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Abstract. This paper describes how a computational system for 
designing can learn useful, reusable, generalized search strategy rules 
from its own experience of designing. It can then apply this 
experience to transform the design process from search-based 
(knowledge-lean) to knowledge-based (knowledge-rich). The domain 
of application is the design of spatial layouts for architectural design. 
The processes of designing and learning are tightly coupled.  


1. Introduction 


This paper describes the application of machine learning for automatically 
learning heuristics about a design process, gained during the process itself. 
The distinguishing feature of this work is that the learning and designing 
processes are tightly coupled with a strong interdependence on each other, 
which makes learning during designing a part of the design activity. The 
illustrative domain of application is the design of architectural layouts. 
Before learning, the design process is modeled as uninformed search; i.e. 
there is little or no strategy information, which can be used by the process to 
progress towards good designs and avoiding bad ones. After learning the 
search process becomes more informed, in the sense that the learned 
heuristics can be used to reject inappropriate design decisions and select 
appropriate ones. Rejection of inappropriate and selection of appropriate 
decisions ultimately lead to better design solutions. Learning takes place 
from both partial and complete design solutions and is seamlessly applicable 
as additional strategy knowledge. During the computational design process, 
if learned heuristics match, they apply, else more heuristics are learned. The 
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behaviour of the design generator thus gradually changes from search-based 
to knowledge-based for both immediate and future design search.  


The plan of this paper is as follows. First the terminology for the rest of 
the paper is defined.  Then the closely coupled relationship between the 
design and learning process is described. Following this, the particular 
mechanism of learning is explained through a small example, after which a 
simple formalization is presented. Then an architectural design problem is 
chosen and the ideas are applied. Experimental results with learning are then 
used to support the claims in this paper. The generality that may be achieved 
with the learning mechanism is also analysed. Next, an evaluation of the 
method in terms of strengths, weaknesses, scalability, extensions and 
distinction with past work is presented. 


2.  Terminology 


It is useful to define some terms that will be used in the rest of this paper. A 
pattern is defined to be a collection of one or more variables representing 
values, attributes or compositional parts of representational entities. The 
possible values of variables are constrained by relationships to values of 
other variables, Figure 1. A pattern can be syntactically specified as a 
collection of object-attribute-value triplets, each of which can be a variable 
that can potentially match to data. A variable is identified by a symbol that is 
called its identifier. The value of a variable can be the identifier of another 
variable of the pattern. This introduces relations between the values of the 
variables. A pattern may match data to instantiate the values of each of the 
variables that define it. A pattern match results in an instantiated pattern; 
such a match is possible when every variable in the pattern has at least one 
instantiation that satisfies all the relations between its value and the values of 
other variables related to it. Without or before a pattern match, the pattern is 
an uninstantiated pattern. Whenever the term ‘pattern’ is used without any 
additional qualification, it refers to an uninstantiated pattern. 


A design feature is an instantiated pattern that can be semantically 
mapped onto a common human interpretation. This semantic component is 
the only difference between an instantiated pattern and a feature. For 
example, a square internal courtyard could be a feature of a building. A 
feature class is an uninstantiated pattern that is an abstract parametric 
conceptual description of some feature. A feature class when instantiated is a 
feature. The relation between a feature class and feature is exactly the same 
as the relation between a class and its instances.   
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Figure 1: Example of a pattern and its match in the context of a rule in the 


SOAR syntax (Laird et al 1987) 
 


The term design context, Figure 2(b), is the superset of all design 
information that includes the description of a given design alternative and all 
information that surrounds it from the point of its generation through its 
evaluation to its subsequent modification. In this paper, design context 
comprises a description of the design alternative, design requirements, the 
subsequent evaluation of the design alternative and design process 
information. Design process information consists of the parent design 
context and generative choices for further transformation 
(elaboration/modification/refinement) of the design alternative from that 
point onwards. Every design alternative thus has a design context associated 
with it.  


Additional parts may be added to a design or existing designs may be 
transformed in different combinatorial ways by making generative choices. 
These combinatorial ways of design generation are referred to as design 
decisions, Figure 2(a). Design decisions are typically sets of rules that apply 
to a given design alternative and are considered as the knowledge units for 
design transformation. Each of these rules constitutes a pattern on its left-
hand-side (rule precondition) and a pattern on its right-hand-side. The 
pattern on the right changes the design resulting in a new design when the 
pattern on the left matches the design context. The rule preconditions are the 
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necessary conditions for a design transformation. When the design is 
subsequently evaluated, using design evaluation knowledge a new design 
context is created. Design evaluation knowledge usually is a feature class (or 
some formula) that associates parts of one or more feature classes whose 
presence/absence/(or evaluation of the formula) is an indicator of design 
quality.  
 
 


 
Figure 2. (a) Design computation process mapped onto the state-operator 


paradigm, and (b) the elements that comprise the design context 
 


A preference on a design decision is a flag (+/-) that can be used to prefer 
(+) or reject (-) design decisions from a set of possible design decisions that 
may be the choices for transforming a given design alternative. Such 
preferences are meaningful only under certain conditions. In this work the 
semantic equivalent of such conditions are design situations.  


Structurally, a pattern that comprises a subset of the variables 
representing the design context is termed a design situation in this paper. 
Typically this is a proper subset. A critical element of the learning process 
described in this paper is to extract a design situation from a given design 
context. Each design situation thus represents a class of possible patterns that 
could be extracted from different design contexts.  


