
04•NathGero•AIEDAM.pdf

LEARNING WHILE DESIGNING

GOURAB NATH
Amadeus Development SAS France

and

JOHN S GERO
University of Sydney Australia

Abstract. This paper describes how a computational system for
designing can learn useful, reusable, generalized search strategy rules
from its own experience of designing. It can then apply this
experience to transform the design process from search-based
(knowledge-lean) to knowledge-based (knowledge-rich). The domain
of application is the design of spatial layouts for architectural design.
The processes of designing and learning are tightly coupled.

1. Introduction

This paper describes the application of machine learning for automatically
learning heuristics about a design process, gained during the process itself.
The distinguishing feature of this work is that the learning and designing
processes are tightly coupled with a strong interdependence on each other,
which makes learning during designing a part of the design activity. The
illustrative domain of application is the design of architectural layouts.
Before learning, the design process is modeled as uninformed search; i.e.
there is little or no strategy information, which can be used by the process to
progress towards good designs and avoiding bad ones. After learning the
search process becomes more informed, in the sense that the learned
heuristics can be used to reject inappropriate design decisions and select
appropriate ones. Rejection of inappropriate and selection of appropriate
decisions ultimately lead to better design solutions. Learning takes place
from both partial and complete design solutions and is seamlessly applicable
as additional strategy knowledge. During the computational design process,
if learned heuristics match, they apply, else more heuristics are learned. The

2 NATH, G. AND GERO, J,S.

behaviour of the design generator thus gradually changes from search-based
to knowledge-based for both immediate and future design search.

The plan of this paper is as follows. First the terminology for the rest of
the paper is defined. Then the closely coupled relationship between the
design and learning process is described. Following this, the particular
mechanism of learning is explained through a small example, after which a
simple formalization is presented. Then an architectural design problem is
chosen and the ideas are applied. Experimental results with learning are then
used to support the claims in this paper. The generality that may be achieved
with the learning mechanism is also analysed. Next, an evaluation of the
method in terms of strengths, weaknesses, scalability, extensions and
distinction with past work is presented.

2. Terminology

It is useful to define some terms that will be used in the rest of this paper. A
pattern is defined to be a collection of one or more variables representing
values, attributes or compositional parts of representational entities. The
possible values of variables are constrained by relationships to values of
other variables, Figure 1. A pattern can be syntactically specified as a
collection of object-attribute-value triplets, each of which can be a variable
that can potentially match to data. A variable is identified by a symbol that is
called its identifier. The value of a variable can be the identifier of another
variable of the pattern. This introduces relations between the values of the
variables. A pattern may match data to instantiate the values of each of the
variables that define it. A pattern match results in an instantiated pattern;
such a match is possible when every variable in the pattern has at least one
instantiation that satisfies all the relations between its value and the values of
other variables related to it. Without or before a pattern match, the pattern is
an uninstantiated pattern. Whenever the term ‘pattern’ is used without any
additional qualification, it refers to an uninstantiated pattern.

A design feature is an instantiated pattern that can be semantically
mapped onto a common human interpretation. This semantic component is
the only difference between an instantiated pattern and a feature. For
example, a square internal courtyard could be a feature of a building. A
feature class is an uninstantiated pattern that is an abstract parametric
conceptual description of some feature. A feature class when instantiated is a
feature. The relation between a feature class and feature is exactly the same
as the relation between a class and its instances.

 LEARNING WHILE DESIGNING 3

Figure 1: Example of a pattern and its match in the context of a rule in the

SOAR syntax (Laird et al 1987)

The term design context, Figure 2(b), is the superset of all design
information that includes the description of a given design alternative and all
information that surrounds it from the point of its generation through its
evaluation to its subsequent modification. In this paper, design context
comprises a description of the design alternative, design requirements, the
subsequent evaluation of the design alternative and design process
information. Design process information consists of the parent design
context and generative choices for further transformation
(elaboration/modification/refinement) of the design alternative from that
point onwards. Every design alternative thus has a design context associated
with it.

Additional parts may be added to a design or existing designs may be
transformed in different combinatorial ways by making generative choices.
These combinatorial ways of design generation are referred to as design
decisions, Figure 2(a). Design decisions are typically sets of rules that apply
to a given design alternative and are considered as the knowledge units for
design transformation. Each of these rules constitutes a pattern on its left-
hand-side (rule precondition) and a pattern on its right-hand-side. The
pattern on the right changes the design resulting in a new design when the
pattern on the left matches the design context. The rule preconditions are the

4 NATH, G. AND GERO, J,S.

necessary conditions for a design transformation. When the design is
subsequently evaluated, using design evaluation knowledge a new design
context is created. Design evaluation knowledge usually is a feature class (or
some formula) that associates parts of one or more feature classes whose
presence/absence/(or evaluation of the formula) is an indicator of design
quality.

Figure 2. (a) Design computation process mapped onto the state-operator

paradigm, and (b) the elements that comprise the design context

A preference on a design decision is a flag (+/-) that can be used to prefer
(+) or reject (-) design decisions from a set of possible design decisions that
may be the choices for transforming a given design alternative. Such
preferences are meaningful only under certain conditions. In this work the
semantic equivalent of such conditions are design situations.

Structurally, a pattern that comprises a subset of the variables
representing the design context is termed a design situation in this paper.
Typically this is a proper subset. A critical element of the learning process
described in this paper is to extract a design situation from a given design
context. Each design situation thus represents a class of possible patterns that
could be extracted from different design contexts.

A heuristic is an association between a situation and a preference on a
design decision. For a heuristic, a situation is a sufficient condition that
ensures a given quality of solution (good (+) or bad (-)) resulting from the
application of the given design decision. If such associative knowledge is
available then the process of preferring a decision on the match of its
associated situation is useful as strategy knowledge to augment the process

 LEARNING WHILE DESIGNING 5

of design as search. A heuristic is said to match a design context when its
situation matches the design context.

