
JS Gero (ed), Design Computing and Cognition'04, 439-457
© 2004 Kluwer Academic Publishers, Dordrecht, Printed in the Netherlands

DESCRIBING SITUATED DESIGN AGENTS

GREGORY J SMITH, JOHN S GERO
University of Sydney, Australia

Abstract. Situated design agents are agents built using concepts from
situated cognition. As situated design agents are constructive and
interactive, we desire a formalism that starts with interaction and
works backwards to what representations of structure, behaviour and
function such interaction requires. This paper begins the process of
providing a formal underpinning to agency that better corresponds to
existing informal descriptions of designing as interactive, situated
reflection.

1. Introduction

Dissatisfaction in the design science community with designing being cast
by the AI community as problem solving has led to some researchers
recasting designing in terms of situated reflection. A situated approach to
agency generally holds that agents are social, embodied, concrete, located,
engaged and specific (Wilson and Keil 1999). They are social in the sense
of being located in a society of agents. Embodied means that actions by the
agent are part of a dynamic with the world and results in immediate sensory
feedback (Brooks 1991). Concrete, located and specific mean that actions by
the agent constrain its behaviour and provide a context within which it
reasons and acts. Autonomy is taken to mean that each agent decides by
itself what actions to take. A crucial difference between an agent and an
object is that an object encapsulates state and behaviour realisation, but not
behaviour activation or action choice (Jennings 2000). Engaged means that
the agent has an ongoing interaction with the environment; that planning and
acting are not separated in time. So when Schön describes designing as
reflection-in-action (Schön and Wiggins 1992) he is describing a dialectic
view of designing by a situated agent.

For the most part, the recasting of designing into situated reflection and
interaction has been informal. Attempts to describe agents less informally
tend to start by representing the “mental attitudes” of agents. The FIPA
agent communication language (FIPA 2002), for example, has a semantics

440 GJ SMITH AND JS GERO

based on an underlying realism and BDI modalities of belief and desire.
Multi-agent phenomena are then defined in terms of agent beliefs.

Contrary to this, we believe that design agents should be situated,
constructive and interactive. We therefore desire a formalism that starts with
interaction and works backwards to what representations of structure,
behaviour and function such interaction requires. The motivation behind this
paper, then, is to start with interactions between situated design agents and
work backwards to a formal model of distributed design agents that is suited
to design. The research described in this paper is founded on two concepts.
First, the situated version of Gero's FBS paradigm (Gero and Kannengiesser
2002), here called sFBS. The sFBS paradigm approaches situatedness by
introducing three different kinds of worlds that interact with one another:
the external world, the interpreted world, and the expected world. The
external world is the world that is outside of the agent. The interpreted
world is constructed inside the design agent in terms of sensory experiences,
percepts and concepts. The expected world is that which the agent imagines
its actions will produce. Second, a model of the computational processes
that has been the basis of much of our recent work (Maher, Smith and Gero
2003, Smith, Maher and Gero 2004). The long term aim of this work is to
formalise notions such as reflection and common ground. This paper is a
start along that path.

Figure 1 shows a world as viewed by an agent called Agent1. Reasoning
consists of five processes: sensation, interpretation, hypothesiser, action
activation, and effection. Interpretation uses sense-data and expectations to
interpret what the agent believes it's world to be. Throughout this paper we
use the word “world” to mean that part of the system that the agent is aware
of, and “environment” to mean the whole system. The hypothesiser monitors
the interpretations of the world, and asserts goals associated with the agent's
view of itself in the world. The action activator reasons about the steps to
achieve a goal and triggers the effectors to make changes to the
environment.

Three levels of action are possible: reflexive, reactive and reflective.
Reflexive action is where sense-data triggers action activation directly.
Reflexive actions do not involve beliefs. Reactive actions are where
interpretations trigger action activation. These do not involve explicit
reasoning with goals and expectations. Reflective action involves the
hypothesiser explicitly reasoning about expectations and alternative goals.

To avoid confusion between mathematical function and FBS function, in
this paper the word “function” on its own means “mathematical function”
and the phrase “FBS function” refers to the ascribed function of an artifact
or agent. The theory described here is interactive rather than algorithmic.
Agents achieve their goals through situated interaction rather than
algorithmic planning. The attitude is one of “everything is allowed that is

 DESCRIBING SITUATED DESIGN AGENTS 441

not forbidden” rather than the algorithmic attitude of “everything is
forbidden that is not allowed” (Wegner and Goldin 1997).