A heuristic is an association between a situation and a preference on a 
design decision.  For a heuristic, a situation is a sufficient condition that 
ensures a given quality of solution (good (+) or bad (-)) resulting from the 
application of the given design decision. If such associative knowledge is 
available then the process of preferring a decision on the match of its 
associated situation is useful as strategy knowledge to augment the process 
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of design as search. A heuristic is said to match a design context when its 
situation matches the design context. 


3. Design Computation and learning- tight coupling 


3.1 DESIGN COMPUTATION PROCESS 


Assume that design generation is formulated as a step-by-step combinatorial 
and constructive process of configuration of the parts of the design. At each 
step, for a given partial configuration, there are design decisions that are 
proposed. Transformation opportunities for a given design are combinatorial 
i.e. there is a tree of design alternatives, each of which will subsequently be 
the root to other trees emanating from it as a result of future design 
decisions. At each step of such a process a design decision may be selected 
and is applied, resulting in a new design. This new design is evaluated using 
design evaluation knowledge. Once a design alternative is evaluated some 
learning can be done. How this is done is explained in the next section.  


At a lower level of abstraction, the design computation process may be 
mapped onto the traditional AI state-operator paradigm of search, Figure 
2(a), where operators match the state information to transform the existing 
state into a new state. In such a mapping operators map onto design 
decisions and states map to design contexts. The state-operator paradigm of 
search is used in a number of general problem solving architectures such as 
SOAR (Newell 1990; Laird et al 1987) and PRODIGY (Carbonell et al 
1991). The SOAR architecture was chosen to implement the ideas in this 
paper. SOAR is also an embodiment of a psychological theory of cognition 
(Newell 1990), an architecture for general intelligence (Laird et al 1987), as 
well a programming tool for AI. The general ideas used are best described at 
the knowledge level of computational designing rather than at the level of 
SOAR. However some two concepts decision proposal and application have 
been borrowed from SOAR. 


Design experience is the historical trace of data that is generated during 
such a process. As the entire computational design process is rule-based this 
data is a historical collection of instantiated patterns that matched and were 
replaced by new instantiated patterns during the process of decision 
proposal, application and solution evaluation. This trace is the data that is 
utilized by the learning algorithm used in this paper. 


3.2 INTEGRATING LEARNING IN THE DESIGN COMPUTATION PROCESS 


The model of learning is tightly coupled with design processes, Figure 3. 
The notion of appropriateness of designs (absolute (e.g. satisfaction of 
constraints), relative (e.g. minimizing a global design variable)), controls the 
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design strategy and how learning is done. In this paper the focus of the 
demonstrative example is on the satisfaction of constraints.  Such control is 
exercised due to the effects and side-effects of a chain of events that happen 
as a generated design is evaluated. Evaluation of designs drives positive or 
negative credit assignment of design decisions. The credit assignment 
determines whether the consequent of a heuristic is about avoiding or 
preferring a design decision. Because the antecedent of the heuristic is 
expressed in terms of the representational space of the design context (see 
next section for details), the design context influences what is learned. As 
both of these are encapsulated in the derived heuristic, when the heuristic 
becomes applicable, it in turn, influences subsequent design generation and 
hence influences the resulting design description and its quality. The learned 
heuristic becomes a part of the generation control strategy and in turn 
influences future design generations in a similar situation by eliminating 
search effort. This is how learning incrementally changes the design process 
from being more search-based to being more knowledge-based. Every new 
unexplored path in the design solution space, presents either an opportunity 
for learning or an opportunity for using what was learned.  


The heuristic applies for any arbitrary design context in which the 
extracted situation matches. If the heuristic is available at the time of 
proposal of the design decisions the operator may not even be proposed if 
the heuristic predicts a bad solution. Therefore these automatically derived 
heuristics act as strategy knowledge, just like the manually defined heuristics 
that are often used to prune the space of design alternatives. 


3.3 LEARNING MECHANISM EXPLAINED BY SIMPLE EXAMPLE 


The learning mechanism used in this paper can be better understood by 
initially reviewing the concept of explanation-based learning (EBL) in 
artificial intelligence. One striking difference between EBL and other 
common forms of similarity-based learning is that the target concept 
definition already exists. The task of EBL is in reformulating it in terms of 
what is called operationality criteria. Operationality criteria define the space 
of representational terms that are allowed in the reformulated concept 
definition. Another difference is that learning is from a single example rather 
than a set of positive and negative examples. The learning mechanism used 
in this paper is the chunking method of SOAR, a variant of this method. 
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Figure 3.  Tight coupling between learning and designing. Arrows signify influences 


on the box at the head of the arrow by the box at the tail of the arrow. 
 


Let C1 be a training example for a target concept, here we will use a cup. 
Let the following features of the cup C1 be represented: it is light, is made of 
porcelain, has a decoration, has concavity, has a handle, and a flat bottom. 
Assume that the following five statements constitute a domain theory for the 
functional definition of a cup. A domain theory in EBL is a set of rules or 
facts that is used to determine the membership of an arbitrary instance to the 
target concept. In this context, let the domain theory statements be the 
following: 


a) If an object is stable and enables drinking, it is a cup, 
b) If an object has a bottom which is flat, it is stable 
c) If an object carries liquids and is liftable, it enables drinking, 
d) If an object is light and has a handle, it is liftable, and 
e) If an object has a concavity, it carries liquids.  