3. Design Computation and learning- tight coupling

3.1 DESIGN COMPUTATION PROCESS

Assume that design generation is formulated as a step-by-step combinatorial
and constructive process of configuration of the parts of the design. At each
step, for a given partial configuration, there are design decisions that are
proposed. Transformation opportunities for a given design are combinatorial
i.e. there is a tree of design alternatives, each of which will subsequently be
the root to other trees emanating from it as a result of future design
decisions. At each step of such a process a design decision may be selected
and is applied, resulting in a new design. This new design is evaluated using
design evaluation knowledge. Once a design alternative is evaluated some
learning can be done. How this is done is explained in the next section.

At a lower level of abstraction, the design computation process may be
mapped onto the traditional AI state-operator paradigm of search, Figure
2(a), where operators match the state information to transform the existing
state into a new state. In such a mapping operators map onto design
decisions and states map to design contexts. The state-operator paradigm of
search is used in a number of general problem solving architectures such as
SOAR (Newell 1990; Laird et al 1987) and PRODIGY (Carbonell et al
1991). The SOAR architecture was chosen to implement the ideas in this
paper. SOAR is also an embodiment of a psychological theory of cognition
(Newell 1990), an architecture for general intelligence (Laird et al 1987), as
well a programming tool for AI. The general ideas used are best described at
the knowledge level of computational designing rather than at the level of
SOAR. However some two concepts decision proposal and application have
been borrowed from SOAR.

Design experience is the historical trace of data that is generated during
such a process. As the entire computational design process is rule-based this
data is a historical collection of instantiated patterns that matched and were
replaced by new instantiated patterns during the process of decision
proposal, application and solution evaluation. This trace is the data that is
utilized by the learning algorithm used in this paper.

3.2 INTEGRATING LEARNING IN THE DESIGN COMPUTATION PROCESS

The model of learning is tightly coupled with design processes, Figure 3.
The notion of appropriateness of designs (absolute (e.g. satisfaction of
constraints), relative (e.g. minimizing a global design variable)), controls the

6 NATH, G. AND GERO, J,S.

design strategy and how learning is done. In this paper the focus of the
demonstrative example is on the satisfaction of constraints. Such control is
exercised due to the effects and side-effects of a chain of events that happen
as a generated design is evaluated. Evaluation of designs drives positive or
negative credit assignment of design decisions. The credit assignment
determines whether the consequent of a heuristic is about avoiding or
preferring a design decision. Because the antecedent of the heuristic is
expressed in terms of the representational space of the design context (see
next section for details), the design context influences what is learned. As
both of these are encapsulated in the derived heuristic, when the heuristic
becomes applicable, it in turn, influences subsequent design generation and
hence influences the resulting design description and its quality. The learned
heuristic becomes a part of the generation control strategy and in turn
influences future design generations in a similar situation by eliminating
search effort. This is how learning incrementally changes the design process
from being more search-based to being more knowledge-based. Every new
unexplored path in the design solution space, presents either an opportunity
for learning or an opportunity for using what was learned.

The heuristic applies for any arbitrary design context in which the
extracted situation matches. If the heuristic is available at the time of
proposal of the design decisions the operator may not even be proposed if
the heuristic predicts a bad solution. Therefore these automatically derived
heuristics act as strategy knowledge, just like the manually defined heuristics
that are often used to prune the space of design alternatives.

3.3 LEARNING MECHANISM EXPLAINED BY SIMPLE EXAMPLE

The learning mechanism used in this paper can be better understood by
initially reviewing the concept of explanation-based learning (EBL) in
artificial intelligence. One striking difference between EBL and other
common forms of similarity-based learning is that the target concept
definition already exists. The task of EBL is in reformulating it in terms of
what is called operationality criteria. Operationality criteria define the space
of representational terms that are allowed in the reformulated concept
definition. Another difference is that learning is from a single example rather
than a set of positive and negative examples. The learning mechanism used
in this paper is the chunking method of SOAR, a variant of this method.

 LEARNING WHILE DESIGNING 7

Figure 3. Tight coupling between learning and designing. Arrows signify influences

on the box at the head of the arrow by the box at the tail of the arrow.

Let C1 be a training example for a target concept, here we will use a cup.
Let the following features of the cup C1 be represented: it is light, is made of
porcelain, has a decoration, has concavity, has a handle, and a flat bottom.
Assume that the following five statements constitute a domain theory for the
functional definition of a cup. A domain theory in EBL is a set of rules or
facts that is used to determine the membership of an arbitrary instance to the
target concept. In this context, let the domain theory statements be the
following:

a) If an object is stable and enables drinking, it is a cup,
b) If an object has a bottom which is flat, it is stable
c) If an object carries liquids and is liftable, it enables drinking,
d) If an object is light and has a handle, it is liftable, and
e) If an object has a concavity, it carries liquids.

Can it be shown that C1 is a cup? In this case, C1 is indeed a cup. C1’s

flat bottom makes it stable, it is light weight and has a handle that ensures
liftability, its concavity allows it to carry liquids, the liftability and ability to
carry liquids enables drinking. The above explanation is an informal proof
tree of why the example is a cup. Thus, the relevant features of C1 that
determine ‘cupness’ are lightness, concavity, handle and flat bottom. The
rest of the description of the cup are often stated in the context of a cup but
are immaterial/irrelevant in diagnosing a cup. The output of EBL is a new
rule: If an object is light, has a concavity, has a handle, and has a flat bottom,
then it is a cup. Note that the explanation is a set of chains; in each chain one
or more initial structural features (facts) match domain theory rules to

8 NATH, G. AND GERO, J,S.

generate new intermediate assertions that ultimately imply some
functionality of the cup. All these functionalities in combination represent
the cup concept. In this case, the operationality criterion was the space of
structurally observable features for the cup. To derive these relevant
structural features, the proof tree may be also considered to be a trace of a
set of inference chains. Traversing these chains backwards (backtracing)
from the functional features of the cup to their originating features until all
features satisfy the operationality criteria, yields the relevant elements that in
the future can diagnose a cup. This is the basic task of any explanation-based
or analytical learning algorithm. In practice, this is more complicated, as the
left hand side of the derived rule would be composed of patterns rather than
constants.

