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DESCRIBING SITUATED DESIGN AGENTS 
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Abstract. Situated design agents are agents built using concepts from 
situated cognition. As situated design agents are constructive and 
interactive, we desire a formalism that starts with interaction and 
works backwards to what representations of structure, behaviour and 
function such interaction requires. This paper begins the process of 
providing a formal underpinning to agency that better corresponds to 
existing informal descriptions of designing as interactive, situated 
reflection.  

1. Introduction 

Dissatisfaction in the design science community with designing being cast 
by the AI community as problem solving has led to some researchers 
recasting designing in terms of situated reflection. A situated approach to 
agency generally holds that agents are social, embodied, concrete, located, 
engaged and specific (Wilson and Keil 1999). They are social in the sense 
of being located in a society of agents. Embodied means that actions by the 
agent are part of a dynamic with the world and results in immediate sensory 
feedback (Brooks 1991). Concrete, located and specific mean that actions by 
the agent constrain its behaviour and provide a context within which it 
reasons and acts. Autonomy is taken to mean that each agent decides by 
itself what actions to take. A crucial difference between an agent and an 
object is that an object encapsulates state and behaviour realisation, but not 
behaviour activation or action choice (Jennings 2000). Engaged means that 
the agent has an ongoing interaction with the environment; that planning and 
acting are not separated in time. So when Schön describes designing as 
reflection-in-action (Schön and Wiggins 1992) he is describing a dialectic 
view of designing by a situated agent. 

For the most part, the recasting of designing into situated reflection and 
interaction has been informal. Attempts to describe agents less informally 
tend to start by representing the “mental attitudes” of agents. The FIPA 
agent communication language (FIPA 2002), for example, has a semantics 
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based on an underlying realism and BDI modalities of belief and desire. 
Multi-agent phenomena are then defined in terms of agent beliefs.  

Contrary to this, we believe that design agents should be situated, 
constructive and interactive. We therefore desire a formalism that starts with 
interaction and works backwards to what representations of structure, 
behaviour and function such interaction requires. The motivation behind this 
paper, then, is to start with interactions between situated design agents and 
work backwards to a formal model of distributed design agents that is suited 
to design. The research described in this paper is founded on two concepts. 
First, the situated version of Gero's FBS paradigm (Gero and Kannengiesser 
2002), here called sFBS. The sFBS paradigm approaches situatedness by 
introducing three different kinds of worlds that interact with one another: 
the external world, the interpreted world, and the expected world. The 
external world is the world that is outside of the agent. The interpreted 
world is constructed inside the design agent in terms of sensory experiences, 
percepts and concepts. The expected world is that which the agent imagines 
its actions will produce. Second, a model of the computational processes 
that has been the basis of much of our recent work (Maher, Smith and Gero 
2003, Smith, Maher and Gero 2004). The long term aim of this work is to 
formalise notions such as reflection and common ground. This paper is a 
start along that path. 

Figure 1 shows a world as viewed by an agent called Agent1. Reasoning 
consists of five processes: sensation, interpretation, hypothesiser, action 
activation, and effection. Interpretation uses sense-data and expectations to 
interpret what the agent believes it's world to be. Throughout this paper we 
use the word “world” to mean that part of the system that the agent is aware 
of, and “environment” to mean the whole system. The hypothesiser monitors 
the interpretations of the world, and asserts goals associated with the agent's 
view of itself in the world. The action activator reasons about the steps to 
achieve a goal and triggers the effectors to make changes to the 
environment. 

Three levels of action are possible: reflexive, reactive and reflective. 
Reflexive action is where sense-data triggers action activation directly. 
Reflexive actions do not involve beliefs. Reactive actions are where 
interpretations trigger action activation. These do not involve explicit 
reasoning with goals and expectations. Reflective action involves the 
hypothesiser explicitly reasoning about expectations and alternative goals. 