Agent 2Agent 1

world
Interpreted

world
Expected

External World Agent 1 =

Interpretation Action
Activation

Hypothesiser

Transformation Focusing

Legend

XS

SI

BI

FI FE

BE

SE

Figure 1. Example world as viewed by an agent Agent1

In this paper we present a formal model of the agents introduced above.
In Section 2.1 we describe a system that to an external omnipotent observer
appears as a structured set of objects, where the objects are or belong to
agents. Section 2.2 then describes the environment and some possible views
of it. Section 2.3 reviews situated FBS in this context, with Section 2.4
describing situated action. We then describe an example system in Section
3. We begin by developing symbolic representations of objects and agents.
We then represent the environment in similar terms. This representation is
used to represent situated FBS before concluding with a representation for
situated action.

2. A World of Agents

2.1. OBJECTS AND AGENTS

In this paper we consider a system that to an external omnipotent observer
appears as a structured set of objects, where the objects belong to agents.
Figure 2 is an example. We call the entire system the environment, we call
the environment as is viewed by an agent the external world of that agent.
External world may be shortened to world in such cases as will not cause
confusion with interpreted world or expected world. Agents sense the
environment and construct an interpretation of that environment as their
interpreted world. The way that they wish the environment to be is their

442 GJ SMITH AND JS GERO

expected world. Agents take actions through effectors by which they attempt
to change their external world to make it like their expected world.

Sensors

Effectors Effectors

Sensors

σ

γ

(k)

(k)

Influence
Joint

React
1

γ

γ
op1(k)

(k)sd

(k)

(k)

1

2

2(k)

sd2

(k)op

Figure 2. The two agent environment of Figure 1. The unlabelled agent processes
are interpretation, hypothesiser and action activation.

We begin here with an Object as a set of exogenous, or externally visible,
properties. The generic types Value and Symbol are given. All that is
assumed of Symbol is that elements can be compared for identity. A single
property is a Value corresponding to an identifying Symbol. An Object is an
entity that has a set of identifiable properties. To facilitate this identification
we define Object as a partial function from Symbols to Values.

Object: Symbol Value

An Object may or may not have concealed, autogenous properties. The
observable structure of a table, for example, is determined by its atomic
structure but that atomic structure is not observable: the observable structure
is exogenous, the atomic structure is autogenous. The same distinction
applies to humans and to artificial agents. This definition does not require
that the set of properties be fixed or even finite. Together with the generic
types Value and Symbol, this allows for Object of arbitrary complexity. It
can denote an instance of an object oriented language, or it can denote an
object sketched by a human designer: the former has a finite number of
properties, the latter does not.

The environments we consider here are structured as a distributed set of
communicating agents. Each object is constructed by an agent and contains
exogenous properties that can be read by any agent that is aware of it's
identity. For uniformity we regard agents as accessing the properties of
Objects with message passing.

An agent is an object that autonomously senses the environment and acts
so as to achieve its goals. The environment1 contains a set of agents Agents
= { ai:Agent|i=1..N} where Agent is the following tuple:

1 Some of the following is based on the formalisations in (Wooldridge and Lomuscio 2001,
Fagin et al. 1997, Ferber 1999).

 DESCRIBING SITUATED DESIGN AGENTS 443

Agent: Exog ×Autog ×Sensor ×Reason ×Effector
Exog: Object
Autog: ℘Object
Sd: seq Object
Sensori: ∑0 × ∑i Sd
Reasoni: Sdi ×∑i Opi
Effectori: Opi ×∑i Γi

In this paper we use ℘X to denote the powerset of X and seq X to denote

a sequence of X. Each agent ai contains one object that corresponds
exogenous properties constructed from Exog. Autogenous properties of the
agent are internally constructed and cannot be accessed by other agents. For
convenience we let ex(ai) be the exogenous object of agent ai and let au(ai)
be the set of autogenous objects of agent ai.

ex: Agent Exog
au: Agent Autog

∀ ai : Agent •
 ex(ai) = first(ai)
 au(ai) = second(ai)

Function first finds the first element of an n-tuple, second finds the

second element of an n-tuple, and x� y denotes a 2-tuple. Functions
Sensori, Reasoni and Effectori sense the environment, handle inference and
memory, and effect the environment respectively. Sdi are sense-data of agent
i and is a sequence of objects on which functions push and pop are defined.
Each effector can push one operator to the environment at a time and so is
not a sequence.