3.4 MAPPING LEARNING CONCEPTS TO THE DESIGN PROCESS

We can map the components of the explanation-based learning example to
the design process. The target concept is mapped onto the concept of a good
(+) or bad (-) design solution. The training example, an instance of the target
concept, is mapped onto a complete or partial design solution that is
generated and subsequently evaluated during the search process. The domain
theory is mapped onto the design evaluation knowledge that is used to make
the evaluation. Then the proof tree or justification basis for the
reformulation of the concept is the part of the design experience from the
time the design decision was proposed through the application of the
decision to the evaluation of the design alternative. The operationality
criteria are mapped onto the representation space of the design context just at
the point before the design solution is about to be generated by some design
decision. If the above are the mappings of EBL concepts to the parts of the
design process, then analogically an EBL backtracing procedure will result
in an output rule that is an association between a relevant subset of the
parent design context and a preference on the design decision that
constructed it.
 The role of learning, again, analogically, is to change the representation
of the evaluative concept of the quality of a design to “what to do, when in
order to achieve a good or eliminate a bad design solution” or in other words
“what to do when” so that the presence or absence of an instance of the
feature class that defined goodness or badness could be achieved. The term
“what to do” is characterized in terms of preference on a design decision.
The term “when” is characterized as a situation, a potential pattern that can
match a wide variety of future design contexts. When such a heuristic is
available and matches the design context, the quality of the design solution
that a design decision is expected to generate is now predictable directly
using the features of the design context that were there before the design is

 LEARNING WHILE DESIGNING 9

even generated. This makes the result of the concept re-representation
directly applicable to the process of designing.

3.5 A MORE FORMAL DESCRIPTION

Using the previously described mapping between the proposed design
computation process to the state-operator paradigm, we can now describe the
designing and the learning process more formally, combining the levels of
abstraction. A design generator recursively proposes design decisions (dk) to
transform initial partial design configuration (s0) to generate a tree of
designs, Figure 2(a).
 The generation of each design, is followed by the evaluation of the design
thus creating a new design context. The process as a whole, is thus a
transformation of design context information (si sj), Figures 2(a) and
details of a single decision application are shown in Figure 4. The additional
input required for learning is the description of a design feature class (fj) and
a flag to it identifying whether the feature class is bad (-) or good (+) (an
evaluator to determine the quality of the design). Learning can take place
only when instances of one of these evaluator feature classes is present in the
newly generated design. The process of learning is essentially constructing
the association between what are the conditions (ci) under which the decision
dk should be preferred (+)/rejected (-) i.e. a rule ci (+/-) dk where ci ⊆ si .
 ci, is found by backtracing each pattern-matched variable of fj from state sj
to its originating elements in state si through the trace of design experience,
Figure 4. Tracing is defined as the process of maintaining a historical chain
of instantiated patterns that were matched and replaced during the process of
decision proposal, application and evaluation of design alternative. This
output of trace is the design experience. Tracing is done when a design
alternative is constructed using uninformed search i.e. without the aid of a
heuristic preferring an operator. The process of backtracing a given
instantiated pattern, fj, is the process of traversing the historical chain of
instantiated patterns from fj in a reverse direction to its generation to find
which patterns were used to generate it. In this case, it is ci . Looking in a
forward direction, ci is one or more instantiated patterns in si, which were
transformed by the design decision dk to give rise to feature fj that was
subsequently evaluated in sj to conclude about the quality of the design.. The
situation construction is denoted as ci fj , the reverse arrow signifying the
backtracing operation. The process of learning from a single design
generation and evaluation is termed in this paper as “single-step learning”1.

1 “Multi-step learning” is an extension of this method proposed by Nath (2000)
where learning is along a longer, if not a complete solution path. But this is not
within the scope of this paper and is briefly covered in a later section.

10 NATH, G. AND GERO, J,S.

 Figure 4. Learning from an instance of design generation and evaluation the
knowledge “If pattern ci matches some context sm then prefer(+)/avoid(-) dk”

 Once ci is obtained, the task is to turn it into a variable ci (also called
variablizing) so that it can pattern-match future design contexts. The process
of variabilization is a direct consequence of using the chunking algorithm of
SOAR (Laird et al 1986) and its implicit generalization strategy. This
corresponds to the same variable identifier replaced by the same variable and
different identifiers by different variables.

3.6 CONNECTION WITH SOAR

The main reason for using SOAR framework is that it allows a uniform
representation space to be used for both learning and problem-solving. With
other systems there may be the issue of mapping the representation space of
learned knowledge to that of a representation space for problem-solving in
order to use what has been learned.
 SOAR uses a variant of EBL called chunking. Chunking results in rules
known as chunks. The learning method described in the previous subsection
is based on SOAR’s chunking algorithm that has been specialized,
reinterpreted and applied in the context of computational design. Learned
heuristics map onto SOAR chunks. The principle of chunking in SOAR is:
whenever there is problem-solving done within a subgoal, it can be bypassed

 LEARNING WHILE DESIGNING 11

the next time because of a chunk (rule) that captures an association between
the results of the subgoal and the features of the supergoal that led to the
result in the subgoal. But chunking is an abstract domain independent
learning mechanism, applying it in the context of generic design tasks
requires commitment on several aspects that chunking does not commit to,
e.g. the nature of subgoal generation, and nature of problem-solving in
design subgoals. This is equivalent to the addition of one knowledge level
that captures the generic tasks involved in computational design and maps
them to the domain general knowledge level of SOAR. Nath (2000)
describes these in more detail and proposes extensions and variations to this
method. The successful integration of learning and problem solving is also a
direct consequence of using the SOAR architecture, as SOAR treats the
learned chunks in the same way as human encoded rules.

4. Application

The application, reported here, uses the ideas of tightly coupled learning and
problem solving to generate architectural layouts on a site. The difference
with other layout design applications is essentially the method used to
achieve the end, i.e. the learning process automatically constructs heuristics
that are profitably utilized by the search process. The architectural layout
design problem is one where rooms are required to satisfy adjacency and
cardinal direction constraints to fulfill their functions. For example, the
“master-bedroom” must have morning sunlight, which implies “master-
bedroom must face east” (requires-constraints) or a “bedroom” must not face
(avoids-constraints) south because there is noise from the south. The
adjacency and site constraints for the different rooms of the layout are
depicted in Figure 5.
 A rectilinear shape class is a compact abstraction that can be used to
represent a set of possible rectilinear shapes. Each room when placed on the
site is an instance of one of several allowable rectilinear shape classes, all of
the same area. These shape classes for each room are shown in Figure 6. The
area required for each of the rooms is specified as a part of design
requirements.