 
Can it be shown that C1 is a cup? In this case, C1 is indeed a cup. C1’s 


flat bottom makes it stable, it is light weight and has a handle that ensures 
liftability, its concavity allows it to carry liquids, the liftability and ability to 
carry liquids enables drinking. The above explanation is an informal proof 
tree of why the example is a cup. Thus, the relevant features of C1 that 
determine ‘cupness’ are lightness, concavity, handle and flat bottom. The 
rest of the description of the cup are often stated in the context of a cup but 
are immaterial/irrelevant in diagnosing a cup. The output of EBL is a new 
rule: If an object is light, has a concavity, has a handle, and has a flat bottom, 
then it is a cup. Note that the explanation is a set of chains; in each chain one 
or more initial structural features (facts) match domain theory rules to 







8 NATH, G. AND GERO, J,S.  


 


generate new intermediate assertions that ultimately imply some 
functionality of the cup. All these functionalities in combination represent 
the cup concept. In this case, the operationality criterion was the space of 
structurally observable features for the cup. To derive these relevant 
structural features, the proof tree may be also considered to be a trace of a 
set of inference chains. Traversing these chains backwards (backtracing) 
from the functional features of the cup to their originating features until all 
features satisfy the operationality criteria, yields the relevant elements that in 
the future can diagnose a cup. This is the basic task of any explanation-based 
or analytical learning algorithm. In practice, this is more complicated, as the 
left hand side of the derived rule would be composed of patterns rather than 
constants.  


3.4  MAPPING LEARNING CONCEPTS TO THE DESIGN PROCESS 


We can map the components of the explanation-based learning example to 
the design process. The target concept is mapped onto the concept of a good 
(+) or bad (-) design solution. The training example, an instance of the target 
concept, is mapped onto a complete or partial design solution that is 
generated and subsequently evaluated during the search process. The domain 
theory is mapped onto the design evaluation knowledge that is used to make 
the evaluation. Then the proof tree or justification basis for the 
reformulation of the concept is the part of the design experience from the 
time the design decision was proposed through the application of the 
decision to the evaluation of the design alternative. The operationality 
criteria are mapped onto the representation space of the design context just at 
the point before the design solution is about to be generated by some design 
decision. If the above are the mappings of EBL concepts to the parts of the 
design process, then analogically an EBL backtracing procedure will result 
in an output rule that is an association between a relevant subset of the 
parent design context and a preference on the design decision that 
constructed it.  
 The role of learning, again, analogically, is to change the representation 
of the evaluative concept of the quality of a design to “what to do, when in 
order to achieve a good or eliminate a bad design solution” or in other words 
“what to do when” so that the presence or absence of an instance of the 
feature class that defined goodness or badness could be achieved. The term 
“what to do” is characterized in terms of preference on a design decision. 
The term “when” is characterized as a situation, a potential pattern that can 
match a wide variety of future design contexts. When such a heuristic is 
available and matches the design context, the quality of the design solution 
that a design decision is expected to generate is now predictable directly 
using the features of the design context that were there before the design is 
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even generated. This makes the result of the concept re-representation 
directly applicable to the process of designing.   


3.5 A MORE FORMAL DESCRIPTION  


Using the previously described mapping between the proposed design 
computation process to the state-operator paradigm, we can now describe the 
designing and the learning process more formally, combining the levels of 
abstraction. A design generator recursively proposes design decisions (dk)  to 
transform initial partial design configuration (s0) to generate a tree of 
designs, Figure 2(a).  
 The generation of each design, is followed by the evaluation of the design 
thus creating a new design context. The process as a whole, is thus a 
transformation of design context information (si  sj), Figures 2(a) and 
details of a single decision application are shown in Figure 4. The additional 
input required for learning is the description of a design feature class (fj) and 
a flag to it identifying whether the feature class is bad (-) or good (+) (an 
evaluator to determine the quality of the design). Learning can take place 
only when instances of one of these evaluator feature classes is present in the 
newly generated design. The process of learning is essentially constructing 
the association between what are the conditions (ci) under which the decision 
dk should be preferred (+)/rejected (-) i.e. a rule ci  (+/-) dk where ci   ⊆ si .  
 ci, is found by backtracing each pattern-matched variable of fj from state sj 
to its originating elements in state si  through the trace of design experience, 
Figure 4. Tracing is defined as the process of maintaining a historical chain 
of instantiated patterns that were matched and replaced during the process of 
decision proposal, application and evaluation of design alternative. This 
output of trace is the design experience. Tracing is done when a design 
alternative is constructed using uninformed search i.e. without the aid of a 
heuristic preferring an operator. The process of backtracing a given 
instantiated pattern, fj, is the process of traversing the historical chain of 
instantiated patterns from fj in a reverse direction to its generation  to find 
which patterns were used to generate it. In this case, it is ci . Looking in a 
forward direction, ci is one or more instantiated patterns in si, which were 
transformed by the design decision dk to give rise to feature fj that was 
subsequently evaluated in sj to conclude about the quality of the design.. The 
situation construction is denoted as ci  fj , the reverse arrow signifying the 
backtracing operation. The process of learning from a single design 
generation and evaluation is termed in this paper as “single-step learning”1.  


