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Abstract

The paper presents a technique for generating concise neural network models of physical systems. The neural network
models are generated through a two-stage process. The first stage uses information embedded in the dimensions or units
in which the data is represented. Dimensional analysis techniques are used initially to make this information explicit, and
a limited search in the neural network architecture space is then conducted to determine dimensionless representations of
variables/parameters that perform well for a given model complexity. The second stage uses information available in the
numerical values of the data to search for high-level dimensionless variables/parameters, generated from simple combinations
of dimensionless quantities generated in the first stage and which result in concise neural network models with improved
performance characteristics. The search for these high-level dimensionless variables/parameters is conducted in an enhanced
representation space using functional link networks with flat or near flat architectures. The use and effectiveness of the
technique is demonstrated for three applications. The first is the design and analysis of reinforced concrete beams, which is
representative of the class of problems associated with the design and analysis of composites. The second is the classical
elastica problem, for predicting non-linear post-buckled behaviour of columns and the third, the analysis of a bent bar under
a specified combination of loads.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The need to develop a model for predicting be-
haviour of a system arises in a number of disciplines.
In engineering, models of physical systems are re-
quired for solving prediction, control, diagnosis and
design problems. The solutions to modelling prob-
lems require the determination of mapping functions
between a set of input and output variables, and in
physical systems the mapping functions are usually
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between the stimulus applied and the response of the
system.

Conventional programming paradigms have been
successfully used to generate these mapping functions,
when domain knowledge is explicitly available to de-
scribe the models uniquely. Where the information
available for constructing the model is only available
in the form of data derived from observations or mea-
surements, neural network techniques, based on the
supervised learning paradigm, have been successfully
used to generate the mapping function from the data.
If the information available in the data is not adequate,
search may have to be conducted in both the data rep-
resentation and network architecture spaces to arrive
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at a mapping function that performs reasonably well
on generalisation tasks.

In contrast, the design problems are inverse prob-
lems with one-to-many mapping, where a set of
requirements can map on to a number of system de-
scriptions. Thus, the solution to the design problem
involves search in the design variables space to arrive
at a system description that optimises a pre-defined
objective function. The search for the optimum de-
scription can be conducted either by solving a se-
ries of direct problems—as in approaches based on
mathematical programming techniques—or by using
previous design and problem solving experiences—
as in approaches based on AI and machine learning
techniques.

In the latter approach, the previous design and
problem solving experiences are used to prune the
search space, to guide the search and to carry out the
search. It is also possible to hierarchically decompose
the design space into sub-spaces[1] and to conduct
the search in these sub-spaces. Design relationships
provide a basis for conducting the search in these
design sub-spaces and for making design decisions.
Thus representing and generating these relationships
so that previous design and problem solving experi-
ences can be encoded in a concise form, as high-level
design relationships, without loss of information and
generality, is of considerable interest[2–4]. Neural
networks have also been used to learn design rela-
tionships from previous designs by generating the
appropriate mapping functions.

In the present work, representation of data, in the
form of high-level variables and parameters, is con-
sidered central to developing both concise neural
network models with improved performance as well
as high-level design relationships. This paper, how-
ever, focuses mainly on generating concise models,
and high-level design relationships are considered
only briefly within Section 6. A complete treatment
of high-level design relationships requires resolving
issues arising from the non-uniqueness of the map-
ping to be generated, and will be dealt with in a
subsequent paper.

Domain independent techniques available for con-
structing neural network models of physical systems
use only information available in the numerical values
of the data. Improved performance of these mod-
els is usually achieved by combining dimensionality

reduction with search in the network architecture
space[5]. Dimensionality reduction is achieved by
either discarding less significant variables or by com-
bining variables linearly or non-linearly. There is usu-
ally some loss of information associated with these
methods of dimensionality reduction, and there is no
guarantee that the models generated would satisfy the
principle of dimensional homogeneity.

In the present work, concise neural network models
are generated through a two-stage process that com-
bines information available in the data with search,
mainly in the representation space. Information avail-
able in the dimensions or units in which the data is
represented is made explicit in the first stage, through
dimensional analysis, and is used to reduce dimension-
ality by combining variables and parameters to form
a set of dimensionless products. The set of dimen-
sionless products is not unique, and hence a limited
search is carried out in the network architecture space
to determine the set that leads to the best mapping
function.

The set of dimensionless products selected at the
end of the first stage is then combined further in
the second stage, using information available in the
numerical values of the data, to form high-level
dimensionless variables/parameters for the system.
The search for these high-level dimensionless vari-
ables/parameters is conducted in a series of enhanced
representation spaces using functional link networks
with flat or near flat architectures. The high-level vari-
ables/parameters are finally used to generate concise
neural network models of the system.

In the sections that follow, we initially compare
the domain independent methods for generating
concise neural network models with the two-stage
process used in the present work. Then the first
stage of the process, of forming a set of dimension-
less products by unlocking information embedded
in the dimensions or units used in the representa-
tion of data, is considered. This is followed by the
second stage of the process, where the bases for
combining dimensionless products further to form
high-level dimensionless variables/parameters, en-
hancing the representation space and then pruning
the representation space based on model perfor-
mance, are discussed. Finally,Section 6 demon-
strates the effectiveness of the proposed two-stage
process.
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2. Improving performance of neural network
models

Considerable work has been done in developing do-
main independent techniques for improving perfor-
mance of neural network models[5]. These techniques
are based on changing the representation of the data
by some form of pre-processing transformation and/or
searching the network architecture space, and use only
the information available in the numerical values of
the data.