4.1. SHAPE REPRESENTATION

A shape (instance) is represented using an anticlockwise ordered sequence of
directed unit edges called facelets from a base point2. The perimeter of the
shape is the number of facelets in the shape. A facelet is described by a head
point and a tail point and the cardinal direction in which the head of the

2 The shape representation bears some resemblance with the representation proposed by
Rosenman (1996).

12 NATH, G. AND GERO, J,S.

facelet points (represented in subsequent figures as arrows). A facelet also
has information about which are its previous and next facelets. However, to
allow for rotations of these shapes, the cardinal direction of each facelet of a
shape is described by means of relations to the cardinal direction of the
starting facelet of the shape. These relationships are straight (same),
anticlockwise, clockwise, opposite, e.g. if the cardinal direction of the
starting facelet is “north”, and the relationship of a second facelet to the
cardinal direction of the starting facelet is clockwise, then the second facelet
will have a cardinal direction, “east”.

Figure 5. Adjacency and site constraints graph of a layout design problem

Figure 6. Set of allowable shape classes for various design parts (rooms)

 LEARNING WHILE DESIGNING 13

 Figure 7(b) is the pictorial representation of an abstract shape class
{base-point, any -5*anticlockwise -3*opposite e-4*clockwise -2*straight -
1*clockwise}. Its base point is circled and labeled A and the facelet that has
its tail at A is the starting facelet. The directional move sequence in this
representation is a shape generation plan, where each move (viz.
“anticlockwise, opposite, clockwise, straight) is relative to the starting
cardinal direction, “any”, to which the initial facelet can be instantiated.
Numerals in this representation represent the number of consecutive times of
application of the same relative move. Thus the cardinal directions of non-
starting facelets can be instantiated to 4 possible directions depending on the
instantiation of “any” to north, south, east or west. This abstract
representation with a given basepoint, suffices to encode 4 possible
instantiations of the shape for a given starting basepoint. If the basepoint
representation is also parametric the set of possible shapes, which belong to
this class, are multiplied by the number of possible base points. Figure 7(a)
show one instantiation of the shape class shown in Figure 7(b) with a given
base point and the starting facelet pointing to west. Design evaluation
knowledge and reasoning are on shape classes rather than their
instantiations, so that the knowledge that it produces as a result of learning is
more general.

 (a) (b)

Figure 7. Elements of representation of (a) a shape, (b) a shape class

Adjacency between an already placed room A and B (being currently
configured), is achieved by instantiating a given shape class such that B’s
starting facelet is equal in position (same end points as the joining facelet of
A1) but opposite in the direction to any facelet of A. This is shown in Figure
8, and is the task of the design decisions. The combinatorics of the design

14 NATH, G. AND GERO, J,S.

alternatives (and design decisions) for a given room are defined by the
choices of different allowable shape classes, the different facelets of room A
that can be used as the instantiation seed for the initial facelet of room B, and
the different shape generation plans.

Figure 8. Adjacency of design parts: representation

4.2. DESIGN EVALUATION CRITERIA

One evaluation criterion that often governs good layout designs is “efficient
usage of space”. To demonstrate the effectiveness of the ideas, let us assume
that the concept of efficient usage of space is defined as the absence of three
feature classes: (a) narrow deep (con)cavities (I-shaped and L-shaped)
between two or more rooms, (b) unit holes between two or more rooms, (c)
too much edge overlap between two given rooms. Positive and negative
examples of what is implied by criteria (a) and (b) are shown in Figure 9.
Two of the rules that identify typical unit holes and deep concavities are
shown in Figure 10. Criterion (c) is formulated as follows: for two given
rooms, the number of overlapping facelets of each of these rooms should be
<= 2. The “Hall” being the one room with limited perimeter, which is
adjacent to most rooms, cannot afford to have its perimeter edges consumed
by a single room to satisfy adjacency criteria, because when the last few
rooms are being configured with respect to the hall, there may not be enough
perimeter length of the “Hall” left to satisfy the adjacency requirement of
these later rooms. In that case, the program goes into costly backtracking
operations.

 LEARNING WHILE DESIGNING 15

Figure 9. Features that make layouts undesirable: deep (con)cavities and holes

between rooms.

Figure 10. Typical rules that define one case of deep (con)cavities and unit holes.

These design evaluator features (labeled as bad) are described by

reasoning about the facelets between rooms, Figure 10. In this example, the

16 NATH, G. AND GERO, J,S.

task of learning is to re-represent the concept of unit holes, deep concavities
and excess edge overlap in terms of a subset of patterns in the previous
design context from which these features were generated, so that for the
future those patterns could be used as a predictor of these types of bad
features and thus be used to avoid decisions that will produce such features.

5. Experimentation Strategy

The following strategy was adopted to evaluate the ability of the proposed
model to learn knowledge in order to avoid infeasible designs.

(a) Generate two-roomed layout configurations (set S1) with learning
turned off (assuming a given position of the first room to be
configured), say we have n1 solutions

(b) Inspect and mark the infeasible solutions (set S2), with holes and
deep concavities, say these are n2 in number

(c) Then for the same position of the first room, we turn learning on and
generate all possible configurations of the second room. If learning
is successful then the new set of designs (S3= S1-S2) should not
have any holes or deep concavities and the number of designs
produced should be n1- n2. The check n1- n2 ensures that learned
knowledge does not misclassify any feasible designs as infeasible.

Next, we add an extra evaluator feature: the excess edge overlap criterion.
Steps (a) and (b) are performed again on the set S3 and the infeasible
solutions (S4) based on the new features were identified. This should result
in additional learned knowledge for the new evaluator feature, while
restricting the new solution set to S5=S3-S4.

