

COMPUTER-AIDED DESIGN TOOLS THAT ADAPT

WEI PENG
CSIRO ICT Centre, Australia

and

JOHN S GERO
Krasnow Institute for Advanced Study, USA

Abstract. This paper describes an approach that enables a computer-
aided design tool to learn conceptual knowledge as it is being used,
and as a consequence adapts its behaviours to the changing
environment. This allows the tool to improve the effectiveness of
designers in their design tasks over time. Design experiments evaluate
the effectiveness of this prototype system in recognizing optimization
problems in heterogeneous design scenarios.

1. Introduction

The development of computer-aided design tools has moved from
representation to knowledge encoding and support in knowledge-based
systems. A large number of design knowledge systems have been prototyped
or commercialized, such as OPTIMA (Balachandran, 1988) and KNODES
(Rutherford and Maver, 1994). However, it is argued that a knowledge base
that is constructed in finite time and stored and processed on a finite
machine is an incomplete and imperfect sample of the indefinite amount of
potentially relevant design knowledge out there (Mitchell, 1994). Designing
is intrinsically dynamic and interactive, in the sense that designers reflect on
their actions (Schon, 1983) and often change the course of the developing
design (Gero, 1998). Many CAD researchers turned to building systems
that can automatically learn to cope with this ill-structured problem.
Machine learning techniques have been widely adopted in knowledge-
based systems to provide knowledge acquisition, modification and
generalization, for example ECOBWEB (Reich and Fenves, 1991) and
BRIDGER (Reich, 1993). These systems treat knowledge as universally
applicable context-free generalizations and descriptions (Reffat and Gero,
2000), so that they can be reused in different circumstances. It is argued that

2 W. PENG AND JS. GERO

there are disadvantages of a black-box, context-free learning machine
(Lieberman and Selker, 2000). A learning machine should encompass
contexts and the changing circumstances.

Interaction has been taken into account in developing systems to resolve
uncertainty in a dynamic process. This includes research in the field of user
modeling and intelligent interfaces, for example, interface agents (Maes,
1994) and PBE systems (Lieberman, 2001). Adaptive interfaces concentrate
on learning users’ habitual actions in using software applications and
provide proactive help in the sense that they anticipate users’ needs and
present help before it is requested (Selker, 1994). However, there are two
limitations: 1. In adaptive interfaces, interactions are reduced to utilizing
user feedback as action selection criteria. From this perspective, adaptive
interfaces are non-autonomous and merely react to their environments.
2. Adaptive interfaces have to cope with the “trade-off” between
generalization and context (Lieberman and Selker, 2000). This creates a
dichotomy between abstraction and context, which should be viewed as a
coherent unity in what is called a concept in designing.

A fundamental question is how to enhance design effectiveness using
computer-aided tools. The effectiveness of a design process is often
associated with the term “efficacy” when a design tool is applied in a design
activity. The efficacy of the tool usually refers to the ability to produce a
desired amount of a desired effect. To enhance the efficacy of a CAD tool,
we need a mechanism to bring changes in the system that are adaptive, in the
sense that these changes enable the system to tackle the same task or tasks
drawn from the same population more successfully the next time (Simon,
1983). A design tool that adapts based on its experience of its use is claimed
to be effective (Gero, 2003). This paper describes an approach that enables a
computer-aided design tool to be built on an adaptive paradigm, so that a
design tool can learn conceptual knowledge as it is being used, and as a
consequence adapts its behaviours to the changing environment to improve
the effectiveness of designers in their design tasks over time. We present a
computational model that is founded on notions of situatedness from
cognitive science and computational agency.