Dimensionality reduction is usually the goal for de-
termining data representations that lead to improved
performance, and is achieved either by discarding
less significant variables—feature selection—or by
combining the variables to form a reduced set of in-
put variables—feature extraction. The improvement
in performance results from the less complex neural
network model generated, with fewer adaptive param-
eters to be determined and hence less time for training
[5]. Domain independent techniques for dimension-
ality reduction can either be based on information
available in the input space only or use the mapping
information available in the data. In the former case,
dimensionality reduction is achieved by combining
variables linearly using principal component analysis
(PCA) networks or non-linearly using auto-associative
networks. In the latter case, feature selection algo-
rithms, based on techniques such as stepwise forward
or backward feature selection and genetic algorithms,
are used to identify the less significant variables based
on a combined measure of performance that includes
both the network prediction error and dimensionality
of the input space[6].

There is usually some loss of information associ-
ated with the above approaches to dimensionality re-
duction. Further, the methods for combining variables
are based only on information available in the input
variable space. It is usually difficult to ascribe any
meaningful physical interpretation to the combined
variables, and there are no means of ensuring that the
mapping functions generated satisfy the principle of
dimensional homogeneity, or that the neural network
models generated have the correct generalisation ca-
pability [7].

In contrast, domain dependent techniques based
on prior or domain knowledge have been used to re-
duce the dimensionality and generate neural network

models without loss of information and with enhanced
generalisation capabilities[7–9]. Dimensional analy-
sis[10,11]is used to unlock the information embedded
in the dimensions in which the data are represented,
and this additional information is made available to
the network during training through dimensionless
representations of data. Thus ensuring that the net-
work models generated satisfy the principle of dimen-
sional homogeneity, and are invariant with respect to
the consistent set of units used in the measurement of
data.

In the present work, further reduction in model
dimensionality is achieved by generating data rep-
resentations that are simple combinations of the
dimensionless products arrived at by dimensional
analysis—the high-level dimensionless variables/para-
meters. These high-level variables/parameters arise
as a consequence of the laws and principles that con-
strain the behaviour of the system, and examples are
given in a later section to illustrate the existence of
these variables/parameters, and the degree to which
further dimensionality reduction is possible. Since the
high-level variables are simple combinations of the
dimensionless products, it is possible to give physi-
cally meaningful interpretations to them. The second
stage dimensionality reduction can also be achieved
by domain independent techniques identified previ-
ously. The performances of the neural network models
based on these alternative approaches, that satisfy the
principle of dimensional homogeneity, are compared
in Section 6.

The performance of the neural network model is
also influenced by the parameters that define the neu-
ral network architecture. The search in the network ar-
chitecture space can be conducted at the three levels of
connection weights, network structure and activation
function, in order to determine the best neural network
model. In most applications, dealing with modelling
of physical systems, the search is limited to the first
two levels of connection weights and network struc-
ture, with the activation function being pre-defined
and fixed. Genetic algorithm and other evolutionary
computing techniques have been used to carry out the
search at all three levels[12,13]. In the present work,
however, the focus is on generating concise neural
network models, and thus the search in the network
architecture space is limited to less complex architec-
tures.
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3. Dimensionless representations

Dimensional analysis provides three constraints that
the neural network models must satisfy, and these arise
from the principle of dimensional homogeneity, prod-
uct theorem and Buckingham’s Pi theorem[10,11,14].
The Buckingham’s Pi theorem provides the basis for
generating a set of dimensionless products that satisfy
these constraints, which in one form can be stated as
follows: If a physical situation is characterised byn
variables andr basic dimensions occur in the dimen-
sional representations of these variables, then there
aren− r independent dimensionless products that are
sufficient to describe the situation.

The dimensionless products, referred to as theπ

terms, can be arrived at by using a number of different
methods, depending on the type of information avail-
able[11]. In the present work, the products are formed
by partitioning the variable set into basis (r) and per-
formance variables (n−r), and then forming products,
in turn, of each of the performance variables with the
basis variables. The exponents for the basis variables
are selected to make these products dimensionless.

The above procedure is implemented in matrix
form by first setting up a dimensional matrix, having
n rows for the variables (the firstr rows for the basis
variables) andk columns for the representation of the
dimensional exponents of the variables in the basic
dimensions[7]. This matrix is manipulated using rank
preserving operations to produce a diagonal form for
the basis variable rows of the matrix. The required
exponents for the dimensionless products are then
determined from the elements in the rest of the rows
of the modified matrix. Details of these operations
are given in a later section of this paper.

Depending on the variables selected for the basis,
different sets ofπ terms will be generated by this
process. There arenCr possible sets ofπ terms, but
they are not independent. It is possible to transform
one set to another using simple operations. The basis
variables are selected through a search process, and
the search space is limited by using the basis selec-
tion heuristics suggested by Bhaskar and Nigam[14].
Performance of networks on the reducedπ term sets
is used to determine the final set of dimensionless
variables to use. The training set size can be progres-
sively reduced, while increasing the validation and
test set, to discriminate between competing sets ofπ

terms and determine theπ term set—and hence the
representation—that performs best.

