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A FUNCTION-BEHAVIOUR-STRUCTURE ONTOLOGY OF PROCESSES 

Abstract. This paper presents how the function-behaviour-structure (FBS) ontology can be used to 

represent processes despite its original focus on representing objects. The FBS ontology provides a 

uniform framework for classifying processes and includes higher-level semantics in their 

representation. We show that this ontology supports a situated view of processes based on a model of 

three interacting worlds. A framework – the situated FBS framework – is then used to describe the 

situated design of processes. 

Keywords: Process ontology, function-behaviour-structure framework, situatedness 



     3 1. Introduction 

Ontologies are structured conceptualisations of a domain in terms of a set of entities in that domain 

and their relationships. They provide uniform frameworks to identify differences and similarities that 

would otherwise be obscured. In the design domain, a number of ontologies have been developed to 

represent objects, specifically artefacts (Chandrasekaran and Josephson 2000; Stone and Wood 2000; 

Kitamura et al. 2004; IAI 2006). They form the basis for a common understanding and terminological 

agreement on all relevant properties of a specific artefact or class of artefacts. Ontologies can then be 

used to represent the evolving states of designing these artefacts or as knowledge representation 

schemas for systems that support designing. 

Design research is a field that has traditionally shown particular interest in explicit representations 

of processes besides objects. A number of process taxonomies have been created that classify different 

design methods (e.g. Cross (1994), Hubka and Eder (1996)). However, most of this work has not been 

based on process ontologies, which makes comparison of the different taxonomies difficult. 

Ontologies are richer than taxonomic class hierarchies, as they provide definitions and constraints for 

an entity’s properties and relationships. Some of the efforts towards stronger ontological foundations 

for process representation have been driven by the need to effectively plan and control design and 

construction processes. For example, recent work on 4D CAD systems links 3D object models to 

project schedules (Haymaker and Fischer 2001). 

A large number of process ontologies and representations have been developed, with varying 

degrees of domain- or task-specificity. For example, IDEF0 (NIST 1993) is a high-level ontology for 

modelling industry processes at any level of detail, distinguishing between input, control, output and 

mechanism. Another, more recent high-level ontology is PSL (NIST 2000). PERT (Wiest and Levy 

1977) is a process representation primarily used for scheduling tasks in projects. The Quirk Model 

(Motus and Rodd 1994) describes computational processes and their timing constraints to enable 

analysis and control of overall system speed. 

Most process ontologies and representations have a view of processes that is based on flows of 

activities and/or sequences of states. Semantics, capturing the processes’ applicability in a purposive 
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context, are generally not included in most process ontologies. Such semantics are needed to guide the 

generation, analysis and evaluation of a variety of processes. As research increasingly focuses on 

automating parts of the selection or synthesis of processes, existing process ontologies provide 

inadequate representations for computational support. 

An ontology that supports semantics is based on the function-behaviour-structure (FBS) framework 

introduced by Gero (1990) that later became an ontology (Gero and Kannengiesser 2004). Its original 

focus was on representing artificial objects. In this paper we show how this focus can be extended to 

include processes. Our contribution thus consists of a novel interpretation and application of an 

existing ontology rather than a novel ontology of processes itself. Section 2 describes the basics of this 

approach and demonstrates how the FBS ontology can be used to classify processes. Section 3 

develops a situated view of processes, which accounts for situation-specific changes in process 

representations at three levels: the function level, the behaviour level and the structure level. Section 4 

presents a framework of situated process design, using a design optimisation process as an example. 

Section 5 concludes the paper. 

2. The FBS Ontology 

2.1. THE FBS VIEW OF OBJECTS 

The FBS ontology provides three high-level categories for the properties of an object: 

1. Function (F) of an object is defined as its teleology (“what the object is for”), which is largely 

domain-dependent. 

2. Behaviour (B) of an object is defined as the attributes that can be derived from its structure 

(“what the object does”). Most instances of behaviour are domain-dependent. 

3. Structure (S) of an object is defined as its components and their relationships (“what the 

object consists of”). The structure of most objects can be described in terms of geometry, 

topology and material. 

Humans construct connections between function, behaviour and structure through experience and 

through the development of causal models based on interactions with the object. Specifically, function 

is ascribed to behaviour by establishing a teleological connection between the human’s goals and 
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observable or measurable effects of the object. Behaviour is causally connected to structure, i.e. it can 

be derived from structure using physical laws or heuristics. There is no direct connection between 

function and structure (de Kleer and Brown 1984). 

The generality of the FBS ontology allows for multiple views of the same object. This enables the 

construction of different models depending on their purpose. For example, an architectural view of a 

building object includes different FBS properties than a structural engineering view. This is most 

striking for the building’s structure: Architects typically view this structure as a configuration of 

spaces, while engineers often prefer a disjoint view based on floors and walls. 