                                     
1 “Multi-step learning” is an extension of this method proposed by Nath (2000) 
where learning is along a longer, if not a complete solution path. But this is not 
within the scope of this paper and is briefly covered in a later section. 
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      Figure 4.  Learning from an instance of design generation and evaluation the 
knowledge “If pattern ci matches some context sm then prefer(+)/avoid(-) dk” 
 
  Once ci  is obtained, the task is to turn it into a variable ci (also called 
variablizing) so that it can pattern-match future design contexts. The process 
of variabilization is a direct consequence of using the chunking algorithm of 
SOAR (Laird et al 1986) and its implicit generalization strategy. This 
corresponds to the same variable identifier replaced by the same variable and 
different identifiers by different variables. 


3.6  CONNECTION WITH SOAR 


The main reason for using SOAR framework is that it allows a uniform 
representation space to be used for both learning and problem-solving. With 
other systems there may be the issue of mapping the representation space of 
learned knowledge to that of a representation space for problem-solving in 
order to use what has been learned.  
 SOAR uses a variant of EBL called chunking. Chunking results in rules 
known as chunks. The learning method described in the previous subsection 
is based on SOAR’s chunking algorithm that has been specialized, 
reinterpreted and applied in the context of computational design. Learned 
heuristics map onto SOAR chunks. The principle of chunking in SOAR is: 
whenever there is problem-solving done within a subgoal, it can be bypassed 
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the next time because of a chunk (rule) that captures an association between 
the results of the subgoal and the features of the supergoal that led to the 
result in the subgoal. But chunking is an abstract domain independent 
learning mechanism, applying it in the context of generic design tasks 
requires commitment on several aspects that chunking does not commit to, 
e.g. the nature of subgoal generation, and nature of problem-solving in 
design subgoals. This is equivalent to the addition of one knowledge level 
that captures the generic tasks involved in computational design and maps 
them to the domain general knowledge level of SOAR. Nath (2000) 
describes these in more detail and proposes extensions and variations to this 
method. The successful integration of learning and problem solving is also a 
direct consequence of using the SOAR architecture, as SOAR treats the 
learned chunks in the same way as human encoded rules. 


4. Application 


The application, reported here, uses the ideas of tightly coupled learning and 
problem solving to generate architectural layouts on a site. The difference 
with other layout design applications is essentially the method used to 
achieve the end, i.e. the learning process automatically constructs heuristics 
that are profitably utilized by the search process. The architectural layout 
design problem is one where rooms are required to satisfy adjacency and 
cardinal direction constraints to fulfill their functions. For example, the  
“master-bedroom” must have morning sunlight, which implies “master-
bedroom must face east” (requires-constraints) or a “bedroom” must not face 
(avoids-constraints) south because there is noise from the south. The 
adjacency and site constraints for the different rooms of the layout are 
depicted in Figure 5.  
 A rectilinear shape class is a compact abstraction that can be used to 
represent a set of possible rectilinear shapes. Each room when placed on the 
site is an instance of one of several allowable rectilinear shape classes, all of 
the same area. These shape classes for each room are shown in Figure 6. The 
area required for each of the rooms is specified as a part of design 
requirements.  


4.1. SHAPE REPRESENTATION 


A shape (instance) is represented using an anticlockwise ordered sequence of 
directed unit edges called facelets from a base point2. The perimeter of the 
shape is the number of facelets in the shape. A facelet is described by a head 
point and a tail point and the cardinal direction in which the head of the 


                                     
2 The shape representation bears some resemblance with the representation proposed by 
Rosenman (1996). 
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facelet points (represented in subsequent figures as arrows). A facelet also 
has information about which are its previous and next facelets. However, to 
allow for rotations of these shapes, the cardinal direction of each facelet of a 
shape is described by means of relations to the cardinal direction of the 
starting facelet of the shape. These relationships are straight (same), 
anticlockwise, clockwise, opposite, e.g. if the cardinal direction of the 
starting facelet is “north”, and the relationship of a second facelet to the 
cardinal direction of the starting facelet is clockwise, then the second facelet 
will have a cardinal direction, “east”.  


 
Figure 5.  Adjacency and site constraints graph of a layout design problem 


 
Figure 6.  Set of allowable shape classes for various design parts (rooms) 
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 Figure 7(b) is the pictorial representation of an abstract shape class 
{base-point, any -5*anticlockwise -3*opposite e-4*clockwise -2*straight -
1*clockwise}. Its base point is circled and labeled A and the facelet that has 
its tail at A is the starting facelet. The directional move sequence in this 
representation is a shape generation plan, where each move (viz. 
“anticlockwise, opposite, clockwise, straight) is relative to the starting 
cardinal direction, “any”, to which the initial facelet can be instantiated. 
Numerals in this representation represent the number of consecutive times of 
application of the same relative move. Thus the cardinal directions of non-
starting facelets can be instantiated to 4 possible directions depending on the 
instantiation of “any” to north, south, east or west. This abstract 
representation with a given basepoint, suffices to encode 4 possible 
instantiations of the shape for a given starting basepoint. If the basepoint 
representation is also parametric the set of possible shapes, which belong to 
this class, are multiplied by the number of possible base points. Figure 7(a) 
show one instantiation of the shape class shown in Figure 7(b) with a given 
base point and the starting facelet pointing to west.  Design evaluation 
knowledge and reasoning are on shape classes rather than their 
instantiations, so that the knowledge that it produces as a result of learning is 
more general. 
 