The π terms selected in the first stage described
above are then combined further to form higher order
terms and achieve additional reduction in dimension-
ality. As the main interest is in developing simple
models that best describe the data using variables that
are amenable to physical interpretation, the search
for this stage is limited to simple combinations ofπ
terms, such as products, with exponents of individual
terms limited to integers. Here too, the search space is
pruned using domain knowledge or heuristics, where
available.

In this paper variables are used for quantities, such
as response of a system, which usually change within
a given problem. Parameters are used for quantities
required to describe the system model, and which are
fixed within a problem, but allowed to change within
a problem class. High-level variables and parameters
are used to identify higher orderπ terms, which result
in dimensionality reduction and are adequate to char-
acterise the system. These high-level variables and pa-
rameters can thus be considered to be model features
that provide the basis for predicting system responses
or characteristics.

4. High-level variables and parameters

The high-level variables and parameters that result
in dimensionality reduction arise as a consequence of
the laws and principles that constrain the system be-
ing modelled. These can be determined either from
the governing equations (and closed form solutions),
if available, or from the numerical values of the data,
and are either in the form of products ofπ terms raised
to different exponents or the sums of such product
terms. That these are the only forms possible can be es-
tablished using the product theorem and homogeneity
conditions. In this section, we provide two examples
to illustrate how these high-level variables and param-
eters are formed and lead to, in some cases, a substan-
tial reduction in the dimensionality of the model.

In the first example, we consider two modelling
problems that are characterised by the same set of
variables and parameters. The first modelling problem
is to predict the linear response of a cantilever under a
concentrated load at the free end. This is characterised
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Table 1
Dimensional matrix for the cantilever and column buckling prob-
lems

Variables/parameters [F] [L]

E 1 −2
l 0 −1

P 1 2
δ 0 1
I 0 4

by the variablesP andδ—load and deflection, respec-
tively, at the free end—and the parametersl, E and
I—length, Young’s modulus and second moment of
area of section, respectively, for the cantilever. The
second is the well-known non-linear elastica problem,
for predicting the lateral deflectionδ of an elastic
column subject to an axial loadP.

Since both problems are characterised by the same
set of variables and parameters, stage 1 of the di-
mensionality reduction process essentially leads to the
same set ofπ terms. The five variables and parame-
ters can be expressed in terms of two dimensions (F
and L), hence only two of these can be in the basis.
SelectingE and l to be in the basis, the resulting di-
mensional and modified dimensional matrices are as
shown inTables 1 and 2, respectively.

The modified dimensional matrix is obtained by
transforming the dimensional matrix using rank pre-
serving operations to produce the diagonal form for
the basis parameters.

For both problems,π2 represents the dimension-
less response variable,π1 the stimulus applied to the
system andπ3 the dimensionless system parameter
(Table 3). Hence, to model these two problems to pre-
dict response, the functional relationship should be of
the form:

π2 = F(π1, π3)

Table 2
Basis variables and matrix with upper diagonal form

Variables/parameters [F] [L]

E 1 0
l 0 1

P 2 2
δ 0 1
I 0 4

Table 3
Dimensionlessπ terms for cantilever and column buckling prob-
lems

π1 P/El2

π2 δ/l
π3 I/l4

For each of the problems, it can be shown that the two
π terms combine to form the high-level dimensionless
variableπ4 = π1/π3, and the functional relationship
representing the model is then given by

π2 = F(π4)

The existence ofπ4 can be established for the two
problems using moment curvature relationships,
which provide the bases for deriving the governing
equations. Additional domain information is, hence,
required to arrive at the high-level dimensionless
variables, and in the present work the information is
derived from the numerical values of the data.

Closed form solutions are available for both prob-
lems, and when expressed in terms ofπ2 andπ4, they
take the following forms.

Cantilever problem:

π2 = 1
3π4

Column buckling problem:

(π4)
1/2 = K(p)

wherep = π2(π4)
1/2/2, andK(p) is the complete

elliptic integral of the first kind[15] and is given by

K(p) =
∫ π/2

0

dφ√
1 − p2 sin2 φ

Through the two-stage process, the dimensionality of
the two problems has been reduced from 5 to 2. A con-
cise neural network model for predicting response can
thus be constructed with the dimensionless high-level
variable π4 as the input and the dimensionless re-
sponse variableπ2 as the output.

The two problems discussed above result in quite
different functions for the behavioural models—linear
function for the cantilever and a complex non-linear
function for the column. Despite this difference, the
high-level variableπ4 is the same for both problems.
Thus, in general, less information is required for es-
tablishing the existence of high-level variables, such
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asπ4, than for learning the model function. Just two,
properly selected, data points are adequate to establish
the existence of terms such asπ1/π3 or π1π3. In the
present work, however, we assume that a set of data
values exist and consider ways of establishing the ex-
istence of such terms based on information available
in the numerical values of the given data.

For the column-buckling problem, the high-level
variableπ4 has physical significance. The loadP cor-
responding toπ4 = π2/4 represents the buckling
load, and hence defines the boundary between pre-
and post-buckled states. The high-level variables thus
not only lead to dimensionality reduction but also,
in some situations, provide additional information for
partitioning the input space into regions based on be-
haviour. This information can also be exploited in the
training of the final network.