To avoid confusion between mathematical function and FBS function, in 
this paper the word “function” on its own means “mathematical function” 
and the phrase “FBS function” refers to the ascribed function of an artifact 
or agent. The theory described here is interactive rather than algorithmic. 
Agents achieve their goals through situated interaction rather than 
algorithmic planning. The attitude is one of “everything is allowed that is 
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not forbidden” rather than the algorithmic attitude of “everything is 
forbidden that is not allowed” (Wegner and Goldin 1997). 
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Figure 1.  Example world as viewed by an agent Agent1 

In this paper we present a formal model of the agents introduced above. 
In Section 2.1 we describe a system that to an external omnipotent observer 
appears as a structured set of objects, where the objects are or belong to 
agents. Section 2.2 then describes the environment and some possible views 
of it. Section 2.3 reviews situated FBS in this context, with Section 2.4 
describing situated action. We then describe an example system in Section 
3. We begin by developing symbolic representations of objects and agents. 
We then represent the environment in similar terms. This representation is 
used to represent situated FBS before concluding with a representation for 
situated action. 

2. A World of Agents 

2.1. OBJECTS AND AGENTS 

In this paper we consider a system that to an external omnipotent observer 
appears as a structured set of objects, where the objects belong to agents. 
Figure 2 is an example. We call the entire system the environment, we call 
the environment as is viewed by an agent the external world of that agent. 
External world may be shortened to world in such cases as will not cause 
confusion with interpreted world or expected world. Agents sense the 
environment and construct an interpretation of that environment as their 
interpreted world. The way that they wish the environment to be is their 
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expected world. Agents take actions through effectors by which they attempt 
to change their external world to make it like their expected world. 
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Figure 2.  The two agent environment of Figure 1. The unlabelled agent processes 
are interpretation, hypothesiser and action activation. 

We begin here with an Object as a set of exogenous, or externally visible, 
properties. The generic types Value and Symbol are given. All that is 
assumed of Symbol is that elements can be compared for identity. A single 
property is a Value corresponding to an identifying Symbol. An Object is an 
entity that has a set of identifiable properties. To facilitate this identification 
we define Object as a partial function from Symbols to Values. 

Object: Symbol  Value 

An Object may or may not have concealed, autogenous properties. The 
observable structure of a table, for example, is determined by its atomic 
structure but that atomic structure is not observable: the observable structure 
is exogenous, the atomic structure is autogenous. The same distinction 
applies to humans and to artificial agents. This definition does not require 
that the set of properties be fixed or even finite. Together with the generic 
types Value and Symbol, this allows for Object of arbitrary complexity. It 
can denote an instance of an object oriented language, or it can denote an 
object sketched by a human designer: the former has a finite number of 
properties, the latter does not. 

The environments we consider here are structured as a distributed set of 
communicating agents. Each object is constructed by an agent and contains 
exogenous properties that can be read by any agent that is aware of it's 
identity. For uniformity we regard agents as accessing the properties of 
Objects with message passing. 

An agent is an object that autonomously senses the environment and acts 
so as to achieve its goals. The environment1 contains a set of agents Agents 
= { ai:Agent|i=1..N} where Agent is the following tuple: 
                                                 
1 Some of the following is based on the formalisations in (Wooldridge and Lomuscio 2001, 
Fagin et al. 1997, Ferber 1999). 
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Agent: Exog ×Autog ×Sensor ×Reason ×Effector 
Exog: Object 
Autog: ℘Object 
Sd: seq Object 
Sensori: ∑0 × ∑i  Sd  
Reasoni: Sdi ×∑i  Opi 
Effectori: Opi ×∑i  Γi 
 
In this paper we use ℘X to denote the powerset of X and seq X to denote 

a sequence of X. Each agent ai contains one object that corresponds 
exogenous properties constructed from Exog. Autogenous properties of the 
agent are internally constructed and cannot be accessed by other agents. For 
convenience we let ex(ai) be the exogenous object of agent ai and let au(ai ) 
be the set of autogenous objects of agent ai.  

 
ex: Agent  Exog  
au: Agent  Autog 
 
∀ ai : Agent •  
 ex(ai ) = first(ai)  
 au(ai ) = second(ai) 
 
Function first finds the first element of an n-tuple, second finds the 

second element of an n-tuple, and x� y denotes a 2-tuple. Functions 
Sensori, Reasoni and Effectori sense the environment, handle inference and 
memory, and effect the environment respectively. Sdi are sense-data of agent 
i and is a sequence of objects on which functions push and pop are defined. 
Each effector can push one operator to the environment at a time and so is 
not a sequence. 