  
  (a)  (b) 


Figure 7. Elements of representation of (a) a shape, (b) a shape class 
 


Adjacency between an already placed room A and B (being currently 
configured), is achieved by instantiating a given shape class such that B’s 
starting facelet is equal in position (same end points as the joining facelet of 
A1) but opposite in the direction to any facelet of A. This is shown in Figure 
8, and is the task of the design decisions. The combinatorics of the design 
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alternatives (and design decisions) for a given room are defined by the 
choices of different allowable shape classes, the different facelets of room A 
that can be used as the instantiation seed for the initial facelet of room B, and 
the different shape generation plans.  
 


 
Figure 8.  Adjacency of design parts: representation 


4.2. DESIGN EVALUATION CRITERIA 


One evaluation criterion that often governs good layout designs is “efficient 
usage of space”. To demonstrate the effectiveness of the ideas, let us assume 
that the concept of efficient usage of space is defined as the absence of three 
feature classes: (a) narrow deep (con)cavities (I-shaped and L-shaped) 
between two or more rooms, (b) unit holes between two or more rooms, (c) 
too much edge overlap between two given rooms.  Positive and negative 
examples of what is implied by criteria (a) and (b) are shown in Figure 9. 
Two of the rules that identify typical unit holes and deep concavities are 
shown in Figure 10. Criterion (c) is formulated as follows: for two given 
rooms, the number of overlapping facelets of each of these rooms should be 
<= 2. The “Hall” being the one room with limited perimeter, which is 
adjacent to most rooms, cannot afford to have its perimeter edges consumed 
by a single room to satisfy adjacency criteria, because when the last few 
rooms are being configured with respect to the hall, there may not be enough 
perimeter length of the “Hall” left to satisfy the adjacency requirement of 
these later rooms. In that case, the program goes into costly backtracking 
operations. 
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Figure 9.  Features that make layouts undesirable: deep (con)cavities and holes 


between rooms. 
 


 
Figure 10.  Typical rules that define one case of deep (con)cavities and unit holes. 


 
These design evaluator features (labeled as bad) are described by 


reasoning about the facelets between rooms, Figure 10. In this example, the 
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task of learning is to re-represent the concept of unit holes, deep concavities 
and excess edge overlap in terms of a subset of patterns in the previous 
design context from which these features were generated, so that for the 
future those patterns could be used as a predictor of these types of bad 
features and thus be used to avoid decisions that will produce such features.  


5. Experimentation Strategy 


The following strategy was adopted to evaluate the ability of the proposed 
model to learn knowledge in order to avoid infeasible designs. 


(a) Generate two-roomed layout configurations (set S1) with learning 
turned off (assuming a given position of the first room to be 
configured), say we have n1 solutions 


(b) Inspect and mark the infeasible solutions (set S2), with holes and 
deep concavities, say these are n2 in number  


(c) Then for the same position of the first room, we turn learning on and 
generate all possible configurations of the second room. If learning 
is successful then the new set of designs (S3= S1-S2) should not 
have any holes or deep concavities and the number of designs 
produced should be n1- n2. The check n1- n2 ensures that learned 
knowledge does not misclassify any feasible designs as infeasible.  


Next, we add an extra evaluator feature: the excess edge overlap criterion. 
Steps (a) and (b) are performed again on the set S3 and the infeasible 
solutions (S4) based on the new features were identified. This should result 
in additional learned knowledge for the new evaluator feature, while 
restricting the new solution set to S5=S3-S4.  


Next the generality of learned knowledge and hence its transferability is 
examined at both an intra-problem level and at an inter-problem level. At the 
intra-problem level, is the knowledge learned from laying out two rooms 
sufficiently abstract so that it can be transferred to other parts of the search 
tree? To determine this the task of configuring the third room from the 
configurations in S4 was executed. The objective is to test, whether 
knowledge learned from the experience of configuring two-roomed layout 
configurations would be transferable between two-roomed configurations, 
where the shape classes were different. At the inter-problem level, a 
different starting design configuration was chosen and examined as to 
whether the learned knowledge applied. 


6. Results 


The solution set of Step (a) in the previous section with learning turned off 
for the features “deep (con)cavities and holes” is shown in Figure 11. There 
are 81 solutions, which comprise the set S1. The 9 boxed solutions that 
identify the designs, which contain deep concavities and holes, is the set S2. 
Figure 12 shows the set S3 (=S1-S2) that comprises exactly 81-9 = 72 
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solutions that do not contain deep concavities or holes. Thus the learned 
heuristics do not seem to misclassify designs. Next, the additional feature of 
minimizing perimeter edge overlap was introduced. Applying the same 
experimental step, the designs in set S3 with this feature are box marked; 
there are 31 boxed solutions and they represent set S4. Figure 13 illustrates 
the solution set S5 (=S3-S4), where not a single solution was produced that 
had “too-much-edge overlap” or “holes and deep concavities. This set also 
contains exactly 72-31 = 41 solutions, which again shows that the learned 
heuristics correctly identify bad designs. 
  Figure 14 shows that what was learned from the configuration of 2 rooms 
could be applied to layouts with 3 rooms and the same principles that were 
learned were applied successfully. This is explained in detail in a later 
section. Figures 15 and 16 show that what was learned was transferable to 
other design problems that use the same representations, but where the initial 
configuration of the “Hall” was different. No deep concavities or holes, no 
excess edge overlap between the “Hall” and other rooms exist. Figure 17 
shows how using the learned design knowledge, complete layouts produced 
demonstrate efficient packing of the rooms considering the protrusions and 
indentations in other rooms.  
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Figure 11. Solution space of 81, 2-roomed  layouts with learning turned off. The 9 