The second example selected is the transverse vi-
bration of polar orthotropic circular plates with edges
elastically restrained against rotation[4]. This exam-
ple demonstrates that even though theπ terms derived
from dimensional analysis can be complex products
of the basic variables that characterise the system, the
high-level dimensionless variables can be remarkably
simple products and sum of theseπ terms.

The variable and parameters that characterise the
vibration problem are given by the plate radius and
thickness (a and h, respectively), flexural rigidity in
the radial and circumferential directions (Dr andDθ ,
respectively), rotational stiffness of spring (ksp), fre-
quency (ω), density (ρ) and Poisson ratio (γ θr ). The
eight parameters can be expressed in terms of three
dimensions (F, L and T) and hence the problem can be
formulated in terms of five dimensionless parameters.
SelectingDr , a andω to be in the basis and following
the procedure described above, the five dimensionless
terms are:

π1 = Dr

Dθ
, π2 = ksp

a

Dr
, π3 = ρa5ω2

Dr
,

π4 = h

a
, π5 = γθr

From the energy functional for the plate[4] it can
be seen that these fiveπ terms combine to form the
following high-level dimensionless parameters:

π1, π6 = π3π4, π7 = π2 + π5

The dimensionality of the problem can thus be reduced
from 8 to 3, and the model for predicting the natural
frequency of the plate can be expressed as:

π6 = F(π1, π7)

The above examples demonstrate that by identifying
the high-level variables and parameters for a system,
it is possible to further reduce the dimensionality for
the modelling problem and arrive at a simpler model
for the system. These variables and parameters are
formed mostly as products ofπ terms raised to differ-
ent exponents (−1, 0, 1) and as sum of twoπ terms.
The exponents can, however, assume other values in
general. Identifying the high-level variables and pa-
rameters thus reduces, in most cases, to determining
the reduction in dimensionality of the problem and the
values of the exponents to achieve each stage of the
reduction. This is achieved through a search process
described inSection 5.

5. Generating and searching the enhanced
representation space

The generation of the high-level variables and pa-
rameters from the original set ofπ terms can be posed
as a search problem. The search is mainly for a set of
values for the exponents, and is constrained by infor-
mation available in the numerical values of the data
and domain knowledge, where this is available. The
search of the representation space, for the high-level
variables and parameters, can be conducted using a
genetic algorithm with a neural network providing the
values for the evaluation function[16]. Genetic pro-
gramming can also be used to generate both the vari-
ables and functions from data[17].

In the present work, an approach based on func-
tional link networks[18] is used to carry out the search
of the representation space. In the functional link net-
works the representation is enhanced, in a linearly in-
dependent manner, so that the mapping function can
be learned more readily. Different functions can be
used in the functional link to transform the original
input pattern vector to arrive at the enhanced repre-
sentations of the patterns. By selecting an appropriate
functional-expansion model, it is possible to learn the
mapping function with flat neural network architec-
tures and improved learning rates[18].
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Enhancing the representation in functional link
networks can be considered to incorporate part of the
non-linearity in the original mapping function into the
enhanced input pattern. This reduces the non-linearity
of the mapping function to be learned, and accounts
for the resulting flat networks with less complex net-
work architecture. In some problems it is possible
to incorporate all of the non-linearity into the en-
hanced input pattern, and in this case a linear network
would be adequate to learn the transformed mapping
function.

There are thus two complementary decisions to be
made in the design of functional link networks—the
level of enhancements to be applied to the represen-
tation and the complexity of the network architecture.
The original representation of the input pattern repre-
sents one end of the spectrum of the network design
space, with all non-linearity incorporated into the
network architecture. As the level of enhancement
of the representation is progressively increased, the
required mapping function and the architecture of the
network become less complex. Hence at the other end
of the spectrum, flat networks would be adequate. In
all cases, however, the functional link networks result
in increased dimensionality of the input space.

Our goal, however, is to generate high-level vari-
ables that would result in dimensionality reduction as
well as leading to less complex networks. In order to
achieve this, a functional-expansion model is selected
that would include the high-level variables, in the form
of products ofπ terms raised to different exponents,
within the enhanced representation space. Rather than
generate all possible high-level variables and deal with
a very large representation space, we initially consider
expansions that result in products and ratios of twoπ

terms at a time. For a given set of dimensionless terms
(πi), the variables for the first functional-expansion
model can be described as:{
πi, πiπj (j > i),

πi

πj
(i �= j)

}

This enlarged representation space is then pruned us-
ing sensitivity information derived from networks with
flat and near flat architectures, to arrive at a set of
high-level variables with the desired reduction in di-
mensionality. This enhancement process can then be
repeated to explore further possibilities for dimension-
ality reduction. If this process does not lead to the

desired reduction in dimensionality, then the second
expansion model, which introduces additional higher
order terms and described below, can be applied:{
πi, πi

2,
πi

2

πj
(i �= j),

πi

πj 2
(i �= j)

}

Thus the high-level variables are generated through
search, both in the representation space and the net-
work architecture space. The search space at any
stage, however, is limited by controlling the level of
enhancements to the representation and the level of
complexity of the network. Performance of the net-
work is used to identify and terminate search along
unproductive paths. Features used for successful
termination of search include, reduction in dimen-
sionality, all the originalπ terms are represented in
the final set of high-level variables and improved
generalisation capability of network.