2. Situatedness and Adaptation

The concept of “situatedness” has been developed in different areas resulting
in diverse terms, such as “situated action” (Suchman, 1987) and “situated
cognition” (Clancey, 1997). Situatedness involves both the context and the
observer’s experiences and the interactions between them. It is inseparable
from interactions in which knowledge is dynamically constructed. Situated
cognition copes with the way humans construct their internal worlds via its
interaction with the external world (Gero, 2003). The notion of adaptation

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 3

originates from the ability of a biological system to accommodate
incremental changes and to react to unexpected events in its environment.
Adaptation can be viewed as the system’s capability of modifying its
behaviours to its context and improving its performance over time (Boer and
Canamero, 1999). The adaptive behaviour results from the interaction
between an agent and its environment (Beer, 1997). In this paper, we present
a situated agent-based design tool, which consists of an existing design tool,
a situated agent and interactions between the agent and its environment. A
situated agent is wrapped around the design tool, learns from and adapts to
its interactions with the design environment. Adaptation enables the design
tool to cope with situatedness in a dynamic design process (Gero and Peng,
2004). The concepts about interactions are constructed and grounded into the
agent’s experiences. These experiences bias the agent’s later memory
construction when a similar situation is encountered. The constructive
memory model embodies a mechanism whereby an agent learns new
concepts.

2.1. SITUATED AGENTS

A situated agent is a software agent built on the notion of “situatedness”.
Adaptivity, the agent’s capability to learn and improve with experience
(Bradshaw, 1996), is a salient feature of a situated agent. A constructive
memory model (Gero, 1999) serves as an operational utility that implements
the idea of “situatedness” into agent architecture. Adaptive behaviours, in
terms of reflexive, reactive and reflective behaviour (Maher and Gero,
2002), can result from the multi-level processing and constraints imposed by
a situated agent architecture.

Experience is a general notion that comprises the knowledge or skill of
some thing gained through direct involvements or activities. This paper
represents experience as structures. They can be classified into three
categories:

1. The sensory experience holds discrete symbolic labels for discerning
sense-data. They are the built-in features for sensors. Each sensor
captures a particular type of information. Once an environment
stimulus is detected, the agent attaches an initial meaning to it, based
on its sensory experience;

2. The perceptual experience captures historical representations of
perceptual categories and their interrelationships, including entities,
properties and entity–property relationships with degrees of beliefs;

3. The conceptual experience comprises the grounded invariants over
the lower level perceptual experience. The conceptual experience
explicitly states the regularities over the past observations of
perceptual instances.

4 W. PENG AND JS. GERO

Situated agents can sense and put forward changes to the environment via
sensors and effectors. Sensors gather environmental changes into data
structures called sense-data. Sensation (S) is the process that transfers sense-
data into multi-modal sensory experiences. This is through “push” and
“pull” processes. A push process is a data-driven process in which changes
from the external world trigger changes in the agent’s internal world, for
example, the agent’s experience. A pull process is an expectation-driven
process in which the agent updates the internal world according to the
expectation-biased external changes (Gero and Fujii, 2000; Gero and
Kannengiesser, 2006). The push and pull processes can occur at different
levels of processing, for example, sensation, perception and conception. The
pushed sense-data are also called exogenous sense-data (Se). They are
triggered by external environmental changes, that is, actions performed by
designers in using the design tool. The pulled sense-data are intentionally
collected during the agent’s expectation-driven process. Sensory data (Se+a)
consist of two types of variables: the exogenous sense-data (Se) and the
autogenous sensory experience (Sa). Sa is created from matching the agent’s
exogenous sense-data (Se) with the agent’s sensory level experience.
Sensory experience (Se+a) are a combination of the agent’s exogenous sense-
data (Se) and the related autogenous information (Sa). For instance, sense-
data Se is captured by sensors as a sequence of unlabelled events:

• Se (t) = {…… “a mouse click on a certain text field”, key stroke of
“x”, “y”……}.

Based on the lowest level of sensory experience, which holds modality
information, the agent creates an autogenous variable (Sa) with its initial
label for the Se:

• Sa (t) = {“Label for the clicked text field”}.

Thus, sensory experience Se+a can be created as:

• Se+a (t) = {…… [“Label for the clicked test field” | Key strokes “x”,
“y”]……}

Perception (P) generates percepts based on the agent’s sensory
experiences. Percepts are intermediate data structures that are generated
from mapping sensory data into categories. Sensory experience Se+a is
categorized to create initial percept (Pi) which can be used to generate a
memory cue. The initial percept can be structured as a triplet “Percept
(Object, Property, Values of properties)”. It is expressed as:

• Pi (t) = Object {Property for the clicked test field, value of that
property “xy”}

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 5

The perceptual object can be used to cue a memory of the agent’s
experience. A cue refers to a stimulus that can be used to activate the agent’s
experience to obtain a memory of that experience. It is generated from
matching percepts with the agent’s perceptual experience. A cue is
subsequently assigned with an activation value to trigger responses from the
agent’s experience. The cueing function is implemented using experience
activation (Ia) and reactivation (Ir), in which a memory cue is applied to
the experience structure to get a response.