Opi are operations that can be effected by agent i. Γ is the set of 
influences on the environment by the agents. ∑ is the set of global system 
states and ∑i is the set of local states of agent i. As Sensori, Reasoni and 
Effectori are the program of the agent, current local state of an agent i is a 
point in a k dimensional Value space: 

 
∑i = Valuek 
 

where k is the cardinality of the sets of exogenous and autogenous 
properties, or k = #ex(ai) + #(#au(ai)), where #X is the cardinality of a set X. 

This formalism is simplified if all objects are considered to be contained 
within an agent. For this reason, all objects not a part of {ai} are assumed to 
be a part of an imaginary, predefined agent a0 that represents the causality of 
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the environment. Causality is discussed in Section 2.3. An example is a 
message sent but not yet received. Agent a0 is a mathematical construct 
only, hence the use of a subscript from outside the 1..N range. No claim that 
the environment is an agent is being made. If a message is sent from ai to aj, 
then a message object originates in ∑i, becomes a part of ∑0 in-transit, and 
finishes in ∑j. The global system state ∑ therefore depends on the states of 
each of the agents. 

 
∑ = ∑0 × ∑i  × … × ∑N 
 
Sensori constructs sense-data as a function of the environment and the 

current local state of the agent. This definition allows for perception that 
may be incomplete, in error, noisy, or that biases the sensors such as by 
changing the focus of attention. An external observer may regard the 
environment as being only partly visible to an agent because some ∑ states 
are treated as being equivalent and so are not viewed as distinct by that 
agent. The agent's internal view, though, is that perception abstracts away 
from sense-data to patterns of invariance over interactive experiences. 

Agents change properties of external world objects by executing a push 
operation from Opi. 

 
Opi  ⊇ {aj : Agent | ai ≠ aj • push(ai,aj,o)} 
 

where o is a message object. The messages can be of two kinds: ai informs aj 
that a property has a value, and ai requests of aj that a property has some 
value. Agent ai can push a message to aj an inform of content φ if (FIPA 
2002):  

1. ai believes that φ ⊂ ℘Object is true: 
 
inform(ai, aj,a_j, φ) � (∀ s:Symbol; v:Value | (s� v) ∈  φ • 
   ((s� v)∈ex(ai) ∨  ( ∃ x:Object | x∈au(ai) ∧  (s � v) ∈  x))) 
 

2. ai has a goal that aj believe φ 
3. ai does not believe that aj believes φ 

 
A request of content φ pushed from ai to aj is defined similarly. Effectori 

is discussed in the next section. 

2.2. ENVIRONMENT 

An environment is a tuple E : Objects × Γ × Op × React where  
 
Objects: ℘Object 
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map: E × Object  Agent ∪ {null} 
ob: E Objects 
 
The initial state of the environment is σ(0) ∈  ∑, with ∑ the global state 

as defined above. Function map is a partial function on an environment that 
identifies which agent contains an object, or null otherwise. Function ob 
finds the set of Objects in an environment. An agent ai's effector pushes a 
message object to the environment as a push operator. At time k an agent ai's 
influence on the environment is Γ(k) ∈  Γi. Now, just as Sensori senses the 
environment differently in different local ∑i states, so the same operator 
effected by Effectori may influence the environment differently in different 
environmental ∑0 states. The influences of each agent acting simultaneously 
are combined, and the environment reacts to the joint influence. 

 
React: Γ ×∑0 ∑0 
 

The new environment state, therefore, will be (Ferber 1999) 
 

σ(k+1)= React (�
N

i 1=
Effectori (Reasoni (sdi(k), σi(k)))) 

 
This equation describes the causality in the environment, and is 

“computed” by “agent” a0. Each agent senses and acts on a subset of the 
environment. We call a subset of the environment that is visible or 
constructed for some purpose a view. The obvious view is the omnipotent 
one. In the following let e ∈E be a particular environment. 

 
omnipotent(e) = { o:Object | o∈ob(e) } ∪  
  { ai:Agent | ( ∃ o:Object • map(e,o) = ai) } 
 
The multi-agent system (MAS) view is of the environment viewed solely 

as a multi-agent system. It therefore consists of agents and exogenous 
objects. 