Multiple views can also be constructed depending on the required level of aggregation. This allows 

modelling objects as assemblies composed of sub-assemblies and individual parts. Each of these 

components can again contain other sub-assemblies or parts. No matter which level of aggregation is 

required, the FBS ontology can always be applied. 

2.2. THE FBS VIEW OF PROCESSES 

Objects and processes have traditionally been regarded as two orthogonal views of the world. The 

difference between these views is primarily based on the different levels of abstraction involved in 

describing what makes up their structure. The structure of physical or virtual objects consists of 

representations of material, geometry and topology. These representations can be easily visualised and 

understood. Processes are more abstract constructs that include transitions from one state of affairs to 

another. 

The high-level categorisations provided by the FBS ontology create an integrative view that treats 

objects and processes in a uniform manner. This is possible because the FBS ontology does not 

include the notion of time. While on an instance level this notion is fundamental to the common 

distinction between objects and processes, on an ontological level there is no time-based difference 

between them. All states of any entity at any point in time can be described by a set of properties that 

can be classified as function, behaviour and structure. 
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The notion of function applies to any entity as it only accounts for the observer’s goals, 

independent of the entity’s embodiment as an object or as a process. We will give examples of process 

functions in the following Sections. 

Behaviour relates to those attributes of an entity that allow comparison on a performance level 

rather than on a compositional level. Such performance attributes are representations of the effects of 

the entity’s interactions with its environment. Typical behaviours of processes are speed, rate of 

convergence, cost, amount of space required and accuracy. 

While process function and process behaviour are not fundamentally different to object function 

and object behaviour, process structure is clearly distinctive. It includes three components and two 

relationships, Figure 1. 

 

 

Figure 1.  The structure of a process. (i = input; t = transformation; o = output) 

The components are 

• an input (i), 

• a transformation (t) and 

• an output (o). 

The relationships connect 

• the input and the transformation (i – t) and 

• the transformation and the output (t – o). 

2.2.1. Input (i) and Output (o) 
The input and the output structure elements represent properties of other entities in terms of their 

variables and/or their values. For example, the process of transportation changes only the values for 

the location of a (physical) object (e.g. the values of its x-, y- and z-coordinates). As the input and 

output contain the same variables here, such a process can be characterised as homogenous. 

Heterogenous processes, in contrast, use disparate variables as input and output. For example, the 
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process of electricity generation takes mechanical motion as input and produces electrical energy as 

output. 

Input and output may refer not only to (properties of) objects but also to (properties of) other 

processes. For example, it is not uncommon for software procedures to accept the output of other 

procedures as their input or to return procedure calls as their output. All variables and values used as 

input and output of a process may refer to the function, behaviour or structure of other objects or 

processes. 

2.2.2. Transformation (t) 
A common way to describe the transformation of a process is in terms of a plan, a set of rules or other 

procedural descriptions. A typical example is a software procedure that is expressed in source code or 

as a UML3 activity diagram. Such descriptions are often viewed as a collection of subordinate 

processes. In the software example, this is most explicit when a procedure calls other procedures that 

are possibly located in other program components or other computers. Every sub-process can again be 

modelled in terms of function, behaviour and structure. 

2.2.3. Relationships 
The relationships between the three components of a process are usually uni-directional from the input 

to the transformation and from the transformation to the output. For iterative processes the t – o 

relationship is bi-directional to represent the feedback loop between the output and the transformation. 

2.2.4. Some Process Classifications Based on the FBS Ontology 
The FBS view of processes provides a means to classify different instances of design processes 

according to differences in their function, behaviour or structure. (To avoid confusion, we will from 

now on use the terms “object function”, “object behaviour” and “object structure” whenever we refer 

to objects. In all other cases, the default assumption will be that the terms “function”, “behaviour” and 

“structure” refer to processes.) Take Gero’s (1990) eight fundamental classes of processes involved in 

designing; they can be distinguished by differences in their input and output. For example, while 

synthesis is a transformation of expected object behaviour (i) into object structure (o), analysis 

                                                             
3 Unified Modeling Language 
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transforms object structure (i) into object behaviour (o). Within each of these fundamental processes 

we can identify different instances if we reduce the level of abstraction at which input and output are 

specified. For example, different instances of the process class analysis can be defined based on the 

specific kind of output they produce: stress analysis computes stress (o), thermal analysis computes 

temperature (o), cost analysis computes cost (o), etc. Other process instances can be based on the 

transformation. For example, the synthesis of a design object can be carried out using a range of 

different transformations or techniques to map expected behaviour onto structure. Examples include 

case-based reasoning, genetic algorithms or gradient-based search methods. 