Opi are operations that can be effected by agent i. Γ is the set of
influences on the environment by the agents. ∑ is the set of global system
states and ∑i is the set of local states of agent i. As Sensori, Reasoni and
Effectori are the program of the agent, current local state of an agent i is a
point in a k dimensional Value space:

∑i = Valuek

where k is the cardinality of the sets of exogenous and autogenous
properties, or k = #ex(ai) + #(#au(ai)), where #X is the cardinality of a set X.

This formalism is simplified if all objects are considered to be contained
within an agent. For this reason, all objects not a part of {ai} are assumed to
be a part of an imaginary, predefined agent a0 that represents the causality of

444 GJ SMITH AND JS GERO

the environment. Causality is discussed in Section 2.3. An example is a
message sent but not yet received. Agent a0 is a mathematical construct
only, hence the use of a subscript from outside the 1..N range. No claim that
the environment is an agent is being made. If a message is sent from ai to aj,
then a message object originates in ∑i, becomes a part of ∑0 in-transit, and
finishes in ∑j. The global system state ∑ therefore depends on the states of
each of the agents.

∑ = ∑0 × ∑i × … × ∑N

Sensori constructs sense-data as a function of the environment and the

current local state of the agent. This definition allows for perception that
may be incomplete, in error, noisy, or that biases the sensors such as by
changing the focus of attention. An external observer may regard the
environment as being only partly visible to an agent because some ∑ states
are treated as being equivalent and so are not viewed as distinct by that
agent. The agent's internal view, though, is that perception abstracts away
from sense-data to patterns of invariance over interactive experiences.

Agents change properties of external world objects by executing a push
operation from Opi.

Opi ⊇ {aj : Agent | ai ≠ aj • push(ai,aj,o)}

where o is a message object. The messages can be of two kinds: ai informs aj
that a property has a value, and ai requests of aj that a property has some
value. Agent ai can push a message to aj an inform of content φ if (FIPA
2002):

1. ai believes that φ ⊂ ℘Object is true:

inform(ai, aj,a_j, φ) � (∀ s:Symbol; v:Value | (s� v) ∈ φ •
 ((s� v)∈ex(ai) ∨ (∃ x:Object | x∈au(ai) ∧ (s � v) ∈ x)))

2. ai has a goal that aj believe φ
3. ai does not believe that aj believes φ

A request of content φ pushed from ai to aj is defined similarly. Effectori

is discussed in the next section.

2.2. ENVIRONMENT

An environment is a tuple E : Objects × Γ × Op × React where

Objects: ℘Object

 DESCRIBING SITUATED DESIGN AGENTS 445

map: E × Object Agent ∪ {null}
ob: E Objects

The initial state of the environment is σ(0) ∈ ∑, with ∑ the global state

as defined above. Function map is a partial function on an environment that
identifies which agent contains an object, or null otherwise. Function ob
finds the set of Objects in an environment. An agent ai's effector pushes a
message object to the environment as a push operator. At time k an agent ai's
influence on the environment is Γ(k) ∈ Γi. Now, just as Sensori senses the
environment differently in different local ∑i states, so the same operator
effected by Effectori may influence the environment differently in different
environmental ∑0 states. The influences of each agent acting simultaneously
are combined, and the environment reacts to the joint influence.

React: Γ ×∑0 ∑0

The new environment state, therefore, will be (Ferber 1999)

σ(k+1)= React (�
N

i 1=
Effectori (Reasoni (sdi(k), σi(k))))

This equation describes the causality in the environment, and is

“computed” by “agent” a0. Each agent senses and acts on a subset of the
environment. We call a subset of the environment that is visible or
constructed for some purpose a view. The obvious view is the omnipotent
one. In the following let e ∈E be a particular environment.

omnipotent(e) = { o:Object | o∈ob(e) } ∪
 { ai:Agent | (∃ o:Object • map(e,o) = ai) }

The multi-agent system (MAS) view is of the environment viewed solely

as a multi-agent system. It therefore consists of agents and exogenous
objects.

MAS(e) = { ai:Agent | ((∃ o:Object • map(e,o) = ai } ∪
 { o:Object | ∃ a:Agent • map(e,o) ∧ ex(a)=o }

The world is everything between the effectors and sensors of an agent. It

is the external world of that agent, or X
iS from Figure 1.

externalworld(e,ai) ⊂

446 GJ SMITH AND JS GERO

 {o:Object | (∃ aj:Agent | aj∈MAS(e) ∧ o ex(aj)) }

The view of the environment by a particular agent is of its world plus its

autogenous properties.

agentview(e,ai) = world(e,ai) ∪ au(ai)

The view of a person such as a designer interacting with the environment

is of a set of objects.