6. Applications

Three applications are presented in this section to
demonstrate the effectiveness of the proposed search
method for determining concise neural network mod-
els with improved performance. The first application
considers the analysis and design of reinforced con-
crete beams, and the method is used to develop both
the analysis model and design relationship. In the anal-
ysis model, the non-linearity for the required function
can be fully incorporated into the high-level variables
and the function to be learned is then linear. Both
the concrete design problem and the elastica problem,
which forms the second application, have non-linearity
incorporated into both the high-level variables and the
function to be learned. The former includes a square
root function and the latter a function that includes the
complete elliptic integral of the first kind. The third
application models the response of a bent beam sub-
ject to combined loads and provides another example
where the non-linearity can be fully incorporated into
the high-level variables. The search for the high-level
variables, however, involves both the representation
and network architecture spaces.

The performances of the concise network models
constructed from high-level variables and parameters
are compared to network models constructed from
dimensionless variables and parameters at the end of
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stage 1 of dimensionality reduction. The performance
of concise model generated, for the concrete beam
analysis problem, by the present approach is also
compared to models generated by domain indepen-
dent techniques such as principal component analysis
and auto-associative networks, to demonstrate the
effectiveness of the present approach.

6.1. Concrete beam analysis and design
problems

The variables that characterise both problems are
Mu (moment capacity),As (area of reinforcement),b
(breadth),d (depth),fc (concrete strength) andfy (steel
yield stress). In the analysis problem, the section char-
acteristics of the beam are given and the moment ca-
pacity of the beam is required. ThusMu would form
the dependent variable and the other five variables,
that define the section characteristics, would form the
independent variables.

In the design problem, the section characteristics
need to be determined to carry the design moment.
The design problem, as posed, has no unique solution
and a number of beam sections could be determined
that have the required moment capacity. One way of
enforcing uniqueness is to treatAs, as the only variable
and the others as parameters, which are pre-defined.
The other is to pose the design problem as an optimisa-
tion problem. For the purposes of learning high-level
design relationship,As is treated as the dependent vari-
able in the present work.

There are only two dimensions—force and length—
required to represent the six variables that characterise
the analysis problem. There would thus be two vari-
ables in the basis, and hence6C2 possible ways of
selecting the basis variables. This is reduced to four
using the following basis selection heuristics: dimen-
sionally rich and varied variables only to enter the ba-
sis; variables of interest to be excluded from the basis;
andπ terms to have the variables of interest in the nu-
merator with integer exponents for all variables. The
four basis variables sets are:fy, b; fy, d; fc, b; andfc, d.

The best performingπ terms set, for the four pos-
sible basis variables sets, is determined by comparing
the performance of the different sets for the same
network architecture—and hence model complexity.
The 31 data points given in Vanluchene and Sun
[19] formed the data set, and the value of Pearson’s

coefficient of correlation (R) for the entire data set pro-
vides the performance measure of the neural network
model. The performances of the different representa-
tions can also be compared as the model complexity
changes and as the size of the training data set is re-
duced, while keeping the size of the total data set the
same. By this process theπ terms set that would lead
to the least complex mapping function can be deter-
mined.Fig. 1 shows the performance of the networks
for the different representations and network com-
plexity (defined by the number of nodes in the hidden
layer), with 11 data points in the training set. The best
performingπ terms set corresponds tofy andd as the
basis variables. Theπ terms in this set are given by

π1 = As

d2
, π2 = fc

fy
, π3 = b

d
, π4 = Mu

fyd3

6.2. Analysis problem

For the analysis problem,π1, π2 andπ3 form the
input variables for the neural network model and these
are combined in the second stage of the process to en-
hance the representation and from which the high-level
variables are to be selected. The first level of enhance-
ment results in the following set of input variables:

π1, π2, π3, π1π2, π1π3,
π1

π2
,

π1

π3
,

π2π3,
π2

π3
,

π3

π2

based onπ1 andπ4 as the main variables of interest.
As described in the previous section, a linear network
is initially trained using the above 10 variables as the
input andπ4 as the output. The coefficient of corre-
lation for the entire data set is found to be 0.99981,
indicating that almost all of the non-linearity in the
function can be incorporated into the representation
of the input variables. Dimensionality reduction of the
input variable space is achieved by using sensitivity
information to prune one variable at a time till only
two most significant variables remain.

The two input variables that remain at the end of
the above process areπ1 andπ2π3. A linear network,
with these two as the input variables, has a coefficient
of correlation for the entire data set of 0.99983. The
three criteria used for determining high-level variables
are satisfied by these variables—input dimensionality
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Fig. 1. Performance of networks for different basis variables for the concrete problem.

reduction (from 3 to 2), all the originalπ terms should
be included and no significant drop in performance
of network (there is actually a slight improvement
mainly due to the improved generalisation capability
as a consequence of dimensionality reduction). The
final network model can be constructed using these
two input variables and the best performing network
is MLP 2-3-1 with coefficient of correlation 0.99999.