Other process classifications and taxonomies are similarly based on differences in structure. For 

example, Hubka and Eder (1996) distinguish between six sub-processes of designing, each of which 

specifies distinct abstraction levels describing their input and output. Processes can also be 

distinguished according to their behaviour and function. For example, design optimisation processes 

can be characterised on the basis of differences in their speed, differences in the amount of space they 

require or other behaviours. Another example has been provided by Sim and Duffy (1998), who 

propose a multi-dimensional classification of machine learning processes in design that can be mapped 

on structure and function of a process. Specifically, learning processes are grouped according to input 

knowledge and learning trigger (both i), knowledge transformers (t), output knowledge (o) and 

learning goal (F). 

3. Situated FBS Representations of Processes 

3.1. SITUATEDNESS 

Designing is an activity during which designers perform actions in order to change their environment. 

By observing and interpreting the results of their actions, they then decide on new actions to be 

executed on the environment. This means that the designers’ concepts may change according to what 

they are “seeing”, which itself is a function of what they have done. One may speak of an “interaction 

of making and seeing” (Schön and Wiggins 1992). This interaction between the designer and the 

environment strongly determines the course of designing. This idea is called situatedness, whose 

foundational concepts go back to the work of Dewey (1896) and Bartlett (1932). 
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In experimental studies of designers, phenomena related to the use of sketches, which support this 

idea, have been reported. Schön and Wiggins (1992) found that designers use their sketches not only 

as an external memory, but also as a means to reinterpret what they have drawn, thus leading the 

design in a new direction. Suwa et al. (1999) noted, in studying designers, a correlation of unexpected 

discoveries in sketches with the invention of new issues or requirements during the design process. 

They concluded that “sketches serve as a physical setting in which design thoughts are constructed on 

the fly in a situated way”. 

Gero and Fujii (2000) have developed a framework for situated cognition using agents, which 

describes the designer’s interpretation of their environment as interconnected sensation, perception 

and conception processes. Each of them consists of two parallel processes that interact with each 

other: A push process (or data-driven process), where the production of an internal representation is 

driven (“pushed”) by the environment, and a pull process (or expectation-driven process), where the 

interpretation is driven (“pulled”) by some of the designer’s current concepts, which has the effect that 

the interpreted environment is biased to match the current expectations. 

The environment that is interpreted can be external or internal to the agent. The situated 

interpretation of the internal environment accounts for the notion of constructive memory. The 

relevance of this notion in the area of design research has been shown by Gero (1999). Constructive 

memory is best exemplified by a paraphrase of Dewey by Clancey (1997): “Sequences of acts are 

composed such that subsequent experiences categorize and hence give meaning to what was 

experienced before”. The implication of this is that memory is not laid down and fixed at the time of 

the original sensate experience but is a function of what comes later as well. Memories can therefore 

be viewed as being constructed in response to a specific demand, based on the original experience as 

well as the situation pertaining at the time of the demand for this memory. Therefore, everything that 

has happened since the original experience determines the result of memory construction. Each 

memory, after it has been constructed, is added to the existing knowledge (and becomes part of a new 

situation) and is now available to be used later, when new demands require the construction of further 

memories. These new memories can be viewed as new interpretations of the augmented knowledge. 
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The advantage of constructive memory is that the same external demand for a memory can 

potentially produce a different result, as newly acquired experiences may take part in the construction 

of that memory. Constructive memory can thus be seen as the capability to integrate new experiences 

by using them in constructing new memories. As a result, knowledge “wires itself up” based on the 

specific experiences it has had, rather than being fixed, and actions based on that knowledge can be 

altered in the light of new experiences. 

Situated designing, whether carried out by humans or a design system, uses first-person knowledge 

grounded in the designer’s interactions with their environment (Bickhard and Campbell 1996; Clancey 

1997; Ziemke 1999; Smith and Gero 2005). This is in contrast to static approaches that attempt to 

encode all relevant design knowledge prior to its use. Evidence in support of first-person knowledge is 

provided by the fact that different designers are likely to produce different designs for the same set of 

requirements. And the same designer is likely to produce different designs at different points in time 

even though the same requirements are presented. This is a result of the designer acquiring new 

knowledge while interacting with their environment. 

Gero and Kannengiesser (2004) have modelled situatedness as the interaction of three worlds, each 

of which can bring about changes in any of the other worlds, Figure 2(a). 

 

 

Figure 2.  Situatedness as the interaction of three worlds: (a) general model, (b) specialised model for design 
representations (after Gero and Kannengiesser (2004)). 

The external world is the world that is composed of representations outside the designer or design 

system. 