 
MAS(e) = { ai:Agent | (( ∃ o:Object • map(e,o) = ai } ∪  
 { o:Object | ∃ a:Agent • map(e,o) ∧ ex(a)=o } 
 
The world is everything between the effectors and sensors of an agent. It 

is the external world of that agent, or X
iS  from Figure 1. 

 
externalworld(e,ai) ⊂   
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 {o:Object | ( ∃ aj:Agent | aj∈MAS(e) ∧  o ex(aj)) } 
 
The view of the environment by a particular agent is of its world plus its 

autogenous properties. 
 
agentview(e,ai) = world(e,ai) ∪ au(ai)  
 
The view of a person such as a designer interacting with the environment 

is of a set of objects. 
 
personview(e) ⊂  { o:Object | ( ∃ ai:Agent | aj∈  MAS(e) ∧  o = ex(aj) } 

2.3. SITUATED FBS 

Agents represent their environment using the situated FBS (sFBS) 
formalism (Gero and Kannengiesser 2002; Maher, Smith and Gero 2003a) 
as beliefs of the structure, behaviour and function of objects. Some object 
properties are obviously structural, such as location. Other properties must 
be interpreted by an agent. Structure, then, is an interpretation by an agent 
of what it believes a sensed object is. It is an interpretation of sense-data; 
sense-data themselves are uninterpreted inputs to the process of 
interpretation. In Figure 1, X

iS  is the actual external world structure that is 
visible by ai (the subscripts i are not shown in Figure 1). As the only access 
to X

iS  by ai is via sensors, it includes all exogenous objects other than the 
agent's own. An agent need not sense its own exogenous properties. I

iS  is 
the interpretation by ai of what it believes the set of all structures of objects 
in the environment to be, and E

iS  is the set of expectations of structure.  
 
∀ ai:Agent •  
 X

iS  = world(e,ai) - ex(ai)  
 ⊂I

iS  (au(ai) ∪  ex(ai))  
 ⊂E

iS au(ai)  
 
Structure properties can contain values such as location, or can contain 

relations to other objects. I
iS  can be viewed as a graph of what ai believes 

that the world currently is and E
iS  can be viewed as a graph of what ai 

believes that the world will be or should be.  
In general, behaviour is determined from structure according to some 

causation. Causation is the relation between two things where the first is 



 DESCRIBING SITUATED DESIGN AGENTS 447 

 

thought of as somehow bringing about the second (Lacey 1996). In the 
natural world we regard nature as doing the bringing about in the form of 
the laws of physics. With an artificial world the bringing about is from 
computations by the agents, so behaviour is determined by whatever the 
“virtual physics” are. Regardless of whether the causation is natural or 
artificial, an agent's representations of interpreted behaviour are computed 
from its expectations of behaviour and from interpreted structure. These 
interpretations are computed from either encoded interpretation rules or are 
learned from experience. 

Behaviour is an interpretation by an agent of what it believes an object 
does, and FBS function is what the agent believes that an object is for. I

iB  is 
the set of interpretations of behaviours of objects by ai, and I

iF  are 
interpretations by ai of FBS functions that may have been ascribed to other 
objects. E

iB  is the set of expectations of behaviours by ai and E
iF  are 

expectations of function. 
 
∀ ai:Agent • 
 interpretedworld(ai) = I

i
I
i FBS ∪∪ I

i  

 expectedworld(ai) = E
i

E
i FBS ∪∪ E

i  
 au(ai) = (interpretedworld(ai) ∪  expectedworld(ai)) - ex(ai) 

 
The process interpretation re-computes interpreted structure and 

behaviour whenever either new sense-data arrive or expectations change. 
The triggering mechanism can be event-driven, polled, or use a combination 
of both. For polled interpretation a time sense triggers the pulling of sense-
data from the environment. Event-driven interpretation occurs when the 
environment pushes sense-data into sensors. Regardless of the mechanism, 
interpretation consists of three partial functions. The first computes 
interpreted structure from sense-data but biased expectations of behaviour. 
The second computes interpreted behaviour from interpreted structure and 
expectations of behaviour. The third computes interpreted FBS function 
from requests from other agents and from chat with persons such as 
designers.  