The improved performance of the MLP network
indicates that it may be possible to incorporate more
of the non-linearity into the input variables. Thus, a
second level enhancement of the representation based
on the input variablesπ1 andπ2π3 is carried out using
the same functional-expansion model as before. The
enhanced input variables are:

π1, π2π3, π1π2π3,
π1

π2π3

Sensitivity information provided by the linear network
is again used to prune the input variables.π1 and
π2π3 are again the two most significant variables.
Functional-expansion model, that includes square of
the input variables, is considered for the third level of
enhancement. The new input variables are:

π1, π2π3, π2
1 , (π2π3)

2,
π2

1

π2π3
,

π1

(π2π3)2

Using the same pruning procedure as before results in
π1 andπ2

1/π2π3 being the two most significant input

variables. The coefficient of correlation for a linear
network with these two input variables is 0.99998,
which is an improvement on the network model at the
end of the first level of enhancement and subsequent
pruning of the input space. The improved value of the
coefficient of correlation also implies that more of the
non-linearity in the mapping function is incorporated
into the high-level variables, and accordingly a MLP
2-1-1 network is adequate to develop a model, with
a correlation coefficient of 0.99999. The theoretical
mapping function is linear in the two high-level vari-
ables and the equation can be recovered from the
linear network. The lower value for the coefficient of
correlation (0.99998) may be due to noise in the data.

6.3. Design problem

For the design problem, as posed previously, the
input variables areπ2, π3 and π4, and the output
variable isπ1. The search for the high-level variables
also involves enhancement of representation followed
by pruning of the input space to determine the two
most significant input high-level variables. The first
level of enhancement results in 10 input variables,
similar to those for the analysis problem, and the co-
efficient of correlation for a linear network with these
inputs is 0.99975. Again indicating that almost all of
the non-linearity in the problem can be incorporated
into the enhanced representation.
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Table 4
Network architectures and performance indicators for five different representations for the concrete beam problem

Variables Network Rtra/S.D. ratio Rver/S.D. ratio Rtot/S.D. ratio

Input: As, b, d, fc and fy MLP 5-3-1 0.9999817 0.999898 0.9999302
Output: Mu 0.006077 0.01521 0.0121937

Input: π1, π2, π3 MLP 3-3-1 0.9999828 0.999973 0.9999775
Output:π4 0.005864 0.00762 0.006805

Input: first two from PCA MLP 2-3-1 0.9993156 0.9999787 0.9996782
Output:π4 0.037 0.00741 0.0255

Input: from auto-associative network MLP 2-3-1 0.9944576 0.9957813 0.9944596
Output:π4 0.1051493 0.09754 0.1074748

Input: π1, π
2
1/π2π3 MLP 2-1-1 0.9999897 0.9999864 0.9999878

Output:π4 0.00454 0.005445 0.005021

Pruning the input space using sensitivity informa-
tion and criteria identified previously for dimensional-
ity reduction, results inπ4 andπ2π3 as the two input
variables at the end of the first level of enhancement.
The coefficient of correlation for a linear network
with these input variables is 0.99979, and the perfor-
mance can be further improved to 0.99998 using a
MLP 2-3-1 network. This again indicates that more
non-linearity can be incorporated into the representa-
tion, and further enhancements followed by pruning
of the input space results in the high-level variables
π4 andπ2

4/π2π3. The coefficient of correlation for a
linear network with these two variables is 0.99997,
and this value can be increased to 0.99999 with a
MLP 2-3-1 network. Though the network learns the
inverse function in the design problem, the high-level
variables have the same form as the analysis problem,
indicating that for both problems a good approxi-
mation for the required function can be obtained by
expanding up to the second-order terms.

6.4. Effect of representation on performance

In order to demonstrate the effectiveness of the
present approach, networks are constructed for the
concrete beam analysis problem using a number of
different representations. The first is based on the di-
mensional data, without any dimensionality reduction,
and the network has five input variables and one out-
put variable. The threeπ terms at the end of stage
1 of dimensionality reduction are used in the second.
The dimensionality of the input variable space, at the

end of stage 1, is further reduced using PCA and
auto-associative networks for the third and fourth rep-
resentations, respectively. Finally, the representation
arrived at the end of stage 2 of the present approach.

The performances of the networks for the different
representations are given inTable 4for training, ver-
ification and total data sets. Performance indicators
used for measuring performance are both coefficient
of correlation and standard deviation ratio (error stan-
dard deviation/data standard deviation).

All networks are based on logistic activation func-
tion for the hidden layer nodes and linear activation
function for the output nodes and use quasi-Newton
training algorithm. The present approach provides the
most concise network and the best performance indi-
cators. The approaches based on domain independent
techniques, for dimensionality reduction even from the
end of stage 1, require a more complex network and re-
sult in a significant drop in performance. As indicated
previously, the main weaknesses in the domain inde-
pendent techniques are that only information available
in the input space is used and there is some loss of
information during the dimensionality reduction pro-
cess. The next best performing network is based on
dimensionless variables at the end of stage 1, but it has
an increased dimensionality and consequently a more
complex network.