The interpreted world is the world that consists of the sensory experiences, percepts and concepts 

of the designer or design system. It is the internal representation of that part of the external world that 

the designer or design system interacts with. 

The expected world is the world imagined actions will produce. It is the environment in which the 

designer or design system predicts the effects of actions according to the current goals and 
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interpretations. The term “expected world” extends the notion of simple desirability by incorporating 

goals that serve as “expected”, realistic benchmarks for actions. 

These three worlds are linked together by three classes of activities. Interpretation transforms 

variables which are sensed in the external world into the interpretations of sensory experiences, 

percepts and concepts that compose the interpreted world. Focussing takes some aspects of the 

interpreted world and uses them as goals for the expected world that then become the basis for the 

suggestion of actions. These actions are expected to produce states in the external world that reach the 

goals. Action is an effect which brings about a change in the external world according to the goals in 

the expected world. 

Figure 2(b) presents a specialised form of this view with the designer or design system (as the 

internal world) located within the external world and placing general classes of design representations 

into the resultant nested model. The set of expected design representations (Xei) corresponds to the 

notion of a design state space. This state space can be modified during the process of designing by 

transferring new interpreted design representations (Xi) into the expected world and/or transferring 

some of the expected design representations (Xei) out of the expected world. This leads to changes in 

external design representations (Xe), which may then be used as a basis for re-interpretation, changing 

the interpreted world. In Figure 2(b), both interpretation and constructive memory are represented as 

“push-pull” processes, as outlined earlier in this Section. 

The view of three worlds captures the idea that multiple (interpreted) views can be constructed 

from the same external world, and that multiple goals can arise from different views. Gaps between 

current goals and current (interpreted) views of the world then lead to individual actions aiming to 

reduce these gaps. 

3.2. CONSTRUCTING MULTIPLE VIEWS FOR MULTIPLE PURPOSES 

Gero and Kannengiesser’s (2004) three-world model can be used to construct situated FBS 

representations of processes4. The main basis for creating a situated view is the distinction between the 

                                                             
4 While it is clearly the processes that are situated, in this paper we use the term “situated FBS representations of 
processes” as shorthand for “FBS representations of situated processes”. 
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external and the interpreted world. Locating function, behaviour and structure of a process in each of 

these worlds, Figure 3, results in six ontological categories: 

 

 

Figure 3.  External and interpreted FBS representations of processes. 

1. external function (Fe) 

2. external behaviour (Be) 

3. external structure (Se) 

4. interpreted function (Fi) 

5. interpreted behaviour (Bi) 

6. interpreted structure (Si) 

Process representations of categories 4, 5 and 6 are generated via push-pull activities involving 

only the internal world (constructive memory) or both internal and external worlds (interpretation). 

Additionally, interpreted behaviour (Bi) can be generated by transforming interpreted structure (Si), 

and interpreted function (Fi) can be generated by transforming interpreted behaviour (Bi). 

3.2.1. External vs. Interpreted Structure of a Process 
Most design ontologies cannot deal with different interpretations of a process, as they do not 

distinguish between external and interpreted worlds. Such interpretations are often required for 

representing process structure. This is due to a number of reasons. 

Many instances of external process structure (Se) are transient and time-based. Delineating the 

components of the process (i.e. input, transformation and output) from one another as well as from 

other entities in the external world then requires acts of discretisation from continuous flows of events 

according to the observer’s current knowledge and goals. For example, it is possible to view the 

intermediate results of an iterative process as part of its transformation or, alternatively, as part of its 

output. 

The kind of components of the process structure and the level of detail used to describe them are 

similarly dependent on the stance of the observer. One example, already mentioned in Section 2.2.2, is 
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the range of possible views of the transformation from a detailed procedural plan to an object or a 

simple “black box”. There are also many examples for disparate views of the input and output of the 

same process. Take a pressing process in the automotive industry: A manufacturing engineer generally 

views the input and the output of this process in terms of geometry of the sheet steel to be 

transformed. In contrast, a costing expert typically views the input and the output of the same process 

in terms of (material, labour, etc.) cost and yield, respectively. Similar view-dependent examples have 

been presented by NIST (2004). 

3.2.2. External vs. Interpreted Behaviour of a Process 
The distinction between external and interpreted worlds is also useful when dealing with the 

performance or behaviour of a process. This allows different observers to reason about different 

performance aspects of a process according to the current situation. For example, the cost of burning 

fuel might be important for the owner of a car; however, this cost is usually not directly relevant for 

the hitchhiker sitting on their passenger seat. Another example is the amount of memory space needed 

by a particular computational process. This behaviour is usually worth considering for users only if 

their hardware resources are limited for current purposes. The kind of interpreted behaviour (Bi) 

constructed is largely influenced by individual experience, and must therefore be clearly distinguished 

from external behaviour (Be). 