 
strInterp: Sdi × E

iB   I
iS  

behInterp: I
iS × I

iB   I
iB  

funInterp: Sdi × E
iF   I

iF  
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Computing interpreted structure and behaviour are sequential; computing 
interpreted FBS function can be in parallel.  

 
interpretation = (strInterp ° behInterp) || funInterp 
 
Figure 3 shows reflexive, reactive and reflective reasoning as a Petri net 

of an agent ai, including interpretation. Function Reason for ai is everything 
between Sensor and Effector. 

There are four types of FBS function that can be ascribed by an agent 
(Qian and Gero 1996): FBS functions that map to static behaviours, those 
that map to dynamic behaviours, those that map to a set of concurrent 
behaviours, and those that map to sequential behaviours. Reflective agents 
explicitly reason over FBS functions; reactive agents have FBS functionality 
implicit in action rules. Reflective agents use the hypothesiser process to 
compute expectations of behaviour from expected FBS function, and then 
compare those expectations against the interpreted world. Newly detected 
differences between expected and interpreted behaviour are asserted as 
goals for action activation to satisfy. The hypothesiser consists of two 
sequential processes. The first formulates expectations of behaviour. The 
second compares expected and interpreted behaviour. 

 
Goals ⊂ Autog 
formulation: E

iF  E
iB  

evaluation: E
iB  × I

iB   Goals 
hypothesiser = formulation ° evaluation 

Action activation synthesises changes in expected structure for goals 
asserted from differences between expected and interpreted behaviour. 

 
action: Goals × I

iS   E
iS  

effection: E
iS   Op ∪ Exog 

2.4. SITUATED ACTION 

For a situated agent, deciding when and how to act is of primary importance. 
Differences between situations should cause the application of the same 
knowledge to result in differing behaviour, and the result of such behaviour 
should allow the agent to learn. 

A reflective agent explicitly represents the interpretedworld(ai), the 
expectedworld(ai), and encoded knowledge of all of the known effects on 
interpretedworld(ai) of each change in structure that the agent can make. 
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Figure 3.  Petri net of reflexive, reactive and reflective reasoning of an agent ai. 
It is drawn for a single agent and so all data and function symbols should be read as 
being subscripted with i. Each transition corresponds to the execution of a function. 
The double circles are virtual places: the second au virtual place is actually the same 
place as the single au place, being drawn that way only to simplify the diagram. The 
shaded background shows functions only executed during reflective reasoning and 
not during reflexive or reactive reasoning. 

E
iB  is determined from E

iF  by formulation using techniques such as 
constraint satisfaction and abduction, and goals are then determined by 
comparing E

iB  against I
iB . These goals, current interpreted structure I

iS  
and the encoded knowledge enable reflective action to determine a partial 
order of changes to structure that ai believes will remove the differences 
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between E
iB  and I

iB . This is a partial order on E
iB , and so deciding on 

reflective action is equivalent to a search through some solution or plan 
space. Planning as used here may involve retrieving a pre-compiled plan, 
explicit runtime planning, or use some other transformation from goals to 
action sequences.  

Reflexive processes use hardwired stimulus-response rules, and reactive 
processes have no long term memory. Both therefore take actions only 
according to the current state. They can, however, be very task specific; 
reflective processes would not need to be so task specific if the 
computational limitations of planning did not lead to it anyway. One 
solution is to adopt a hybrid of reactivity and reflectivity. The solution 
advocated by Horswill (1998) extends that of Agre (1997) and others, using 
reactive rules on deictic references. Deictic references are indexicals that 
signify FBS function. The idea is to keep the reactive rules but to change 
what they signify. Horswill calls his deictic references roles. Each role is a 
symbol that is bound to a set of properties and is maintained by low level 
processes. This separates the perceptual processes of identification and 
localisation. Looking at a specific place in the environment and interpreting 
what is there is an identification processes. Given sense-data from an 
attended object, identification identifies that object using classifiers that 
partition the sensory space. Having an expectation of what is in the 
environment and finding its location is a localisation process. As an 
example, gaze control in robot vision is a localisation process. 