Next the generality of learned knowledge and hence its transferability is
examined at both an intra-problem level and at an inter-problem level. At the
intra-problem level, is the knowledge learned from laying out two rooms
sufficiently abstract so that it can be transferred to other parts of the search
tree? To determine this the task of configuring the third room from the
configurations in S4 was executed. The objective is to test, whether
knowledge learned from the experience of configuring two-roomed layout
configurations would be transferable between two-roomed configurations,
where the shape classes were different. At the inter-problem level, a
different starting design configuration was chosen and examined as to
whether the learned knowledge applied.

6. Results

The solution set of Step (a) in the previous section with learning turned off
for the features “deep (con)cavities and holes” is shown in Figure 11. There
are 81 solutions, which comprise the set S1. The 9 boxed solutions that
identify the designs, which contain deep concavities and holes, is the set S2.
Figure 12 shows the set S3 (=S1-S2) that comprises exactly 81-9 = 72

 LEARNING WHILE DESIGNING 17

solutions that do not contain deep concavities or holes. Thus the learned
heuristics do not seem to misclassify designs. Next, the additional feature of
minimizing perimeter edge overlap was introduced. Applying the same
experimental step, the designs in set S3 with this feature are box marked;
there are 31 boxed solutions and they represent set S4. Figure 13 illustrates
the solution set S5 (=S3-S4), where not a single solution was produced that
had “too-much-edge overlap” or “holes and deep concavities. This set also
contains exactly 72-31 = 41 solutions, which again shows that the learned
heuristics correctly identify bad designs.
 Figure 14 shows that what was learned from the configuration of 2 rooms
could be applied to layouts with 3 rooms and the same principles that were
learned were applied successfully. This is explained in detail in a later
section. Figures 15 and 16 show that what was learned was transferable to
other design problems that use the same representations, but where the initial
configuration of the “Hall” was different. No deep concavities or holes, no
excess edge overlap between the “Hall” and other rooms exist. Figure 17
shows how using the learned design knowledge, complete layouts produced
demonstrate efficient packing of the rooms considering the protrusions and
indentations in other rooms.

18 NATH, G. AND GERO, J,S.

Figure 11. Solution space of 81, 2-roomed layouts with learning turned off. The 9

boxed solutions show deep concavities and holes. Correct learning should not
misclassify designs; this implies producing exactly 72 solutions, at the next iteration.

 LEARNING WHILE DESIGNING 19

Figure 12. Solution space of exactly 81-9=72 layouts after learning heuristics
about how to avoid deep concavities and unit holes. Not a single solution contains
holes or deep concavities. The 31 boxed solutions show the “excess-edge-overlap”

feature with the HALL. Correct learning implies producing exactly 72-31=41
solutions in the next iteration.

20 NATH, G. AND GERO, J,S.

Figure 13. Solution space of exactly 72-31=41 layouts after using learned
knowledge about how to avoid unit holes, deep concavities and excess edge overlaps

with the HALL. Note not a single solution produced contains these features.

 LEARNING WHILE DESIGNING 21

Figure 14. Heuristics learned while generating solutions shown in Figures 11, 12
and 13 were general enough to eliminate such features even for 3-roomed designs.

22 NATH, G. AND GERO, J,S.

Figure 15. Heuristics learned while generating solutions shown in Figures 11, 12
and 13 were general enough to eliminate undesirable features in 3-roomed designs,

even when the initial configuration of the first room was different.

 LEARNING WHILE DESIGNING 23

Figure 16. Another instance of the application of learned knowledge to generate
successful 3-roomed solutions with a different initial shape of the HALL. No

undesirable features are present.

24 NATH, G. AND GERO, J,S.

Figure 17. Complete layout configurations generated with learned knowledge. Note

that the top leftmost solution has an internal hole but it is not a unit hole .The
learned heuristics should only prevent unit hole generation, not larger holes. Thus

the heuristics have allowed the desired generation successfully.

 LEARNING WHILE DESIGNING 25

7. Learned knowledge and generality

The main reason for effective knowledge transfer from a 2-room situation to
a 3-room situation, was that the situation part of the heuristics reasoned
about the relations between partial shape generation plans of the room being
configured and the facelets of other rooms and not the individual cardinal
directions. The rooms to which shape generation plans or existing facelets
were variabilized. The abstract representation of the cardinal directions
captured relationships between the directions instead of a commitment on
the actual directions. Even though the global layout in which the learning
was applied consisted of 3 rooms, often 2 rooms were involved whose
facelets formed a unit hole or a deep concavity. In such cases, the learned
knowledge could immediately apply. Figure 18 shows one of the many
pieces of learned knowledge that avoids the generation of layouts with deep
concavities. Figure 19 shows the chunk in SOAR for this. Similarly, Figure
20 shows one typical rule that avoids generation of unit holes. Figure 21
shows one of the chunks in SOAR for this.

Figure 18. Three learned rules that prevent deep concavities in layouts

26 NATH, G. AND GERO, J,S.

Figure 19. One of the learned rules in SOAR syntax that prevent deep concavity
generation

Figure 20. Three learned rules that prevent unit holes in layouts

 LEARNING WHILE DESIGNING 27

Figure 21. One of the learned rules in SOAR syntax that prevent unit hole
generation

Figure 22 shows a richer knowledge set: learned heuristics that avoid the design
generation to overstep site boundaries.

28 NATH, G. AND GERO, J,S.

Figure 22. Learned heuristics that avoid the design generation that oversteps site

boundaries.