The kind of interpreted behaviour (Bi) that an observer is interested in also affects the way in which 

that observer interprets the structure that is responsible for causing that behaviour. This is the case 

when no external behaviour (Be) and no memories of previous interpreted behaviour (Bi) are available, 

and the interpreted behaviour (Bi) must be derived from interpreted structure (Si). If, for instance, the 

speed of a process is to be measured, then a structural description of the input and output of that 

process must be produced that contains references to some quantities and time units. If the amount of 

space required by the process is to be measured, then there must be a structural description that 

provides sufficient detail about the path of transformation for given inputs and outputs. 

3.2.3. External vs. Interpreted Function of a Process 
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The need to separate the interpreted from the external world is most obvious for the function of a 

process. Individual observers have the autonomy to interpret function according to their own goals and 

desires that are likely to differ from others. They may come up with various interpreted process 

functions (Fi), which may be independent of the constraints imposed by process structure and 

behaviour. For example, it is solely dependent on an observer’s previous experience or current goals if 

they ascribe the function “operate time-efficiently” to a manufacturing process, even though the exact 

speed of that process (as its interpreted behaviour (Bi)) or an explicit, external function (Fe) may be 

given. 

3.3. CONSTRUCTING MULTIPLE PURPOSES FROM MULTIPLE VIEWS 

Let us add the expected world to the interpreted and external world, Figure 4. The number of 

ontological categories now increases to nine: 

1. external function (Fe) 

2. external behaviour (Be) 

3. external structure (Se) 

4. interpreted function (Fi) 

5. interpreted behaviour (Bi) 

6. interpreted structure (Si) 

7. expected function (Fei) 

8. expected behaviour (Bei) 

9. expected structure (Sei) 

 

 

Figure 4.  External, interpreted and expected FBS representations of processes. 

Actions that aim to reduce gaps between the interpreted and the expected world involve the 

creation or modification of external structure (Se). A number of examples of such actions will be 

presented throughout this Section. The interpreted behaviours (Bi) derived from the structure resulting 

from an action can be assumed to reflect “real” performance, and the functions (Fi) ascribed to those 
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behaviours can be assumed to reflect “real” purposes. Actions that directly create or modify external 

behaviour (Be) or function (Fe) are not grounded in the “real” world. They capture representations used 

for communication about the “real” world rather than the “real” world itself. 

3.3.1. Interpreted vs. Expected Structure of a Process 
Expected process structure describes the composition of desired processes. Actions can then be 

performed to realise (represent) the desired processes in the external world. Processes established by 

these actions are often called strategies, realised either by individuals (Gruber 1989) or by 

organisations (Chandler 1962). 

The interaction between the external, interpreted and expected structure of strategies is an instance 

of Schön’s (1983) concept of “reflection-in-action”. It allows for reflective reasoning about one’s 

interactions with the external world, which has the potential of substantially changing current 

strategies (Hori 2000). Work in management science has established the term “strategizing” to denote 

the interactive construction of new strategies by cycles of interpretation and action (Cummings and 

Wilson 2003). Strategizing combines the traditional idea of top-down implementation of pre-formed 

strategies with more recent models of bottom-up recognition of new strategies as “patterns in a stream 

of actions” (Mintzberg and Waters 1985). 

3.3.2. Interpreted vs. Expected Behaviour of a Process 
Differences between the interpreted and the expected world at the level of the behaviour of a process 

are what project managers have to deal with. They represent gaps between the actual (interpreted) and 

the desired (expected) state of a process in terms of performance. Common examples include the 

speed, cost and accuracy of a process that may diverge from the corresponding target values specified 

in the project plan. There are two possibilities to reduce or eliminate the gap between the interpreted 

and the expected behaviour (Bei) of the process. First, the expected behaviour (Bei) may be adjusted to 

the current state of the process in order to satisfice the project plan. Second, corrective action may be 

taken to change the external world such that the interpreted performance (Bi) better matches the 

current expectations. This involves transforming the expected behaviour (Bei) into external structure 

(Se) via expected structure (Sei), transforming that external structure into interpreted structure (Si), 
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and, finally, deriving interpreted behaviour (Bi). We refer to this set of activities as a composite, 

“performance-oriented” activity. It differs from the elementary transformation of expected behaviour 

(Bei) into external behaviour (Be), which may be described as a “communicative action about 

performance”. Examples of this communicative action include justifying the selection of a particular 

design strategy (Clibbon and Edmonds 1996) and documenting design rationale to explain decisions 

taken in a design process (Chandrasekaran et al. 1993). 