boxed solutions show deep concavities and holes. Correct learning should not 
misclassify designs; this implies producing exactly 72 solutions, at the next iteration. 
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Figure 12.  Solution space of exactly 81-9=72 layouts after learning heuristics 
about how to avoid deep concavities and unit holes. Not a single solution contains 
holes or deep concavities. The 31 boxed solutions show the “excess-edge-overlap” 


feature with the HALL. Correct learning implies producing exactly 72-31=41 
solutions in the next iteration. 
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Figure 13.  Solution space of exactly 72-31=41 layouts after using learned 
knowledge about how to avoid unit holes, deep concavities and excess edge overlaps 


with the HALL. Note not a single solution produced contains these features. 
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Figure 14.  Heuristics learned while generating solutions shown in Figures 11, 12 
and 13 were general enough to eliminate such features even for 3-roomed designs. 
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Figure 15.  Heuristics learned while generating solutions shown in Figures 11, 12 
and 13 were general enough to eliminate undesirable features in 3-roomed designs, 


even when the initial configuration of the first room was different. 
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Figure 16. Another instance of the application of learned knowledge to generate 
successful 3-roomed solutions with a different initial shape of the HALL. No 


undesirable features are present. 
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Figure 17.  Complete layout configurations generated with learned knowledge. Note 


that the top leftmost solution has an internal hole but it is not a unit hole .The 
learned heuristics should only prevent unit hole generation, not larger holes. Thus 


the heuristics have allowed the desired generation successfully. 
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7. Learned knowledge and generality 


The main reason for effective knowledge transfer from a 2-room situation to 
a 3-room situation, was that the situation part of the heuristics reasoned 
about the relations between partial shape generation plans of the room being 
configured and the facelets of other rooms and not the individual cardinal 
directions. The rooms to which shape generation plans or existing facelets 
were variabilized. The abstract representation of the cardinal directions 
captured relationships between the directions instead of a commitment on 
the actual directions. Even though the global layout in which the learning 
was applied consisted of 3 rooms, often 2 rooms were involved whose 
facelets formed a unit hole or a deep concavity. In such cases, the learned 
knowledge could immediately apply. Figure 18 shows one of the many 
pieces of learned knowledge that avoids the generation of layouts with deep 
concavities. Figure 19 shows the chunk in SOAR for this. Similarly, Figure 
20 shows one typical rule that avoids generation of unit holes. Figure 21 
shows one of the chunks in SOAR for this. 


 


 
Figure 18.  Three learned rules that prevent deep concavities in layouts 
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Figure 19. One of the learned rules in SOAR syntax that prevent deep concavity 
generation 


 


 
Figure 20. Three learned rules that prevent unit holes in layouts 
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Figure 21. One of the learned rules in SOAR syntax that prevent unit hole 
generation 


 
Figure 22 shows a richer knowledge set: learned heuristics that avoid the design 
generation to overstep site boundaries. 
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Figure 22. Learned heuristics that avoid the design generation that oversteps site 


boundaries. 
 


 Figures 23 and 24 show how these patterns can match in different design 
contexts (different orientations and different shape generation plans) and 
allow reuse of the knowledge learned. When learned heuristics like these 
apply it eliminates infeasible design solutions. For example Figure 20 shows 
how the same situation learned using the feature of “deep concavity” recurs 
for different design contexts. These are some layouts picked for explanation 
from Figure 11 for illustration. A similar recurrence of situations can be 
found in the marked solutions in Figure 12. Some of the heuristics learned 
were also more specific than the ones described above. Here the entire shape 
generation plans formed part of the situations of these rules. Hence, these 
rules could only apply to preventing deep concavities or holes with specific 
shape classes; the reason is that it is the later facelets in the shape generation 
plans that define the deep concavity or the hole.  
 If more than 2 rooms were involved in forming a deep concavity or a hole 
then the situation part of the learned heuristic from the 2 room situation may 
not match and hence learned knowledge may not be applicable. Every 
evaluated design solution is an opportunity to either learn knowledge or use 
learned knowledge. In such cases instead of using previously learned 
heuristics, new heuristics would be learned and would the heuristics would 
cover holes or deep concavities that involved the facelets of more than 2 
rooms. Similarly these heuristics would be useful in eliminating potentially 
space-wasting design decisions. There is a wide variety of ways in which the 
concepts of space wastage occur in layout design, especially with the non-
rectangular nature of the rooms.  
  In total around 560 rules of decision preference in different design 
contexts were learned although the space of design solutions was not 
completely explored. If it was completely explored then adding these 
heuristics would have resulted in no search, resulting in complete knowledge 
based activity guided by situation-directed prediction of the quality of a 
decision.  
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Figure 23.  How the learned knowledge as in Figure 15 matches various designs 


 


 
 


Figure 24. Left column shows two instances of partial layout (with deep 
concavities) from Figure 10 using which learning was done. The right 


column shows how learned situations match in other instances of layouts 
with deep concavities in Figure 12. 