personview(e) ⊂ { o:Object | (∃ ai:Agent | aj∈ MAS(e) ∧ o = ex(aj) }

2.3. SITUATED FBS

Agents represent their environment using the situated FBS (sFBS)
formalism (Gero and Kannengiesser 2002; Maher, Smith and Gero 2003a)
as beliefs of the structure, behaviour and function of objects. Some object
properties are obviously structural, such as location. Other properties must
be interpreted by an agent. Structure, then, is an interpretation by an agent
of what it believes a sensed object is. It is an interpretation of sense-data;
sense-data themselves are uninterpreted inputs to the process of
interpretation. In Figure 1, X

iS is the actual external world structure that is
visible by ai (the subscripts i are not shown in Figure 1). As the only access
to X

iS by ai is via sensors, it includes all exogenous objects other than the
agent's own. An agent need not sense its own exogenous properties. I

iS is
the interpretation by ai of what it believes the set of all structures of objects
in the environment to be, and E

iS is the set of expectations of structure.

∀ ai:Agent •
 X

iS = world(e,ai) - ex(ai)
 ⊂I

iS (au(ai) ∪ ex(ai))
 ⊂E

iS au(ai)

Structure properties can contain values such as location, or can contain

relations to other objects. I
iS can be viewed as a graph of what ai believes

that the world currently is and E
iS can be viewed as a graph of what ai

believes that the world will be or should be.
In general, behaviour is determined from structure according to some

causation. Causation is the relation between two things where the first is

 DESCRIBING SITUATED DESIGN AGENTS 447

thought of as somehow bringing about the second (Lacey 1996). In the
natural world we regard nature as doing the bringing about in the form of
the laws of physics. With an artificial world the bringing about is from
computations by the agents, so behaviour is determined by whatever the
“virtual physics” are. Regardless of whether the causation is natural or
artificial, an agent's representations of interpreted behaviour are computed
from its expectations of behaviour and from interpreted structure. These
interpretations are computed from either encoded interpretation rules or are
learned from experience.

Behaviour is an interpretation by an agent of what it believes an object
does, and FBS function is what the agent believes that an object is for. I

iB is
the set of interpretations of behaviours of objects by ai, and I

iF are
interpretations by ai of FBS functions that may have been ascribed to other
objects. E

iB is the set of expectations of behaviours by ai and E
iF are

expectations of function.

∀ ai:Agent •
 interpretedworld(ai) = I

i
I
i FBS ∪∪ I

i

 expectedworld(ai) = E
i

E
i FBS ∪∪ E

i
 au(ai) = (interpretedworld(ai) ∪ expectedworld(ai)) - ex(ai)

The process interpretation re-computes interpreted structure and

behaviour whenever either new sense-data arrive or expectations change.
The triggering mechanism can be event-driven, polled, or use a combination
of both. For polled interpretation a time sense triggers the pulling of sense-
data from the environment. Event-driven interpretation occurs when the
environment pushes sense-data into sensors. Regardless of the mechanism,
interpretation consists of three partial functions. The first computes
interpreted structure from sense-data but biased expectations of behaviour.
The second computes interpreted behaviour from interpreted structure and
expectations of behaviour. The third computes interpreted FBS function
from requests from other agents and from chat with persons such as
designers.

strInterp: Sdi × E

iB I
iS

behInterp: I
iS × I

iB I
iB

funInterp: Sdi × E
iF I

iF

448 GJ SMITH AND JS GERO

Computing interpreted structure and behaviour are sequential; computing
interpreted FBS function can be in parallel.

interpretation = (strInterp ° behInterp) || funInterp

Figure 3 shows reflexive, reactive and reflective reasoning as a Petri net

of an agent ai, including interpretation. Function Reason for ai is everything
between Sensor and Effector.

There are four types of FBS function that can be ascribed by an agent
(Qian and Gero 1996): FBS functions that map to static behaviours, those
that map to dynamic behaviours, those that map to a set of concurrent
behaviours, and those that map to sequential behaviours. Reflective agents
explicitly reason over FBS functions; reactive agents have FBS functionality
implicit in action rules. Reflective agents use the hypothesiser process to
compute expectations of behaviour from expected FBS function, and then
compare those expectations against the interpreted world. Newly detected
differences between expected and interpreted behaviour are asserted as
goals for action activation to satisfy. The hypothesiser consists of two
sequential processes. The first formulates expectations of behaviour. The
second compares expected and interpreted behaviour.