3.3.3. Interpreted vs. Expected Function of a Process 
The gap between a potential and the currently focussed purpose ascribed to the process can be 

determined using the distinction between interpreted and expected function of a process. Similar to 

behaviour, this gap may be reduced or eliminated through adoption of new expected function (Fei) or 

through action to modify the external world. The latter requires transforming the expected function 

(Fei) into expected behaviour (Bei), and then follows the “performance-oriented” activity (described in 

Section 3.3.2) to obtain an interpreted behaviour (Bi) that, finally, a new interpreted function (Fi) is 

ascribed to. We refer to this set of activities as a composite, “goal-oriented” activity. It differs from the 

elementary transformation of expected function (Fei) into external function (Fe), which may be 

described as a “communicative action about goals”. In other words, a “goal-oriented” activity decides 

on a process structure that exhibits a set of performance criteria that are expected to achieve the 

process goals. Examples for expectations related to process goals constraining the selection of design 

strategies have been articulated by von der Weth (1999) to include “carefulness” and 

“thoughtfulness”, depending on the degree of complexity, novelty and dynamism of a given situation. 

4. Situated Design of Processes 

The situated FBS representations, presented in Section 3, and the activities connecting them provide a 

basic understanding of processes from a situated perspective. In this Section, we extend the 

application of the ontology to explore the notion of situated design of processes. While the notion of 

process design is well-known in fields such as business process reengineering, manufacturing planning 

and strategic management, the role of situatedness in designing processes has received little attention 
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to date. Section 4.1 presents a situated framework of design from the basics described in this paper. 

Section 4.2 illustrates the situated design of an optimisation process. 

4.1. THE SITUATED FBS FRAMEWORK 

Gero and Kannengiesser’s (2004) situated FBS framework, Figure 5, can be seen as an extension of 

the process descriptions presented in Section 3. It contains 20 activities that include two additional 

classes of activities with respect to those presented earlier in this paper: First, the framework 

represents external requirements related to the function (FRe), behaviour (BRe) and structure (SRe) of 

processes. External requirements are given to the process designer via communicative actions from a 

customer or another authority, internal or external to the organisation of the designer. Designing 

typically starts with these requirements, and additional external requirements are often given later in 

the process of design. Second, the framework adds the activity of comparison between expected 

behaviour (Bei) and interpreted behaviour (Bi). This is seen as an important activity in most models of 

design. It serves as a “shortcut” for evaluating if the goals of a design have been achieved by 

identifying gaps between expected and interpreted worlds at the behaviour level rather than the 

function level. 

 

 

Figure 5.  The situated FBS framework (after Gero and Kannengiesser (2004)) 

 

Designing is closely related to the “goal-oriented” activity in Section 3.3.3. It aims to create or 

change structure in the external world (Se) so that the gap between expected and interpreted function is 

reduced or eliminated, via the “shortcut” evaluation at the behaviour level. Gero (1990) has presented 

a detailed description of eight fundamental steps in designing, which Gero and Kannengiesser (2004) 

have mapped onto the 20 activities in the situated FBS framework. This description is independent of 

the domain of designing, and can include objects as well as processes as the object being designed. 

1. Formulation: defines the design task by delineating a state space of potential design solutions 

(termed the structure state space) and a set of criteria for assessing these solutions (termed the 
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behaviour state space). This activity uses a set of goals (termed the function state space) and 

constraints that are given to the designer by external specification or are constructed based on 

the designer’s own experience. In the situated FBS framework, this design step is composed of 

activities 1 to 10 (all numbers in the framework are only labels and do not imply any order of 

execution), Figure 6. 

 

Figure 6.  Formulation 

2. Synthesis: produces a design solution in terms of a point in the structure state space. In the 

situated FBS framework, this design step is composed of activities 11 and 12, Figure 7. 

 

 

Figure 7.  Synthesis 

3. Analysis: derives the behaviour from the design solution. In the situated FBS framework, this 

design step is composed of activities 13 and 14, Figure 8. 

 

 

Figure 8.  Analysis 

4. Evaluation: assesses the design solution on the basis of the formulated criteria, i.e. by 

comparison of the behaviour derived from the design solution and the expected behaviour. In 

the situated FBS framework, this design step is activity 15, Figure 9. 

 

 

Figure 9.  Evaluation 

 

5. Documentation: produces an external representation of the final design solution for purposes of 

communicating that solution. In the situated FBS framework, this design step is composed of 

activities 12, 17 and 18, Figure 10. 



     19 
 

Figure 10.  Documentation 

 

6. Reformulation type 1: redefines the structure state space. This may or may not entail redefining 

the behaviour state space. In the situated FBS framework, this design step is activity 9, with 

activities 3, 6 and 13 as potential drivers, Figure 11. 