Such reactive agents would minimise the explicit inference performed by 
hypothesiser. Instead, a set of roles are bound to autogenous structure and 
behaviour Objects (where ran R denotes the range of a relation R): 

 
rolei: Symbol ↔  Object 
ran rolei I

iS⊆  
 
Example roles may be a door agent with a role the-person-that-

needs-clearance that is bound to an avatar object in a virtual world, or 
a wall object in a CAD system that binds a role the-object-that-
needs-moving to picture objects whenever the wall needs to move. 
Structure interpretation strInterp simply observes whatever object the role is 
bound to and maintains those properties. Because roles have functional 
meaning, explicit formulation and evaluation are not needed. Instead, 
knowledge of FBS function is implicit in reactive rules. Similarly, reactive 
action rules need not plan a partial order of structure changes from 
knowledge of the object being acted on. Instead, it just manipulates the 
object bound to the role.  
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For such reactive actions to work, though, requires either that the 
designer of the agent encode the reactive rules such that FBS functions of 
the agent are maintained with changing structure, or we allow the agent to 
learn from reflections such that in the future it can react in similar 
situations. That is, we either implement agents such that they react 
appropriately in different situations, or we implement learning such that it 
can recognise how to react appropriately in different situations. Analytical 
learners such as explanation based learning allows for action sequences 
constructed from reflection to be used to learn new reactive actions as 
macro actions. But learning new reactive actions from successful reflective 
ones may not be enough: to communicate requires common ground (Gero 
and Kannengiesser 2003). What if an agent is added dynamically to a 
system at runtime, and that new agent communicates content that is not 
understood. For simple communicated properties the receiver could respond 
with a not understood message and the initiator could describe the 
space of that variable. In general, though, to learn common ground in this 
way requires complex language learning that is beyond the scope of this 
work. 

3.  An Example 

Figure 4 shows a view of a world on the Active Worlds platform2. In this 
section we describe an example using agents running on this platform. The 
use here of virtual worlds as a test environment is for convenience; we do 
not require or intend the theory only apply to virtual worlds. Interested 
readers should, therefore, refer to Maher, Smith and Gero (2003) and Smith, 
Maher and Gero (2004) for details of the AWAgent package and its use with 
the Active Worlds platform. 

Often when citizens enter a virtual world for a meeting they all arrive at 
the same specified location and then stand “on top of each other”. Chair 
agents self-organise so as to relocate the avatars appropriately. When slides 
are being shown on a wall or the whiteboard being used they will 
reorganise, teleporting their assigned avatars with them, around the slide 
display or whiteboard. Afterwards they may reorganise around a central 
table in the meeting room.  

The environment contains the agents listed in Table 1. Chair agents are 
constructed dynamically as required. Consider the chair agent a1, labelled as 
"chair0" in the table (the others are identical). The FBS function of a1 is to 
maintain the equilibrium location of the chair and of a citizen's avatar that is 

                                                 
2 The virtual world platform Active Worlds, http://www.activeworlds.com, is one that we use 
for agent testing. 



452 GJ SMITH AND JS GERO  

 

allocated to that chair. Chairs are implemented reactively here, though, and 
so do not explicitly represent or reason about FBS function.  
 
 

Figure 4.  Meeting room in Active Worlds 

TABLE 1. Agents in the example environment. 

Agent No.   Symbol   Type of agent  Categories  
1  "chair0"    Chair   obstacle  
2  "chair1"    Chair   obstacle  
3  "chair2"    Chair   obstacle 
4  "chair3"    Chair   obstacle  
5  "wall0"     Wall   wall, goal  
6  "wall1"     Wall   wall, goal  
7  "wall2"     Wall   wall, goal  
8  "wall3"     Wall   wall, goal  
9  "table"     Table   obstacle, goal  

 
Expected structure is a set of roles and a function from sensed object 

properties to an object category. For this implementation the categories are 
determined from the Active Worlds Models.  