Goals ⊂ Autog
formulation: E

iF E
iB

evaluation: E
iB × I

iB Goals
hypothesiser = formulation ° evaluation

Action activation synthesises changes in expected structure for goals
asserted from differences between expected and interpreted behaviour.

action: Goals × I

iS E
iS

effection: E
iS Op ∪ Exog

2.4. SITUATED ACTION

For a situated agent, deciding when and how to act is of primary importance.
Differences between situations should cause the application of the same
knowledge to result in differing behaviour, and the result of such behaviour
should allow the agent to learn.

A reflective agent explicitly represents the interpretedworld(ai), the
expectedworld(ai), and encoded knowledge of all of the known effects on
interpretedworld(ai) of each change in structure that the agent can make.

 DESCRIBING SITUATED DESIGN AGENTS 449

Sensor

[Sd,Fe]

Be

Be

au

strInterp

behInterp

funInterp

au

effection

Sd

Sd

Sd

Sd

Sd

FE

FE FE

FI

BI

SI

SI

SE

SE
SE

SE
SE

SI BE[,]

SI BE[,]

SI BI[,]

BE BI[,] BE BI[,]

evaluation

BE BI[,]

SI BI[,]

SI BI[,]

reflexive

action

reflective

action

formulation

[]

Goals

Goals
Goals

reactive

action

Figure 3. Petri net of reflexive, reactive and reflective reasoning of an agent ai.
It is drawn for a single agent and so all data and function symbols should be read as
being subscripted with i. Each transition corresponds to the execution of a function.
The double circles are virtual places: the second au virtual place is actually the same
place as the single au place, being drawn that way only to simplify the diagram. The
shaded background shows functions only executed during reflective reasoning and
not during reflexive or reactive reasoning.

E
iB is determined from E

iF by formulation using techniques such as
constraint satisfaction and abduction, and goals are then determined by
comparing E

iB against I
iB . These goals, current interpreted structure I

iS
and the encoded knowledge enable reflective action to determine a partial
order of changes to structure that ai believes will remove the differences

450 GJ SMITH AND JS GERO

between E
iB and I

iB . This is a partial order on E
iB , and so deciding on

reflective action is equivalent to a search through some solution or plan
space. Planning as used here may involve retrieving a pre-compiled plan,
explicit runtime planning, or use some other transformation from goals to
action sequences.

Reflexive processes use hardwired stimulus-response rules, and reactive
processes have no long term memory. Both therefore take actions only
according to the current state. They can, however, be very task specific;
reflective processes would not need to be so task specific if the
computational limitations of planning did not lead to it anyway. One
solution is to adopt a hybrid of reactivity and reflectivity. The solution
advocated by Horswill (1998) extends that of Agre (1997) and others, using
reactive rules on deictic references. Deictic references are indexicals that
signify FBS function. The idea is to keep the reactive rules but to change
what they signify. Horswill calls his deictic references roles. Each role is a
symbol that is bound to a set of properties and is maintained by low level
processes. This separates the perceptual processes of identification and
localisation. Looking at a specific place in the environment and interpreting
what is there is an identification processes. Given sense-data from an
attended object, identification identifies that object using classifiers that
partition the sensory space. Having an expectation of what is in the
environment and finding its location is a localisation process. As an
example, gaze control in robot vision is a localisation process.

Such reactive agents would minimise the explicit inference performed by
hypothesiser. Instead, a set of roles are bound to autogenous structure and
behaviour Objects (where ran R denotes the range of a relation R):

rolei: Symbol ↔ Object
ran rolei I

iS⊆

Example roles may be a door agent with a role the-person-that-

needs-clearance that is bound to an avatar object in a virtual world, or
a wall object in a CAD system that binds a role the-object-that-
needs-moving to picture objects whenever the wall needs to move.
Structure interpretation strInterp simply observes whatever object the role is
bound to and maintains those properties. Because roles have functional
meaning, explicit formulation and evaluation are not needed. Instead,
knowledge of FBS function is implicit in reactive rules. Similarly, reactive
action rules need not plan a partial order of structure changes from
knowledge of the object being acted on. Instead, it just manipulates the
object bound to the role.

 DESCRIBING SITUATED DESIGN AGENTS 451

For such reactive actions to work, though, requires either that the
designer of the agent encode the reactive rules such that FBS functions of
the agent are maintained with changing structure, or we allow the agent to
learn from reflections such that in the future it can react in similar
situations. That is, we either implement agents such that they react
appropriately in different situations, or we implement learning such that it
can recognise how to react appropriately in different situations. Analytical
learners such as explanation based learning allows for action sequences
constructed from reflection to be used to learn new reactive actions as
macro actions. But learning new reactive actions from successful reflective
ones may not be enough: to communicate requires common ground (Gero
and Kannengiesser 2003). What if an agent is added dynamically to a
system at runtime, and that new agent communicates content that is not
understood. For simple communicated properties the receiver could respond
with a not understood message and the initiator could describe the
space of that variable. In general, though, to learn common ground in this
way requires complex language learning that is beyond the scope of this
work.