 

 

Figure 11.  Reformulation type 1, in black (the activities representing potential drivers for this design step are 
depicted as grey symbols) 

 

7. Reformulation type 2: redefines the behaviour state space. This may or may not entail redefining 

the structure state space and function state space. In the situated FBS framework, this design 

step is activity 8, with activities 2, 5, 14 and 19 as potential drivers, Figure 12. 

 

Figure 12.  Reformulation type 2, in black (the activities representing potential drivers for this design step are 
depicted as grey symbols) 

 

8. Reformulation type 3: redefines the function state space. This may or may not entail redefining 

the behaviour state space. In the situated FBS framework, this design step is activity 7, with 

activities 1, 4, 16 and 20 as potential drivers, Figure 13. 

 

Figure 13.  Reformulation type 3, in black (the activities representing potential drivers for this design step are 
depicted as grey symbols) 

 

The numbering of the eight design steps (analogous to the 20 labelled activities) does not prescribe 

a fixed order of execution. While it is often expected for routine design tasks to involve only a top-

down, linear execution along a schema of “formulation-synthesis-analysis-evaluation-documentation”, 
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all three types of reformulation are very frequent, transforming most design processes into a mixture 

of top-down and bottom-up reasoning. 

4.2. EXAMPLE: SITUATED DESIGN OF AN OPTIMISATION PROCESS 

To illustrate the steps and activities involved in situated process design, we use the example of design 

optimisation. Optimisation can be described as a process that takes as its input a problem statement, 

including a set of object design parameters, required object performances and object constraints. Its 

output includes a set of values for the object design parameters, representing the best performing 

object design solution. The transformation is commonly viewed as encompassing the activities shown 

within the UML activity diagram in Figure 14. The loop in the diagram accounts for the iterative 

structure that is common in most optimisation processes. 

 

 

Figure 14.  Process structure of design optimisation 

Each activity can be regarded as an individual process. For example, the activity “produce a 

mathematical model” is a sub-process of optimisation, which can again be viewed in terms of FBS. A 

distinctive function of this sub-process is to provide the necessary formalism for applying 

computational operations on the optimisation problem. Behaviours include performance 

characteristics (such as accuracy and speed) that support the function of the sub-process within 

optimisation. Structure includes a sequence of activities as part of the transformation component, 

Figure 15. 

 

 

Figure 15.  Process structure of “produce a mathematical model” 

The activities of this sub-process may be viewed in ever more detail, and multiple FBS models can 

be constructed and organised in a hierarchical structure. This is similar to object-centred views of the 

world, in which objects can be modelled as assemblies of other objects at multiple layers. 
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Carrying out an optimisation process can be viewed as the act of designing its structure. In the 

situated FBS framework, this can be modelled as follows: 

1. Formulation: This design step includes the interpretation of external requirements (FRe, BRe 

and SRe) and the generation of additional, “implicit” requirements (Fi, Bi and Si) via 

constructive memory. External requirements are often given to the designer in form of (or in 

conjunction with) the problem statement. For example, FRe may be stated “to support the 

conceptual stage in product development”, BRe may specify time constraints (i.e. required 

speed) on the optimisation process, and SRe includes the problem statement. The interpretation 

of these requirements is subjective to the individual designer. Implicit requirements may include 

implicit assumptions about resource efficiency (Fi) in terms of computational tools and human 

labour, cost considerations (Bi), and the process structure (Si) interpreted from Figure 14. 

Implicit requirements also include refinements of these concepts in form of FBS views of the 

sub-processes of optimisation, such as outlined for the sub-process “produce a mathematical 

model”. The construction of implicit requirements is heavily based on individual experience. 

The design state space of the optimisation process is formulated by focussing on the explicit and 

implicit process requirements, and by constructing additional expected behaviour (Bei) based on 

expected function (Fei). An example for the latter is the designer’s decision about the expected 

accuracy (Bei) of the optimisation process. Here, given that this process is “to support the 

conceptual stage in product development” (Fei), the designer may select a lower accuracy than 

would be needed if the optimisation was to support more detailed stages in product 

development. 

2. Synthesis: This design step instantiates and externalises the structure of formulated processes 

and sub-processes. Take the overall structure shown in Figure 14, synthesis includes 

determining not only the final results, but also the specific object design variables and search 

methods, and the specific path on which the optimisation proceeds (e.g. if and how many times 

it iterates). 

3. Analysis: This design step involves interpreting the structure of the processes that have been 

externalised through synthesis. What the outcomes of this activity are depends on the 
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experience and current goals of the designer. For example, the designer may choose to look 

closer at the output rather than the transformation of the optimisation, if accuracy is given 

priority over speed for evaluating process performance. 