 Figures 23 and 24 show how these patterns can match in different design
contexts (different orientations and different shape generation plans) and
allow reuse of the knowledge learned. When learned heuristics like these
apply it eliminates infeasible design solutions. For example Figure 20 shows
how the same situation learned using the feature of “deep concavity” recurs
for different design contexts. These are some layouts picked for explanation
from Figure 11 for illustration. A similar recurrence of situations can be
found in the marked solutions in Figure 12. Some of the heuristics learned
were also more specific than the ones described above. Here the entire shape
generation plans formed part of the situations of these rules. Hence, these
rules could only apply to preventing deep concavities or holes with specific
shape classes; the reason is that it is the later facelets in the shape generation
plans that define the deep concavity or the hole.
 If more than 2 rooms were involved in forming a deep concavity or a hole
then the situation part of the learned heuristic from the 2 room situation may
not match and hence learned knowledge may not be applicable. Every
evaluated design solution is an opportunity to either learn knowledge or use
learned knowledge. In such cases instead of using previously learned
heuristics, new heuristics would be learned and would the heuristics would
cover holes or deep concavities that involved the facelets of more than 2
rooms. Similarly these heuristics would be useful in eliminating potentially
space-wasting design decisions. There is a wide variety of ways in which the
concepts of space wastage occur in layout design, especially with the non-
rectangular nature of the rooms.
 In total around 560 rules of decision preference in different design
contexts were learned although the space of design solutions was not
completely explored. If it was completely explored then adding these
heuristics would have resulted in no search, resulting in complete knowledge
based activity guided by situation-directed prediction of the quality of a
decision.

 LEARNING WHILE DESIGNING 29

Figure 23. How the learned knowledge as in Figure 15 matches various designs

Figure 24. Left column shows two instances of partial layout (with deep
concavities) from Figure 10 using which learning was done. The right

column shows how learned situations match in other instances of layouts
with deep concavities in Figure 12.

9. Evaluation

9.1 STRENGTHS OF THE METHOD

There are mnay advantages in using this method. First, learning is
dynamically driven by the requirements of the designing process to produce

30 NATH, G. AND GERO, J,S.

better solutions rather being than a passive process of classification of
designs. This is the basis for a highly coupled interaction between learning
and designing processes that results in a self-improving design search
procedure. Second, the uniform representation space for learning and
designing borrowed from the SOAR framework allows seamless transfer in
both directions. Third, the learning method and the knowledge learned aid
the design computation process in reasoning about regions of the search
space rather than specific points. This is possible because the situations
embedded as antecedents of learned heuristics encode in their patterns
complex conditions that correspond to regions of the solution space. In
addition the knowledge engineer can control the level of generality desired
in these learned heuristics. The more abstract, the evaluation reasoning and
the representation of the problem, the more general and applicable the
learned knowledge will be. Fourth, sets of inappropriate solutions can be
eliminated using a single learning session thus enabling rapid exploration of
the solution space. This of course has a bearing on the level of abstraction
employed in representation and reasoning of the domain. Fifth, costly
processes involved in domain-oriented knowledge engineering like
elicitation of tacit knowledge and subsequent encoding of heuristics are
eliminated. Only those heuristics are constructed by the program that are
relevant to goal of satisfying the design requirements under consideration.

The experimentation strategy and the results showed that the heuristics
did not fail, the situations embedded in the heuristics did not estimate a bad
design solution as good, neither did it classify a good design solution as bad.
The process uses an approach similar to explanation-based learning and
performs a deductive compilation of the domain theory (design evaluation
rules) based on operational criteria. This implies that the learned heuristics
could only fail if the knowledge engineer incorrectly encodes the domain
theories employed in evaluative reasoning. It is therefore important that the
user of this method has precise definitions of what exactly constitutes a bad
design and what is a good design. Because of this advantage, the embedded
situations in the heuristics do not need any statistical evaluation to determine
their success or failure. At the knowledge level, a correctly encoded
evaluative domain theory will result in a correct concept re-representation
i.e. correct heuristics.

Finally the unlike many other works on learning, the learned knowledge
can be inspected to have an understanding of the kind of learned knowledge
generated and thus have greater control over it. The need for such inspection
could be not only for the human designer or the researcher to experiment
with their representations to best utilize a tool such as this to suit their goals,
but also to understand the nature of tacit hard-to-explain knowledge that is
captured as a result of learning. The tacit nature of this learned knowledge
was explored in another work (Nath, 2003).

 LEARNING WHILE DESIGNING 31

It is these advantages that should encourage computer aided design
system developers or researchers to incorporate such an approach in the
design of their tools for designing. Practicing designers, who would be users
of such a tool, would also gain these advantages.

9.2 DISTINCTION WITH PAST WORK

The work that is presented here is distinct from learning from designs, on
which there is a plethora of research. This work demonstrates learning and
designing co-occurring in a coupled design process. Manfaat et al (1996)
have reported generalizations from a set of spatial layout designs. The form
of learning reported here can also be viewed as one form of knowledge
compilation (Mostow, 1990). Knowledge compilation has been applied by
Brown and his colleagues (Brown, 1996; Chabot and Brown, 1994: Liu and
Brown, 1991; Sloan and Brown, 1988; Brown and Spillane, 1991) to learn
design process knowledge, but these works were not in the spirit of the tight
coupling between a learning and a designing process. Braudaway and Tong
(1989) introduced a knowledge compilation based system called RICK
which describes how an inefficient generate and test problem-solver for a
parametric building layout design problem, can adapt itself to the problem
specific constraints. No heuristics are learned, here, instead a more efficient
LISP program (constrained generators) for solving the particular problem is
synthesized. Voigt and Tong (1989) describe an extension of RICK called
MENDER, which reformulates the global design constraints as an evaluation
function and derives ``hill climbing patchers" through knowledge
compilation.

If one views this work as adaptive search, i.e. tailoring a generic
generative mechanism to produce desirable designs, there is research by
Cagan and his colleagues (Cagan and Mitchell, 1993; Reddy and Cagan,
1995; Schmidt and Cagan, 1998; Shea and Cagan, 1997), who apply
simulated annealing to optimize grammatical design generation. In a similar
stochastic spirit, there has been some recent applications by Vale and Shea
(2003a; 2003b), which attempt at distinguishing good sequences of design
generation operators from the bad using search experience. The intention is
to use scores on these sequences as strategies that allow good sequences to
be preferred over the bad in design generation. Machine learning here is of
the incremental parameter tuning variety (Samuel, 1959), where the
parameter is a score that is calculated on the basis of changes in objective
function over grammar rule sequences weighted by the probabilities
assigned to sequences based on past experience and future utility. However,
the relation between the problem conditions and when a sequence could be
useful is not explicitly modeled and it is not clear whether the probabilistic
weights capture such a relationship implicitly.