9. Evaluation 


9.1 STRENGTHS OF THE METHOD 


There are mnay advantages in using this method. First, learning is 
dynamically driven by the requirements of the designing process to produce 
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better solutions rather being than a passive process of classification of 
designs. This is the basis for a highly coupled interaction between learning 
and designing processes that results in a self-improving design search 
procedure. Second, the uniform representation space for learning and 
designing borrowed from the SOAR framework allows seamless transfer in 
both directions. Third, the learning method and the knowledge learned aid 
the design computation process in reasoning about regions of the search 
space rather than specific points. This is possible because the situations 
embedded as antecedents of learned heuristics encode in their patterns 
complex conditions that correspond to regions of the solution space. In 
addition the knowledge engineer can control the level of generality desired 
in these learned heuristics. The more abstract, the evaluation reasoning and 
the representation of the problem, the more general and applicable the 
learned knowledge will be. Fourth, sets of inappropriate solutions can be 
eliminated using a single learning session thus enabling rapid exploration of 
the solution space. This of course has a bearing on the level of abstraction 
employed in representation and reasoning of the domain. Fifth, costly 
processes involved in domain-oriented knowledge engineering like 
elicitation of tacit knowledge and subsequent encoding of heuristics are 
eliminated. Only those heuristics are constructed by the program that are 
relevant to goal of satisfying the design requirements under consideration.  


The experimentation strategy and the results showed that the heuristics 
did not fail, the situations embedded in the heuristics did not estimate a bad 
design solution as good, neither did it classify a good design solution as bad. 
The process uses an approach similar to explanation-based learning and 
performs a deductive compilation of the domain theory (design evaluation 
rules) based on operational criteria. This implies that the learned heuristics 
could only fail if the knowledge engineer incorrectly encodes the domain 
theories employed in evaluative reasoning. It is therefore important that the 
user of this method has precise definitions of what exactly constitutes a bad 
design and what is a good design. Because of this advantage, the embedded 
situations in the heuristics do not need any statistical evaluation to determine 
their success or failure. At the knowledge level, a correctly encoded 
evaluative domain theory will result in a correct concept re-representation 
i.e. correct heuristics. 


Finally the unlike many other works on learning, the learned knowledge 
can be inspected to have an understanding of the kind of learned knowledge 
generated and thus have greater control over it. The need for such inspection 
could be not only for the human designer or the researcher to experiment 
with their representations to best utilize a tool such as this to suit their goals, 
but also to understand the nature of tacit hard-to-explain knowledge that is 
captured as a result of learning. The tacit nature of this learned knowledge 
was explored in another work (Nath, 2003). 
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It is these advantages that should encourage computer aided design 
system developers or researchers to incorporate such an approach in the 
design of their tools for designing. Practicing designers, who would be users 
of such a tool, would also gain these advantages. 


9.2 DISTINCTION WITH PAST WORK 


The work that is presented here is distinct from learning from designs, on 
which there is a plethora of research. This work demonstrates learning and 
designing co-occurring in a coupled design process. Manfaat et al (1996) 
have reported generalizations from a set of spatial layout designs. The form 
of learning reported here can also be viewed as one form of knowledge 
compilation (Mostow, 1990). Knowledge compilation has been applied by 
Brown and his colleagues (Brown, 1996; Chabot and Brown, 1994: Liu and 
Brown, 1991; Sloan and Brown, 1988; Brown and Spillane, 1991) to learn 
design process knowledge, but these works were not in the spirit of the tight 
coupling between a learning and a designing process. Braudaway and Tong 
(1989) introduced a knowledge compilation based system called RICK 
which describes how an inefficient generate and test problem-solver for a 
parametric building layout design problem, can adapt itself to the problem 
specific constraints. No heuristics are learned, here, instead a more efficient 
LISP program (constrained generators) for solving the particular problem is 
synthesized. Voigt and Tong (1989) describe an extension of RICK called 
MENDER, which reformulates the global design constraints as an evaluation 
function and derives ``hill climbing patchers" through knowledge 
compilation.  


If one views this work as adaptive search, i.e. tailoring a generic 
generative mechanism to produce desirable designs, there is research by 
Cagan and his colleagues (Cagan and Mitchell, 1993; Reddy and Cagan, 
1995; Schmidt and Cagan, 1998; Shea and Cagan, 1997), who apply 
simulated annealing to optimize grammatical design generation. In a similar 
stochastic spirit, there has been some recent applications by Vale and Shea 
(2003a; 2003b), which attempt at distinguishing good sequences of design 
generation operators from the bad using search experience. The intention is 
to use scores on these sequences as strategies that allow good sequences to 
be preferred over the bad in design generation. Machine learning here is of 
the incremental parameter tuning variety (Samuel, 1959), where the 
parameter is a score that is calculated on the basis of changes in objective 
function over grammar rule sequences weighted by the probabilities 
assigned to sequences based on past experience and future utility. However, 
the relation between the problem conditions and when a sequence could be 
useful is not explicitly modeled and it is not clear whether the probabilistic 
weights capture such a relationship implicitly.  
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Approaches to learning heuristics in design using the chunking method of 
SOAR has been reported by Modi et al. (1995a, 1995b) while using SOAR 
as a design problem-solver in the design of chemical engineering distillation 
sequences. However, the focus of that work was not on learning heuristics 
for preferring good solutions to inferior ones, but on heuristics for choosing 
evaluation functions from a predefined set. The research presented in the 
current paper treats learning design process knowledge more generally. 