Conception is the process of categorizing perceptual sequences and
chunks in order to form proto-concepts. A concept is regarded as a result of
an interaction process in which meanings are attached to environmental
stimuli. In order to illustrate a concept formation process, we use the
term “proto-concept” to illustrate the intermediate state of a concept. A
proto-concept is a knowledge structure that depicts the agent’s
interpretations and anticipations about its external and internal
environment at a particular time. Conception consists of three basic
functions: conceptual labeling (C1), constructive learning (C2) and induction
(C3). Conceptual labeling creates proto-concepts based on experiential
responses to an environment cue. This includes deriving anticipations from
these responses and identifying the target. Constructive learning allows the
agent to accumulate lower level experiences. Induction can generalize
abstractions from the lower level experience and is responsible for
generating conceptual knowledge structures.

The hypothesizing process (H) generates a hypothesis from current
learned proto-concepts. It is where reinterpretation takes place in allowing
the agent to learn in a “trial and error” manner. A situated agent reinterprets
its environment using hypotheses which are explanations that are deduced
from its domain knowledge (usually conceptual). An agent needs to refocus
on or construct a new proto-concept based on hypotheses. Validation (Vd) is
the process in which the agent verifies its proto-concepts and hypotheses. It
pulls information from the environment to observe whether the environment
is changing as expected. A valid concept or experience will be grounded into
experiences by incorporation or reinforcement.

The grounding process refers to the experiential grounding (Liew, 2004).
This reinforces the valid concepts or activated experience via changing the
structures of the experience so that the likelihood of the grounded experience
being activated in similar circumstances is increased. This is implemented
by a grounding via weight adaptation process (Wa), which adjusts the
weights of each excitatory connection of the valid concept of a Constructive
Interactive Activation and Competition (CIAC) neural network (Peng and
Gero, 2006), which is an extension of IAC neural network (McClelland,
1981), so that those nodes that fire together become more strongly
connected.

6 W. PENG AND JS. GERO

2.2. ADAPTIVE BEHAVIOURS AND LEARNING MECHANISMS

The agent’s reflexive behaviour occurs at a macroscopic level when the
experiential response to current sensed data is sufficiently strong to reach a
reflexive threshold. A sensory experience can affect action directly. In this
circumstance, the agent reflexes to environment stimuli based solely on its
experience without activation. In its reactive mode, an agent applies its
perceptual experience to respond to an environment stimulus in a self-
organized way. The perceptual experience, in terms of a habitual sequence
of actions, is manifested as an initial concept. The agent reflects on its
actions by drawing new sense-data from a lower level and hypothesizing a
new concept. A situated agent reflexes, reacts or reflects corresponding to
concepts constructed from its constructive memory model.

“Situatedness” emphasizes the role of social relations and interactions in
learning. An agent that is designed to be situated at a conceptual level can be
implemented using various machine learners. The situated learning can be
studied on the following two levels: 1. At a meta-level, learning refers to the
concept formation process arising from a constructive memory model for a
situated agent; 2. At a base-level, various concept formation composites can
be modeled via various machine learners, for example, connectionist neural
networks, inductive and analytical machine learning algorithms. The
learning process is the process wherein the agent constructs new concepts,
such that the agent’s experiences (as structure) are reinterpreted, re-
structured and constructed in the current context.