32 NATH, G. AND GERO, J,S.

Approaches to learning heuristics in design using the chunking method of
SOAR has been reported by Modi et al. (1995a, 1995b) while using SOAR
as a design problem-solver in the design of chemical engineering distillation
sequences. However, the focus of that work was not on learning heuristics
for preferring good solutions to inferior ones, but on heuristics for choosing
evaluation functions from a predefined set. The research presented in the
current paper treats learning design process knowledge more generally.

9.3 WEAKNESSES OF THE METHOD

The first weakness of the method is the inability to handle negated reasoning
in its evaluative domain theory. This is more a consequence of the use of
chunking algorithm of SOAR than the approach itself. The primary
difference between chunking and EBL is that the backtracing of the concept
in EBL takes place using the symbolic structure of the rules, rather than the
instantiated rules. When instantiated patterns are used as the source for
backtracing, the design experience as a result of tracing can account for the
presence of instantiated patterns but cannot account for the absence of
instantiated patterns. Hence the resulting heuristics are likely to be
overgeneral. It is in such situations that the heuristics may fail, inspite of a
correct domain theory. But this problem can be overcome by using another
analytical learning algorithm like the traditional EBL, which uses
backtracing through uninstantiated patterns.
 As the evaluative reasoning tends to get more complex with many cases
of applicability and increasing number of reasoning chains, it can often seem
like new strategy knowledge is generated. However, at the theoretical level,
there no new knowledge (outside the bounds of what was given) is generated
as a result of learning. All heuristic knowledge is within the deductive
closure of the knowledge that was encoded a priori, although to the human it
may seem like new knowledge.

9.4 SCALABILITY ISSUES

Analytical learning from experience is often designed to incrementally
increase the performance of a search mechanism. So the learning mechanism
in itself is a step towards future scalability in terms of efficiency of
exploration of a space. The time taken to learn is not really the issue for
scalability, whereas the ability to match learned knowledge to a future
design context in order to apply it to some future design context is. In other
words, scalability is more of an issue at the applicability time of the learned
knowledge rather than at learning time.
 At the knowledge level, the scalability of a heuristic at application time,
in isolation, is related to the complexity of the situation that is embedded in
the heuristic. The complexity of the situation depends on the number of unit

 LEARNING WHILE DESIGNING 33

representational entities (object-attribute-value triplets) and shared
constraining interrelationships that have to be matched to a given design
context. Sometimes such a heuristic with a large set of conditionals and
many shared relationships could be very expensive to match with a large
data set encapsulated in a design context and as a consequence that the
system suffers a slowdown (Minton, 1988) after learning, contributing to
what is called the utility problem. In general the utility problem occurs for all
systems that learn rules from experience. The main reason for such a
slowdown, especially when production systems like SOAR are used, can be
understood at the internal algorithmic level rather than at the design
knowledge level. For SOAR, the greatest amount of computational resources
are used in matching rules and the knowledge search (Tambe, 1991) for
which rules apply to the given context. This is significant even though
SOAR uses an efficient production match algorithm like RETE (Forgy,
1982) and rule firing is simulated to be in parallel. SOAR’s chunking
algorithm is well known to reduce the number of steps to solve a subproblem
the next time but when the utility problem occurs, the cost of matching the
learned chunks becomes expensive as a result of the production match
algorithm that offsets the benefit gained from the reduction in the number of
problem solving steps. Ideally, the cost of using the learned rules should
always be bounded by the cost of the problem-solving episode from which
they are learned (Kim and Rosenbloom, 1996). The current solution is to
design representations for data and reasoning in such a way that a larger
number of cheaper chunks with smaller patterns is generated. A related but
different reason that could also contribute to the utility problem is what is
known as the average growth effect (Doorenbros, Tambe and Newell, 1992)
of the knowledge base due to heuristics being learned continuously.
Interaction across heuristics slow down the system even though the
heuristics are not themselves expensive. Solutions to the average growth
effect have already been proposed (Doorenbros, Tambe and Newell, 1992;
Doorenbros, 1993).

11. Conclusions

This paper has presented a method of learning while designing that utilises
design experience and design situations (Gero, 1998. It uses SOAR as its
underlying framework. The method has been applied on an architectural
design problem where learning and designing are tightly coupled. The main
strength of this method is “intelligent control” which is manifested as the
automatic extraction, from experience, of design problem conditions under
which certain generation strategies are useful and the use of these heuristics
to drive future design generation towards requirements. In the past, various
design computing researchers (Akin, 1990; Coyne, 1988; Mitchell, 1996;

34 NATH, G. AND GERO, J,S.

Muller and Pasman, 1996; Smithers et.al., 1990; Vancza, 1991) expressed
control mechanisms as an essential need in design search processes, be it in a
computational context or otherwise; but there has been a paucity of design
research in this area.
 The learning principle could be extended over a series of design
transformations. In that case, if we have the following sequence of states
representing a solution path, s1 s2 s3…. sn-1 sn caused by
application of decisions, d1 d2 d3…. dn-1 dn, and sn containing
feature fn(+), then we have the following conditions constructed from fn as a
result of backtracing: c1 c2 c3 …… cn-1 fn, where ci ⊆ si . The
process of learning, then, constructs the heuristic ci (+)dk from a single
design description in sn. such that ci ⊆ si. . A series of rules can thus be
learned from a single example. This forms a multi-step learning process and
is reported in more detail in Nath (2000).

Acknowledgements
The research reported here was carried out at the Key Centre of Design Computing
and Cognition, Sydney, Australia as a part of the first author’s Ph.D. thesis that was
supported by an AUSAID fellowship. The authors would also like to acknowledge
the comments made by the reviewers of this AIEDAM special issue that improved
both the content and presentation of the ideas in this paper.

References
Anderson, J.: 1983, The Architecture of Cognition. Harvard University Press, Cambridge,

MA.
Braudaway, W and Tong, C: 1989, Automated synthesis of constrained generators,

Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
AAAI Press, Menlo Park, CA, pp. 583-589.

Brown, D: 1996, Knowledge compilation in routine design problem solving systems:
Research abstract, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 10(2): 137-138.