6.5. Elastica problem

The variables that characterise the elastica large de-
flection column buckling problem areP (axial load),δ
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(lateral deflection at the free end),E (Young’s modu-
lus), I (second moment of area of column section) and
l (length of column). The variables of interest for the
analysis problem areP andδ, and for the exponents
of the variables in theπ terms to be integers, the ba-
sis variables are uniquely determined asE andl. The
π terms for these basis variables are:

π1 = P

El2
, π2 = δ

l
, π3 = I

l4

A network with π1 and π3 as input variables and
π2 as the output variable can be trained to model
this problem. The dimensionality of the problem can
be further reduced using the present approach by
enhancing the input representation space followed
by pruning using sensitivity information of the net-
work for the enhanced representation. Thus, at the
end of first level of enhancement, the input variables
are:

π1, π3, π1π3,
π1

π3

based onπ1 as the main variable of interest. The data
set, having 36 data points (28 training and 8 verifica-
tion), is generated by solving the elliptic integral of
the first kind, and defined previously, using Mathe-
matica. A linear network is initially trained using the
above four variables as the input andπ2 as the output.
The coefficient of correlation for the entire data set is
found to be 0.71510, indicating that the function to be
learned is considerably non-linear and consequently
a linear network is not adequate for stage 2 of the
process. Next, a flat network with logistic activation
function for the output node is considered, and the co-
efficient of correlation for the entire data set for this
network is 0.93740. This is considerably better than
the linear network and hence this network is adequate
for carrying out the search for the high-level variable.

Using sensitivity information to prune the input
variables progressively results inπ1/π3 as the most
significant variable. The correlation coefficient for the
flat network with this input variable is 0.93313, and
hence the criteria for identifying the high-level vari-
able are satisfied. The final network withπ1/π3 as the
input variable is MLP 1-4-1 with correlation coeffi-
cient of 0.99899 on the full data set.Table 5compares
the performance of neural networks for the represen-
tations at the end of stages 1 and 2.

Table 5
Network architectures and performance indicators for dimension-
less and high-level variables for the column buckling problem

Variables Network Rtra/S.D.
ratio

Rver/S.D.
ratio

Rtot/S.D.
ratio

Input:
π1, π3

MLP 2-7-1 0.9990528 0.9992375 0.9990564

Output:π2 0.04352 0.04138 0.04351

Input: π1/π3 MLP 1-4-1 0.9991001 0.9993051 0.998994
Output:π2 0.04242 0.05532 0.0454153

It can be seen fromTable 5 that for comparable
network performance, the high-level variable, arrived
at the end of stage 2, gives rise to a more concise
model. The increased complexity of the network, com-
pared to the concrete problem, reflects the increased
non-linearity of the mapping function. Despite this in-
creased non-linearity, it is possible to determine the
high-level variable from sensitivity information pro-
vided by a flat network having logistic activation func-
tion for the output unit.

It is also possible to determine the high-level
variable using near flat networks, but increasing the
network complexity further can lead to the network
forming the required function mainly from low-level
variables, and the criteria for detecting high-level
variables would not be satisfied. Hence the need to
start the search with flat networks, so that mainly the
high-level variables would be used in constructing the
function required for minimising the errors.

6.6. Analysis of bent beam problem

In this example we consider the modelling of a bent
beam, rigidly fixed at one end and subject to a con-
centrated loadP at the free end and distributed load
p on the free arm of the bent beam, to predict the de-
flection at the free end of the fixed arm of the beam
[20]. The variables, in addition to the loads, that char-
acterise the problem are the spansa andb of the arms
of the bent beam,E (Young’s modulus),I (second mo-
ment of area of beam section) andδ (deflection).

Two dimensions—force and length—are adequate
to represent all the above variables. Based on the re-
quirement that the variables of interest—loads and
deflection—should only occur in the numerator and
other criteria stated previously, the possible bases are:

E, a and E, b
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The best performing network hasE andb in the basis
and the followingπ terms set:

π1 = P

Eb2
, π2 = p

Eb
, π3 = a

b
,

π4 = I

b4
, π5 = δ

b

The dimensionality of the problem is thus reduced
from 7 to 5. These dimensionless variables, derived at
the end of stage 1 of the process, can be used to de-
velop a neural network model withπ1–π4 as the input
variables andπ5, the response variable, as the output.
Further reduction in dimensionality is achieved, as be-
fore, by forming high-level variables from theπ set,
by enhancing the representation of the input space and
then pruning it using sensitivity information provided
by the network. The input variables at the end of first
level of enhancement are:

π1, π2, π3, π4, π1π3, π1π4,
π1

π3
,

π1

π4
, π2π3, π2π4,

π2

π3
,

π2

π4
, π3π4,

π3

π4
,

π4

π3
,

1

π3π4

The last two variables in the enhanced set may be
discarded, as they are reciprocals of the previous two
variables. Introducing them ensures that as much of
the non-linearity as possible is incorporated in the rep-
resentation. These two additional terms also help to
establish the effectiveness of the pruning process in
identifying the high-level variables, as they enlarge the
search space.

The search process for the high-level variables
was conducted using information available in 60 data
points, with 40 for training, 10 for verification and
10 for testing. The testing set provides an objective
means of comparing generalisation capabilities of the
network models based on different representations,
and demonstrates that dimensionality reduction by the
present method enhances the generalisation capability
of the network model.