3. An Example

Figure 4 shows a view of a world on the Active Worlds platform2. In this
section we describe an example using agents running on this platform. The
use here of virtual worlds as a test environment is for convenience; we do
not require or intend the theory only apply to virtual worlds. Interested
readers should, therefore, refer to Maher, Smith and Gero (2003) and Smith,
Maher and Gero (2004) for details of the AWAgent package and its use with
the Active Worlds platform.

Often when citizens enter a virtual world for a meeting they all arrive at
the same specified location and then stand “on top of each other”. Chair
agents self-organise so as to relocate the avatars appropriately. When slides
are being shown on a wall or the whiteboard being used they will
reorganise, teleporting their assigned avatars with them, around the slide
display or whiteboard. Afterwards they may reorganise around a central
table in the meeting room.

The environment contains the agents listed in Table 1. Chair agents are
constructed dynamically as required. Consider the chair agent a1, labelled as
"chair0" in the table (the others are identical). The FBS function of a1 is to
maintain the equilibrium location of the chair and of a citizen's avatar that is

2 The virtual world platform Active Worlds, http://www.activeworlds.com, is one that we use
for agent testing.

452 GJ SMITH AND JS GERO

allocated to that chair. Chairs are implemented reactively here, though, and
so do not explicitly represent or reason about FBS function.

Figure 4. Meeting room in Active Worlds

TABLE 1. Agents in the example environment.

Agent No. Symbol Type of agent Categories
1 "chair0" Chair obstacle
2 "chair1" Chair obstacle
3 "chair2" Chair obstacle
4 "chair3" Chair obstacle
5 "wall0" Wall wall, goal
6 "wall1" Wall wall, goal
7 "wall2" Wall wall, goal
8 "wall3" Wall wall, goal
9 "table" Table obstacle, goal

Expected structure is a set of roles and a function from sensed object

properties to an object category. For this implementation the categories are
determined from the Active Worlds Models.

Category: { obstacle, wall, goal, null }

E
1S = { classify: Model ↔ Category |

 (∀ x: dom role • 1∃ y • classify(x,y)) }

Chair reactivity is implemented as subsumption, encoded as expectations

of behaviour. They are a partial order on the priority of each subsumption

 DESCRIBING SITUATED DESIGN AGENTS 453

behaviour contribution to resulting action vector, and so each expected
behaviour applies to a set of sensed objects. Each expected behaviour is a
function of the following type:

Subsumption: Vector × Gain × Gain Vector

where the first Gain is a linear gain and the second is a radial gain. The

linear and radial Gain are tunable parametrically, and so can be adapted
should equilibrium not be found.

E
iB = < {calcs � obstacle, linear � 4, radial � 2,

 inhibitedBy � { } },
 {calcs � goal, linear � 3, radial � 100,
 inhibitedBy � {obstacle} },
 …>

Behaviour obstacle computes an exponentially decreasing (with

distance) vector of repulsion from a sensed 3D object such as another chair.
Behaviour wall and goal are similar, except that wall avoidance is like a ball
bouncing off a hard surface. Goal attraction computes an exponentially
increasing (with distance) vector of attraction a 3D object (the goal, such as
a table, wall or whiteboard) towards the chair. Behaviour random computes
a vector that is a random vector step. Behaviour anger maintains the anger
of the chair. Every time that the chair is forced to move (the action vector,
described below, is above a threshold), the chair gets a little more angry;
every time it does not move it gets a little less angry. Obstacles compete and
the strongest repulsion vector wins. Some vectors are then subsumed by
others if their magnitude is large enough and superposition is used to arrive
at a single movement vector for an agent.

Sensor1 is a pseudo-sonar sensor: it senses properties that are interpreted
by the agent as an object category and vector from the agent to the closest
point on each sensed object. Interpreted structure and behaviour compute
properties of each sensed object. For example,

Ran role1 = I

1S
I
1S = <…, {vector � (50,0), category � goa}, …>
I
1B ={ {anger � 0},

 <…, {vector � (0,0), threshold � 8, inhibits � false },
 …> }

454 GJ SMITH AND JS GERO

I
1S is a sequence of structure objects, with each object being represented

as a set of object properties. The particular sequence element shown is for
the goal object. I

1B contains a behaviour object for this agent, holding the
anger property, plus a sequence of behaviour objects.