 
Category: { obstacle, wall, goal, null } 

E
1S  = { classify: Model ↔ Category |  

 (∀ x: dom role • 1∃ y • classify(x,y)) }  
 
Chair reactivity is implemented as subsumption, encoded as expectations 

of behaviour. They are a partial order on the priority of each subsumption 
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behaviour contribution to resulting action vector, and so each expected 
behaviour applies to a set of sensed objects. Each expected behaviour is a 
function of the following type:  

 
Subsumption: Vector × Gain × Gain Vector 
 
where the first Gain is a linear gain and the second is a radial gain. The 

linear and radial Gain are tunable parametrically, and so can be adapted 
should equilibrium not be found.  

 
E
iB =  < {calcs �  obstacle, linear �  4, radial �  2,  

 inhibitedBy � { } }, 
 {calcs � goal, linear � 3, radial � 100, 
 inhibitedBy � {obstacle} }, 
 …> 
 
Behaviour obstacle computes an exponentially decreasing (with 

distance) vector of repulsion from a sensed 3D object such as another chair. 
Behaviour wall and goal are similar, except that wall avoidance is like a ball 
bouncing off a hard surface. Goal attraction computes an exponentially 
increasing (with distance) vector of attraction a 3D object (the goal, such as 
a table, wall or whiteboard) towards the chair. Behaviour random computes 
a vector that is a random vector step. Behaviour anger maintains the anger 
of the chair. Every time that the chair is forced to move (the action vector, 
described below, is above a threshold), the chair gets a little more angry; 
every time it does not move it gets a little less angry. Obstacles compete and 
the strongest repulsion vector wins. Some vectors are then subsumed by 
others if their magnitude is large enough and superposition is used to arrive 
at a single movement vector for an agent.  

Sensor1 is a pseudo-sonar sensor: it senses properties that are interpreted 
by the agent as an object category and vector from the agent to the closest 
point on each sensed object. Interpreted structure and behaviour compute 
properties of each sensed object. For example, 

 
Ran role1 = I

1S  
I
1S = <…, {vector � (50,0), category �  goa}, …> 
I
1B ={ {anger �  0}, 

 <…, {vector � (0,0), threshold �  8, inhibits � false }, 
 …> } 
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I
1S is a sequence of structure objects, with each object being represented 

as a set of object properties. The particular sequence element shown is for 
the goal object. I

1B contains a behaviour object for this agent, holding the 
anger property, plus a sequence of behaviour objects.  

Structure interpretation computes Sd1 × E
1B   I

1S  such that the 
following holds. 
 

pop(Sd1) = o ∧  c=classify(o(model)) ∧  c ≠ null ∧  
(|ex(a1)(location) - o(location)| < |role(c)(vector)|)  
 �О(o=role(c) ∧  c=o(category) ∧   
   o(vector)=ex(a1)(location) - o(location)) 
 
where О is the temporal “next” operator and |  | is the Euclidean distance 

metric. Structure interpretation therefore maintains vector and category 
properties for the nearest sensed object of each category. Behaviour 
interpretation similarly maintains I

1B  as a behaviour vector for each I
1S  

object corresponding to calcs from E
1B , and maintains inhibits from the 

behaviour vector and threshold. So interpreted structure is inferred from 
sense-data, and interpreted behaviour is interpreted from interpreted 
structure and expected behaviour. Reactive action then performs the 
subsumption inference, ensuring that the following holds. 

 
∀ n,m:1..# I

1B ; ∀ cn,cm:Category |  
 n ≠ m ∧ cn= I

1S (n)(category) ∧  cm= I
1S (m)(category)•  

 cm∈ E
1B (n)(inhibitedBy) ∧  I

1B (n)(inhibits) 
  �  I

1B (m)(inbibits) = true 
 
The action vector is set to the sum of I

1B (n)(vector) over all I
1B  for 

which I
1B (n)(inhibits)=false. Effection changes ex(ai) to relocate chair 

according to action vector. 
Figure 5 shows one trial run of a set of chair agents around a table object 

that is the goal. This output is from a simulation written to capture and so 
better understand and illustrate the behaviour of the agents. In Figure 5 
boundaries correspond to walls, the small rectangles correspond to the 
chairs, and the large rectangle  corresponds to the table. In this trial the table 
is the goal and the chairs are assigned random initial locations. As can be 
seen, the chairs move towards the goal until an equilibrium is reached 
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between attraction to the goal, repulsion from the object that is the goal, and 
repulsion from other chairs.  