The pruning process with linear network reduced
the input variable set to:

π2π3, π3π4,
π2

π4

This does not satisfy the requirements that all the orig-
inal π terms should be included as well as satisfactory
performance of network. For the next level of network
complexity, a near flat network with a single node in
the hidden layer gave the input variables as:

π2π3,
π2

π4
,

π3

π4

This is also not acceptable, as it does not includeπ1.
The network complexity was progressively increased
and the network with three nodes in the hidden layer
gave an acceptable input set as:

π1, π4, π2π3

As expected, when the network complexity is low, all
the input variables selected are either products or ra-
tios of theπ terms. Whereas, when the complexity
increases, the input variables are a mix of the original
and higher order terms, as part of the non-linearity in
the representation of the variables is incorporated into
the internal function representation of the network.
Even though the less complex networks did not pro-
vide an acceptable set of input variables, the variables
identified, such asπ2π3 andπ2/π4, have some of the
features of the required high-level variables.

A neural network model can be developed withπ1,
π4 andπ2π3 as the input variables andπ5 as the out-
put variable. The best performing network was MLP
3-5-1 and had coefficients of correlation for train-
ing, verification and testing of 0.99982, 0.99987 and
0.99966, respectively. The performance of the network
has improved, due to the reduction in dimensional-
ity of the input space, in comparison to network with
the originalπ terms set (seeTable 6). Possibility for
further reduction in dimensionality can be explored
through another cycle of enhancement and pruning of
the input space.

The second level of enhancement of the represen-
tation results in the following terms:

π1, π4, π2π3, π1π4,
π1

π4
, π1π2π3,

π2π3π4,
π2π3

π4

A linear network is adequate to determine the two
most significant variables as:

π1

π4
,

π2π3

π4
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Table 6
Network architectures and performance indicators for the different representations for the bent beam problem

Variables Network Rtra/S.D. ratio Rver/S.D. ratio Rtes/S.D. ratio

Input: P, p, a, b, E, I MLP 6-8-1 0.999966 0.9982125 0.998467
Output: δ 0.008245 0.06055 0.08032

Input: π1, π2, π3, π4 MLP 4-6-1 0.999353 0.9991565 0.9986674
Output:π5 0.03597 0.04247 0.05855

Input: π1, π2π3, π4 MLP 3-5-1 0.9998227 0.9998692 0.9996562
Output:π5 0.01883 0.017561 0.0279297

Input: π1/π4, π2π3/π4 LIN 2-1 0.9999981 0.9999951 0.9999967
Output:π5 0.001951 0.00328 0.002818

The sensitivity ratios for these two variables are very
large compared to the other input variables, and hence
the examination of the sensitivity information for the
input variables of a single linear network is adequate to
prune the input variable space to achieve the required
dimensionality reduction. The values for the coeffi-
cient of correlation for the training, verification and
testing sets are0.9999981, 0.9999951 and0.9999967,
respectively, indicating the linear relationship that ex-
ists between the high-level input variables and the out-
put variable.

It is clear from Table 6 that determining the
high-level variables can not only reduce the complex-
ity of the network, but also leads to improved perfor-
mance of the network model. The proposed method
has thus reduced the dimensionality of the problem
from 7 to 3, and during this process identified a num-
ber of network models with improved performance
characteristics to finally arrive at the most concise
linear network model.

In order to study the effect of data set on the pro-
posed method, a sub-set (30 training and 15 verifi-
cation) of the original data set was used for stage 2
of the process. At the end of first level of enhance-
ment of the representation and subsequent pruning of
the input space, the linear and near flat networks (hid-
den layer with 1 and 2 nodes), identifiedπ2π3, π3π4
and π1/π4 as the most significant variables. These,
however, did not satisfy the criteria for network per-
formance, even though they included all theπ terms,
and were discarded. On increasing the network com-
plexity further, by introducing an additional node in
the hidden layer, the most significant variables were
identified asπ3, π1/π4 andπ2/π4. This set satisfied

all the criteria for acceptable higher order variables,
and a network trained with these as input variables
(MLP 3-3-1) with the original data set gave the perfor-
mance indicators for the training, verification and test-
ing sets as0.9999956/0.002971, 0.9999804/0.007257
and0.9999956/0.003312, respectively.

A second level enhancement of the representation
for the above three higher order variables and subse-
quent pruning of the input variable space results in
the same high-level variables,π1/π4 and π2π3/π4,
as before. Thus, using different data sets can result in
the process searching along different paths to arrive
finally at the unique set of high-level variables.

7. Conclusions

It has been demonstrated that a two-stage dimen-
sionality reduction process can be applied to deter-
mine high-level variables required for developing a
concise neural network model of physical systems.
In general the network performance indicators—both
the correlation coefficient and S.D. ratio—improve
with dimensionality reduction. This is to be expected
as dimensionality reduction by combining the original
variables means that, through this process, each orig-
inal data point can be used to generate infinite set of
data points in the original representation space. Thus,
dimensionality reduction at the end of both stages of
the process enhances the information content in the
original data set and accounts for the improved perfor-
mance of the models. Neural networks can learn the
underlying function even in the presence of noise in
the data, and it is expected that the present approach
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would also be able to detect the high-level variables
in the presence of noise, provided the usual precau-
tions are taken for preventing overfitting. Thus, the
improved generalisation performance of the concise
network model generated by this approach should also
be realised with noisy data. Though the approach has
been developed in the context of physical systems,
this approach is also applicable to physical processes.
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