Structure interpretation computes Sd1 × E
1B I

1S such that the
following holds.

pop(Sd1) = o ∧ c=classify(o(model)) ∧ c ≠ null ∧
(|ex(a1)(location) - o(location)| < |role(c)(vector)|)
 �О(o=role(c) ∧ c=o(category) ∧
 o(vector)=ex(a1)(location) - o(location))

where О is the temporal “next” operator and | | is the Euclidean distance

metric. Structure interpretation therefore maintains vector and category
properties for the nearest sensed object of each category. Behaviour
interpretation similarly maintains I

1B as a behaviour vector for each I
1S

object corresponding to calcs from E
1B , and maintains inhibits from the

behaviour vector and threshold. So interpreted structure is inferred from
sense-data, and interpreted behaviour is interpreted from interpreted
structure and expected behaviour. Reactive action then performs the
subsumption inference, ensuring that the following holds.

∀ n,m:1..# I

1B ; ∀ cn,cm:Category |
 n ≠ m ∧ cn= I

1S (n)(category) ∧ cm= I
1S (m)(category)•

 cm∈ E
1B (n)(inhibitedBy) ∧ I

1B (n)(inhibits)
 � I

1B (m)(inbibits) = true

The action vector is set to the sum of I

1B (n)(vector) over all I
1B for

which I
1B (n)(inhibits)=false. Effection changes ex(ai) to relocate chair

according to action vector.
Figure 5 shows one trial run of a set of chair agents around a table object

that is the goal. This output is from a simulation written to capture and so
better understand and illustrate the behaviour of the agents. In Figure 5
boundaries correspond to walls, the small rectangles correspond to the
chairs, and the large rectangle corresponds to the table. In this trial the table
is the goal and the chairs are assigned random initial locations. As can be
seen, the chairs move towards the goal until an equilibrium is reached

 DESCRIBING SITUATED DESIGN AGENTS 455

between attraction to the goal, repulsion from the object that is the goal, and
repulsion from other chairs.

(a) Snapshot view.

(b) Timelapse view.

Figure 5. Trial 1 simulation of the subsumption model of chair self-
organisation: view after 40 iterations. (a) is a snapshot view, (b) is a timelapse view.
The black rectangle around the boundary are the four walls listed in Table 1, the
large polygon in the centre shows where the goal is (table), and the small polygons
show the positions of the chairs. The darker small polygons on the timelag view
shows a timelag view of the chairs, indicating their movement towards the goal.

Notice however that they do not line up evenly around the goal. One
price paid for a flexible, situated system of computationally efficient,
independent agents is that their behaviour is not globally constrained. That
is, some agents reach what they believe to be a minima when in fact it is
only locally so. Whenever anger reaches a threshold the agent gets “upset”
and moves off a random amount in a random direction. So some chairs
quickly reach an equilibrium position around the goal, at which time their
anger reduces. Some, however, will be prevented from reaching equilibrium
by others. The slower ones get repelled by the faster ones, get angry, and
take a random step. There are a number of ways of handling this, such as by
decaying the behaviour parameters, or by having walls adapt to anger so as
to change room geometry.

The subsumption implementation is reactive and situated but uses no
concepts. A chair does not reason about what it is attracted to or repelled
from and does not reason about the nature of the space it occupies. We
could consider a reflective version as a planning problem using constraint
satisfaction, with the constraint properties being the spatial locations of
chairs and the constraints being both the geometry and on the set of citizens
to be seated. One difference would be that it would now be a non-distributed
task rather than a distributed reactive one. Here it must first pre-allocate
spaces, whereas the reactive version treats the space as continuous. On the
other hand we can extend the reflection of the agent by adding constraints.
For example, that adjacent chairs should not chair citizens that do not like

456 GJ SMITH AND JS GERO

each other. A similar effect could be achieved by the reactive
implementation by adding more subsumption modules, but it is well known
from robotics work that there comes a point beyond which such reactive
architectures do not scale up (Murphy 2000).

Within the bounds of what they perceive and reason over, these agents
are robust to new situations. The chairs adapt to changing goal objects,
changing numbers of chairs and changing room size without needing to do
any planning. Their situation directs what behaviours should activate. Such
reactive reasoning couples perception tightly to action, avoiding the frame
problem by eliminating the need to model the environment (Murphy 2000).
On the other hand, the chairs do not achieve any kind of optimal distribution
because the view of each agent is local.