 

 
(a) Snapshot view. 

 
(b) Timelapse view. 

Figure 5.  Trial 1 simulation of the subsumption model of chair self-
organisation: view after 40 iterations. (a) is a snapshot view, (b) is a timelapse view. 
The black rectangle around the boundary are the four walls listed in Table 1, the 
large polygon in the centre shows where the goal is (table), and the small polygons 
show the positions of the chairs. The darker small polygons on the timelag view 
shows a timelag view of the chairs, indicating their movement towards the goal. 

Notice however that they do not line up evenly around the goal. One 
price paid for a flexible, situated system of computationally efficient, 
independent agents is that their behaviour is not globally constrained. That 
is, some agents reach what they believe to be a minima when in fact it is 
only locally so. Whenever anger reaches a threshold the agent gets “upset” 
and moves off a random amount in a random direction. So some chairs 
quickly reach an equilibrium position around the goal, at which time their 
anger reduces. Some, however, will be prevented from reaching equilibrium 
by others. The slower ones get repelled by the faster ones, get angry, and 
take a random step. There are a number of ways of handling this, such as by 
decaying the behaviour parameters, or by having walls adapt to anger so as 
to change room geometry.  

The subsumption implementation is reactive and situated but uses no 
concepts. A chair does not reason about what it is attracted to or repelled 
from and does not reason about the nature of the space it occupies. We 
could consider a reflective version as a planning problem using constraint 
satisfaction, with the constraint properties being the spatial locations of 
chairs and the constraints being both the geometry and on the set of citizens 
to be seated. One difference would be that it would now be a non-distributed 
task rather than a distributed reactive one. Here it must first pre-allocate 
spaces, whereas the reactive version treats the space as continuous. On the 
other hand we can extend the reflection of the agent by adding constraints. 
For example, that adjacent chairs should not chair citizens that do not like 
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each other. A similar effect could be achieved by the reactive 
implementation by adding more subsumption modules, but it is well known 
from robotics work that there comes a point beyond which such reactive 
architectures do not scale up (Murphy 2000).  

Within the bounds of what they perceive and reason over, these agents 
are robust to new situations. The chairs adapt to changing goal objects, 
changing numbers of chairs and changing room size without needing to do 
any planning. Their situation directs what behaviours should activate. Such 
reactive reasoning couples perception tightly to action, avoiding the frame 
problem by eliminating the need to model the environment (Murphy 2000). 
On the other hand, the chairs do not achieve any kind of optimal distribution 
because the view of each agent is local.  

The reactive example here can be extended to facilitate designing from 
within the design. Consider, for instance, a set of room agents together with 
wall, floor, ceiling, furniture agents and so on. If the designer decides to 
change the shape of a room then adjoining walls, floors, ceiling, and 
furniture would automatically shift to new equilibrium locations. Combining 
it with explicit communication3.  would allow adjoining rooms to negotiate 
to decide which wall(s) should move.  

4.  Conclusion 

We have defined an environment as a distributed system of agents that 
communicate via message passing. Agents need not be distributed and need 
not explicitly use message passing. We defined multiple views of an 
environment because the world viewed by one agent need not be the same as 
another. This allows for situated agents to not only sense different subsets of 
objects but to then construct their own interpretations. We defined reasoning 
and communication by agents in sFBS terms so as to facilitate the 
description of such reasoning and interaction as it applies to designing 
without prescribing what that reasoning should necessarily look like. That 
is, instead of starting with representations of mental entities and then 
describing communication in those terms, we start with interaction and 
describe what needs to be represented so as to facilitate it. 

This paper marks the beginning of a larger enterprise: to provide a formal 
underpinning to agency that better corresponds to the informal casting of 
designing as interactive, situated reflection. Future work needs to further 
constrain relations between structure, behaviour and function of agents with 
respect to situated agents and this framework, to refine the semantics of 

                                                 
3 See (Maher, Smith and Gero 2003, Smith, Maher and Gero 2004) for further discussions of 
agent communication and Active Worlds. 
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inform and request messages in sFBS terms, and to describe what common 
ground between agents means in these terms.  
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