaces in the plan. 
 
Various types of symmetries are discovered from the primary shape representation in 
Figure 28.  After the self symmetry axis, lG, is inferred, the primary shape is divided 
into two shapes, S1 and S2 as shown in Figure 28(a).  Correspondence between these 
two shapes is inferred.  As a consequence, self reflectional symmetry is discovered by 
satisfying R4.  Furthermore, all possible types of symmetry are discovered using the 
rules in Section 3.3.3, Figure 26(d).  However, we deal with only some of types of 
symmetries as shown in Figure 28(b).  Translational symmetry and reflectional 
symmetry are discovered from two shapes, S3 and S4.  Three different individual 
reflectional symmetries are discovered from S5 and S6, S6 and S7 and S7 and S8.  A 



 

31 

group of corresponding shapes is recognized as having reflectional symmetry: τ[G(S3, 
S5, S6)] = G(S4, S8, S7).  Finally rotational symmetry from four congruent shapes, S5, 
S6, S7 and S8, is discovered. 
 

           
(a)                                                       (b) 

 

                   
(c)                                                           (d) 

 

 
(e) 

Figure 26: The Bio-2 Complex in the Headquarters for Bayer AG (James Stirling, 
Michael Wilford and Associates, 1978); (a) overhead view of the complex, (b) plan of 
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the complex, (c) self reflectional symmetry, (d) reflectional symmetry and (e) rotational 
symmetry. 
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Figure 27: Primary shape representation of Figure 26(b) 
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(a)                                                                      (b) 

Figure 28: Symmetries are emerged: (a) self reflectional symmetry of Figure 26(c) and 
(b) some of reflectional symmetries and rotational symmetry of Figures 26(d) and (e) 

In a similar fashion all other semantics could be emerged if they can be found to exist in 
this representation of the drawing. 
 
5  Conclusion 
Shape semantics play an important role in organising decisions, providing order, and 
generating final form in visually-oriented design.  They appear to have a special role in 
architectural design in particular.  Architecture reflects its main design concept through 
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visual organization of structures.  Such organization is seen as the visual semantics of 
the design and is perceivable to designers.  However, current computer-aided drawing, 
computer-aided drafting and computer-aided design systems prevent the discovery of 
visual shape semantics.  Inadvertently such systems have enforced fixation so that it is 
not surprising that they are not used in the early stages of architectural design.  The 
fixation they enforce has two sources: the system designer and the way the architect has 
described his or her drwaing.  The CAAD system’s designer’s views on what is 
permissible creates an unstated and sometimes unkown set of limitations on the use of 
the system. 
 
The ability to discover visual semantics from shapes readily offer opportunities to 
develop design-oriented graphics system which may be more amenable to augment 
designers abilities during the early conceptual stage of design.  We have developed 
symbolic representations of shape semantics, visual symmetry and visual rhythm, for 
two dimensional shapes using infinite maximal lines as its basis.  This representation 
has been used as the basis of an implementation to support early stages of design in 
visually-oriented design fields particularly in architectural design. 
 
We can conceive of a variety of other visual semantics from architectural shapes such 
as visual movement and visual balance. These shape semantics can be symbolically 
represented at different levels of abstraction, where the symbolic representation can be 
characterised to allow it to be mapped onto various hypotheses. 
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