The reactive example here can be extended to facilitate designing from
within the design. Consider, for instance, a set of room agents together with
wall, floor, ceiling, furniture agents and so on. If the designer decides to
change the shape of a room then adjoining walls, floors, ceiling, and
furniture would automatically shift to new equilibrium locations. Combining
it with explicit communication3. would allow adjoining rooms to negotiate
to decide which wall(s) should move.

4. Conclusion

We have defined an environment as a distributed system of agents that
communicate via message passing. Agents need not be distributed and need
not explicitly use message passing. We defined multiple views of an
environment because the world viewed by one agent need not be the same as
another. This allows for situated agents to not only sense different subsets of
objects but to then construct their own interpretations. We defined reasoning
and communication by agents in sFBS terms so as to facilitate the
description of such reasoning and interaction as it applies to designing
without prescribing what that reasoning should necessarily look like. That
is, instead of starting with representations of mental entities and then
describing communication in those terms, we start with interaction and
describe what needs to be represented so as to facilitate it.

This paper marks the beginning of a larger enterprise: to provide a formal
underpinning to agency that better corresponds to the informal casting of
designing as interactive, situated reflection. Future work needs to further
constrain relations between structure, behaviour and function of agents with
respect to situated agents and this framework, to refine the semantics of

3 See (Maher, Smith and Gero 2003, Smith, Maher and Gero 2004) for further discussions of
agent communication and Active Worlds.

 DESCRIBING SITUATED DESIGN AGENTS 457

inform and request messages in sFBS terms, and to describe what common
ground between agents means in these terms.

Acknowledgements
This work was supported in part by an Australian Postgraduate Award at the University of
Sydney, Australia and by a University of Sydney Sesqui R&D grant.

References

Agre, PE: 1997, Computation and Human Experience, Cambridge University Press,
Cambridge, UK.

Brooks, RA: 1991, Intelligence without reason, Proceedings of the 12th International
Conference on Artificial Intelligence, pp.569-595.

Fagin, R, Halpern, JY, Moses, Y and Vardi, MY: 1997, Knowledge-based programs,
Distributed Computing 10: 199-225.

Ferber, J: 1999, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence,
Addison Wesley, Harlow.

FIPA: 2002, Agent Communication Language Specifications. Version H.
 http://www.fipa.org/repository/aclspecs.html
Gero, JS and Kannengiesser, U: 2002, The situated function-behaviour-structure framework,

in JS Gero (ed), Artificial Intelligence in Design '02, Kluwer, Dordrecht, pp. 89-102.
Gero, JS and Kannengiesser, U: 2003, Towards a framework for agent-based product

modelling, in K Gralen and U Sellgren (eds), International Conference on Engineering
Design, ICED 03, Stockholm, Sweden, The Design Society, August 2003, pp. 1621-1622.
Abstract - full paper on CD-ROM, ISSN/ISBN: 1-904670-00-8.

Horswill, ID: 1998, Grounding mundane inference in perception, Autonomous Robotics 5(1):
63-77.

Jennings, NR: 2000, On agent-based software engineering, Artificial Intelligence 117: 277-
296.

Lacey, AR: 1996, A Dictionary of Philosophy, Routledge, London.
Maher, ML, Smith, GJ and Gero, JS: 2003, Design agents in 3D virtual worlds, IJCAI

Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions, pp. 92-100.
Maher, ML, Smith, GJ and Gero, JS: 2004, Situated agents in virtual worlds, Working Paper,

Key Centre of Design Computing and Cognition, University of Sydney (in preparation).
Murphy, RR: 2000, An Introduction to AI Robotics, MIT Press, Cambridge, MA and London.
Qian, L and Gero, JS: 1996, Function-behaviour-structure and their roles in analogy-based

design, Artificial Intelligence in Engineering Design, Analysis and Manufacture 10: 289-
312.

Schön, DA and Wiggins, D: 1992, Kinds of seeing and their functions in designing, Design
Studies 13(2): 135-156.

Wegner, P and Goldin, D: 1997, Interaction as a framework for modeling, in PPS Chen (ed),
Conceptual Modeling: Current Issues and Future Directions, Springer, Berlin and New
York, pp. 243-257.

Wilson, RA and Keil, FC: 1999, The MIT Encyclopedia of the Cognitive Sciences, MIT
Press, Cambridge, MA.

Wooldridge, M and Lomuscio, A: 2001, A computationally grounded logic of visibility,
perception, and knowledge, Logic Journal of the IGPL 9(2): 273-288.

458

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