4. Evaluation: This design step compares the actual performance of optimisation against the 

expected performance. 

5. Documentation: This design step externalises the representation of the final process design for 

purposes of communication. This includes the capture of process-centred design rationale for 

explaining why a particular optimisation method was chosen. 

6. Reformulation type 1: This design step reformulates optimisation structure, which is usually 

done when performance is unsatisfactory. Common examples of reformulating optimisation 

structure are the elimination of object design variables and the modification of search methods. 

They are necessary in many non-linear optimisation problems where discontinuities in the 

search space produce difficulties for gradient-based search methods in finding the global 

optimum result. Figure 16 shows the example of a reformulated optimisation structure through 

modification of object design variables or search method. What exactly this modification 

produces depends on the individual experience of the designer, which is captured as 

interpretation and constructive memory in the situated FBS framework. 

 

 

Figure 16.  Reformulated process structure of a design optimisation process, through the addition of a new 
iteration 

 

7. Reformulation type 2: This design step reformulates optimisation behaviour. This is frequently 

driven by new project constraints, represented as external requirements on behaviour (BRe). For 

example, the project manager may demand a faster pace of optimisation due to increased market 

competition. 

8. Reformulation type 3: This design step reformulates optimisation function. Typically, this is 

driven by external requirements (FRe) that define a new role for the optimisation in the product 
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development process. For example, they may change the function “to support the detail design 

stage”, which may then lead to changed expected behaviours such as increased accuracy. 

5. Conclusion 

We have presented the FBS ontology as a structured conceptualisation of the domain of processes. We 

claim that any class of process can be represented using this ontology. A number of examples of 

processes in the design domain have been described in this paper demonstrating its coverage. Future 

work will focus on providing a more systematic evaluation of the ontology across different domains. 

Our ontology provides a uniform representation that allows locating as well as distinguishing between 

them. This enables comparison of different process models, even if they use differing terminologies or 

notations. Efforts towards unifying models of the design process (Grabowski et al. 1998) may benefit 

from this work. 

Integrating function and behaviour in a process ontology adds semantics to process representations, 

which accounts for their applicability in a purposive context. This is useful for knowledge 

representations of processes, as they can be deployed by a knowledge-based system to generate, 

compare and execute specific processes according to its current goals. Such knowledge representations 

are equivalent to Gero’s (1990) design prototypes based on the FBS ontology for design objects. The 

ability to support different views and purposes of processes at functional, behavioural and structural 

levels increases flexibility and applicability of the system in different situations. The situated FBS 

framework has been presented to model the steps and activities involved in the situated design of 

processes. 

There have been other approaches that use similar notions of function, behaviour and structure 

(Stroulia and Goel 1995; Murdock and Goel 2001); however, their focus is on modelling reflective 

reasoning architectures rather than on specifying a general process ontology. We can see the 

opportunity to deploy our FBS ontology within a reasoning mechanism, exploiting its ability to use the 

same fundamental constructs – function, behaviour and structure – as for objects. This allows 

developing design systems or agents that can flexibly reason about a variety of objects and processes 
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without having to implement different, specialised cognitive mechanisms. As everything in the world 

looks the same when viewed in terms of FBS, only one cognitive mechanism is required. 
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Figure 1.  The structure of a process. (i = input; t = transformation; o = output) 

 

 

 

Figure 2.  Situatedness as the interaction of three worlds: (a) general model, (b) specialised model for design 
representations (after Gero and Kannengiesser (2004)). 
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Figure 3.  External and interpreted FBS representations of processes. 

 

 

Figure 4.  External, interpreted and expected FBS representations of processes. 
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9.  

 

 

Figure 5.  The situated FBS framework (after Gero and Kannengiesser (2004) 

 

 

 

Figure 6.  Formulation 

10.  
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Figure 7.  Synthesis 

11.  

 

 

Figure 8.  Analysis 

 

 

Figure 9.  Evaluation 
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Figure 10.  Documentation 

 

 

Figure 11.  Reformulation type 1, in black (the activities representing potential drivers for this design step are 
depicted as grey symbols) 

 

 

Figure 12.  Reformulation type 2, in black (the activities representing potential drivers for this design step are 
depicted as grey symbols) 
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Figure 13.  Reformulation type 3, in black (the activities representing potential drivers for this design step are 
depicted as grey symbols) 

 

 

 

Figure 14.  Process structure of design optimisation 

 

 

 

Figure 15.  Process structure of “produce a mathematical model” 
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9.  

 

 

Figure 16.  Reformulated process structure of a design optimisation process, through the addition of a new 
iteration 

 