Brown, D and Spillane, M.: 1991, An experimental evaluation of some design knowledge
compilation mechanisms, in J. S. Gero (ed.), Artificial Intelligence in Design'91,
Butterworth Heinemann, Oxford, pp. 323-326.

Cagan, J, and Mitchell, WJ: 1993, Optimally directed shape generation by shape annealing.
Environment and Planning B: Planning and Design 20: 5-12.

Chabot, R and Brown, D: 1994, Knowledge compilation using constraint inheritance,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 8(2): 125-142.

Carbonell, J. G., Knoblock, C. A., Minton, S.: 1991, PRODIGY: An integrated architecture
for Prodigy, in K. VanLehn (ed.), Architectures for Intelligence, Lawrence Erlbaum
Associates, Hillsdale, N.J, pp. 241-278.

Doorenbos, B., Tambe, M. and Newell, A.: 1992. Learning 10,000 chunks: What’s it like out
there? Proceedings of the Tenth National Conference on Artificial Intelligence, pp.830–
836.

Doorenbos, B. 1993. Matching 100,000 learned rules. Proceedings of the Eleventh National
Conference on Artificial Intelligence, pp 290-296.

 LEARNING WHILE DESIGNING 35

Forgy, C. (1982). Rete: A fast algorithm for the many pattern/many object pattern match
problem, Artificial Intelligence, 19: 17-37.

Gero, J. S. (1998). Towards a model of designing which includes its situatedness, in H.
Grabowski, S. Rude and G. Green (eds), Universal Design Theory, Shaker Verlag,
Aachen, pp. 47-56

Kim, J. and Rosenbloom, P.: 1996. Learning efficient rules by maintaining the explanation
structure. Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp
763-770.

Laird, J, Newell, A and Rosenbloom, P: 1986, Chunking in SOAR: The anatomy of a general
learning mechanism, Machine learning 1: 11-46.

Laird, J, Newell, A and Rosenbloom, P: 1987, SOAR: An architecture for general
intelligence, Artificial Intelligence 33: 1-64.

Liu, J and Brown, D: 1991, Generating design decomposition knowledge for parametric
design problems, in J. S. Gero (ed.), Artificial Intelligence in Design’91, Kluwer,
Dodrecht, pp. 661-678.

Manfaat, D, Duffy, AHB and Lee, BS: Generalization of spatial layouts, Workshop on
Machine Learning in Design, Artificial Intelligence in Design’96, Stanford University.
CA.

Minton, S.: 1988, Quantitative results concerning the utility of explanation-based learning,
Proceedings of the Seventh National Conference on Artificial Intelligence, pp. 564–569.

Modi, A, Newell, A, Steier, D and Westerberg, A: 1995(a), Building a chemical engineering
process design system with SOAR-2: Learning issues, Computers and Chemical
Engineering 19(3): 345-361.

Modi, A., Newell, A, Steier, D and Westerberg, A: 1995(b), Building a chemical process
design system with SOAR-1: Design issues, Computers and Chemical Engineering 19(1),
75-89.

Mostow, J: 1990, Towards automated development of specialized algorithms for design
synthesis: Knowledge compilation as an approach to computer aided design, Research in
Engineering Design, 1: 167-186.

Nath, G: 2000, A model of situation learning in design, Ph.D. Thesis, Department of
Architectural and Design Science, University of Sydney.

Nath, G.: 2003, A computer program automatically acquiring some skills for a simple design
problem, in Cross, N. and Edmonds, E.(eds.), Expertise in Design, Creativity and
Cognition Studios Press, Sydney, pp. 323-339.

Newell, A: 1990, Unified Theories of Cognition, Harvard University Press, Cambridge, MA.
Rosenbloom, P and Laird, J: 1986, Mapping explanation-based generalization onto SOAR,

Proceedings of the Fifth National Conference on Artificial Intelligence, AAAI Press, Los
Altos, CA, pp. 561-567.

Reddy, G and Cagan, J: 1995, An improved shape annealing algorithm for truss topology
generation, ASME Journal of Mechanical Design, 117(2): 315-321.

Rosenman, M : 1996, The generation of form using an evolutionary approach, in J. S. Gero
and F. Sudweeks (eds), Artificial Intelligence in Design'96, Kluwer Academic, Dodrecht,
pp. 643-662.

Schmidt, LC, and Cagan, J: 1998, Optimal configuration design: An integrated approach
using grammars, ASME Journal of Mechanical Design, 120(1): 2-9.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development, 3: 210-229.

Shea, K, and Cagan, J: 1997, Innovative dome design: Applying geodesic patterns with shape
annealing, Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 11:
379-394.

36 NATH, G. AND GERO, J,S.

Sloan, W and Brown, D: 1988, Adjusting constraints in routine design knowledge, Workshop
on AI in design: Proceedings of the Seventh National Conference on Artificial
Intelligence, AAAI press, Menlo Park, CA.

Tambe, M. and Newell, A.: 1988, Some chunks are expensive, In J. E. Laird(ed), Proceedings
of the Fifth International Conference on Machine Learning, Morgan Kaufmann, pp. 451-
458.

Tambe, M. and Rosenbloom, PS.: 1989, Eliminating Expensive Chunks by Restricting
Expressiveness, Proceedings of the 11th International Joint Conference on Artificial
Intelligence, pp. 731-737.

Tambe, M.: 1991, Eliminating conbinatorics from production match. PhD thesis, Carnegie-
Mellon University.

Vale, CAW and Shea, K.: 2003a, A machine learning-based approach to accelerating
computational design synthesis, Proceedings of the Fourteenth International Conference
on Engineering Design(ICED 03), Stockholm, pp ??-??.

Vale, CAW and Shea, K.: 2003b, Learning Intelligent Modification Strategies in Design
Synthesis, Proceedings of the AAAI Spring Symposium on Computational Synthesis, Palo
Alto, CA., pp. 247-254.

Voigt, K and Tong, C: 1989, Automating the construction of patchers that satisfy global
constraints, Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, AAAI Press, Menlo Park, CA, pp. 1446-1452.

This is a copy of the paper: Nath, G and Gero, JS (2004) Learning while
designing, AIEDAM 18 (4): 315-341.