9.3 WEAKNESSES OF THE METHOD 


The first weakness of the method is the inability to handle negated reasoning 
in its evaluative domain theory. This is more a consequence of the use of 
chunking algorithm of SOAR than the approach itself. The primary 
difference between chunking and EBL is that the backtracing of the concept 
in EBL takes place using the symbolic structure of the rules, rather than the 
instantiated rules. When instantiated patterns are used as the source for 
backtracing, the design experience as a result of tracing can account for the 
presence of instantiated patterns but cannot account for the absence of 
instantiated patterns. Hence the resulting heuristics are likely to be 
overgeneral. It is in such situations that the heuristics may fail, inspite of a 
correct domain theory. But this problem can be overcome by using another 
analytical learning algorithm like the traditional EBL, which uses 
backtracing through uninstantiated patterns.  
 As the evaluative reasoning tends to get more complex with many cases 
of applicability and increasing number of reasoning chains, it can often seem 
like new strategy knowledge is generated. However, at the theoretical level, 
there no new knowledge (outside the bounds of what was given) is generated 
as a result of learning. All heuristic knowledge is within the deductive 
closure of the knowledge that was encoded a priori, although to the human it 
may seem like new knowledge.  


9.4 SCALABILITY ISSUES 


Analytical learning from experience is often designed to incrementally 
increase the performance of a search mechanism. So the learning mechanism 
in itself is a step towards future scalability in terms of efficiency of 
exploration of a space. The time taken to learn is not really the issue for 
scalability, whereas the ability to match learned knowledge to a future 
design context in order to apply it to some future design context is. In other 
words, scalability is more of an issue at the applicability time of the learned 
knowledge rather than at learning time. 
  At the knowledge level, the scalability of a heuristic at application time, 
in isolation, is related to the complexity of the situation that is embedded in 
the heuristic. The complexity of the situation depends on the number of unit 
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representational entities (object-attribute-value triplets) and shared 
constraining interrelationships that have to be matched to a given design 
context.  Sometimes such a heuristic with a large set of conditionals and 
many shared relationships could be very expensive to match with a large 
data set encapsulated in a design context and as a consequence that the 
system suffers a slowdown (Minton, 1988) after learning, contributing to 
what is called the utility problem. In general the utility problem occurs for all 
systems that learn rules from experience. The main reason for such a 
slowdown, especially when production systems like SOAR are used, can be 
understood at the internal algorithmic level rather than at the design 
knowledge level. For SOAR, the greatest amount of computational resources 
are used in matching rules and the knowledge search (Tambe, 1991) for 
which rules apply to the given context. This is significant even though 
SOAR uses an efficient production match algorithm like RETE (Forgy, 
1982) and rule firing is simulated to be in parallel.  SOAR’s chunking 
algorithm is well known to reduce the number of steps to solve a subproblem 
the next time but when the utility problem occurs, the cost of matching the 
learned chunks becomes expensive as a result of the production match 
algorithm that offsets the benefit gained from the reduction in the number of 
problem solving steps. Ideally, the cost of using the learned rules should 
always be bounded by the cost of the problem-solving episode from which 
they are learned (Kim and Rosenbloom, 1996). The current solution is to 
design representations for data and reasoning in such a way that a larger 
number of cheaper chunks with smaller patterns is generated. A related but 
different reason that could also contribute to the utility problem is what is 
known as the average growth effect (Doorenbros, Tambe and Newell, 1992) 
of the knowledge base due to heuristics being learned continuously. 
Interaction across heuristics slow down the system even though the 
heuristics are not themselves expensive. Solutions to the average growth 
effect have already been proposed (Doorenbros, Tambe and Newell, 1992; 
Doorenbros, 1993).  


11. Conclusions 


This paper has presented a method of learning while designing that utilises 
design experience and design situations (Gero, 1998. It uses SOAR as its 
underlying framework. The method has been applied on an architectural 
design problem where learning and designing are tightly coupled. The main 
strength of this method is “intelligent control” which is manifested as the 
automatic extraction, from experience, of design problem conditions under 
which certain generation strategies are useful and the use of these heuristics 
to drive future design generation towards requirements. In the past, various 
design computing researchers (Akin, 1990; Coyne, 1988; Mitchell, 1996; 
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Muller and Pasman, 1996; Smithers et.al., 1990; Vancza, 1991) expressed 
control mechanisms as an essential need in design search processes, be it in a 
computational context or otherwise; but there has been a paucity of design 
research in this area. 
 The learning principle could be extended over a series of design 
transformations. In that case, if we have the following sequence of states 
representing a solution path, s1  s2  s3….  sn-1 sn caused by 
application of decisions, d1  d2  d3….  dn-1 dn, and sn containing 
feature fn(+), then we have the following conditions constructed from fn as a 
result of backtracing: c1  c2  c3 …… cn-1 fn, where ci  ⊆ si . The 
process of learning, then, constructs the heuristic ci  (+)dk from a single 
design description in sn. such that ci  ⊆ si. . A series of rules can thus be 
learned from a single example. This forms a multi-step learning process and 
is reported in more detail in Nath (2000).  
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