3. Situated Agent-based Design Optimization Tool

This research is presented within the design optimization domain. Many
design optimization tools focus on gathering a variety of mathematical
programming algorithms and providing the means for the user to access
them to solve design problems.1 Choosing a suitable optimizer becomes a
bottleneck in a design optimization process. The recognition of appropriate
optimization models is fundamental to design decision problems (Radford
and Gero, 1988). Some of the knowledge required for the recognition of an
optimization problem can be expressed in terms of semantic relationships
between design elements. An example of such knowledge is illustrated in
Table 1. The application of this research to design optimization focuses on
learning and adapting the knowledge of applying various optimization
algorithms in different design contexts. For example, a designer working on
optimizing a hospital layout may find that a certain optimizer is more
efficient in solving the problem applied. As the same or other designers
tackle a similar design problem, the same tool draws on its experience to

1 http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/.

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 7

construct memories of a design situation and anticipates the tool’s potential
use. It can offer help to designers in their interactions in designing even
before they call for it.

TABLE 1. An example of knowledge required in recognition of an optimization
problem (after Radford and Gero (1988))

if all the variables are of continuous type
and all the constraints are linear
and the objective function is linear
then conclude that the model is linear programming
and execute linear programming algorithm

We further discuss a scenario that depicts potential impacts of such a
situated agent-based design tool in a design optimization process. Under
normal circumstances, a designer uses a design optimization tool to define
and solve a problem. No matter how many times he or she applies the same
tool to address similar design problems the tool remains unchanged from its
use. The designer has to repeat each step each time. We suggest that there
are potential benefits if design knowledge can be learned and become
available for use without repeating the often demanding design optimization
process (Radford and Gero, 1988).

A design trajectory consists of a sequence of actions performed by a
designer. It represents the procedure via which a design problem has been
solved. An assumption here is that the system has already gained certain
experiences in design optimization. This assumption is realistic from what
we have seen in previous sections. For example, the knowledge of the
optimality for the unconstrained quadratic programming problem may
contain associative rules like:

• Hessian matrix (positive-definite)  Local-min achieved;
• Hessian matrix (indefinite)  Saddlepoint achieved.

When a designer is keying in a quadratic objective function, the
system forms a concept derived from the constructed memory (assuming
there exists a similar design optimization instance). According to the
problem it recognizes, the system can present the anticipated steps to
remind the designer. These include suggestions like (also shown in Figure
1 as “1”, “2” ad “3” of the concept formed from the system’s reactive
behaviour):

1. “may be a quadratic programming problem”;
2. “may look at Hessian function and second-order of Hessian

function to decide its type”;

8 W. PENG AND JS. GERO

3. “may be a local minimum because Hessian matrix is positive-
definite from the system’s memory of a similar design instance,
use medium-scale quadratic optimizer”;

Concept

from reaction

Constructing Design Trajectory

Accommodate

Key in OBJF

OBJF_Type

1

2

3

Designer System

Hessian Matrix

Hessian Matrix

Type

I

II

III
Concept

from reflection

Accommodate
Constraints

Quadratic

Optimiser

Design Action

System Suggestion

Design Trajectory

Concept formed

System Behaviour

Designer ’s Behaviour

Figure 1. A scenario of constructing a design trajectory in interactions

This concept may guide the designer to focus his or her attention on
the contextual information that is drawn from the system’s experience
on similar problems. This may reduce repetitions in solving a design
problem. The system can then observe the designer’s actions in deciding
its subsequent moves. If the designer works out the Hessian matrix to be
indefinite, the system can draw on the knowledge of the optimality to
deduce a possible explanation (also shown in Figure 1 as “I”, “II” ad “III”
of the concept formed from the system’s reflective behaviour):

I. “may still be a quadratic programming problem”;
II. “may be a saddle point because Hessian matrix is indefinite from

the system’s memory of a similar design instance, don’t forget
constraints if there are”;

III. “may use large-scale quadratic optimizer”.

In this way, the concept formed by the system can be infused into the
designer’s actions. A design trajectory can be constructed and modified in
the interactions. As illustrated in Figure 1, the concepts formed from the
system’s reactive and reflective behaviour are accommodated into a
designer’s design trajectory. The tool that maintains such a predictive model
based on valid anticipations may improve the efficacy of a design process
through introducing the agent’s experience in developing the design

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 9

outcome. The efficacy of such a design tool can be measured through its
correctness in recognizing a design optimization problem.

4. Design Optimization Experiments

The implemented prototype system is applied to assist the use of a design
optimization tool (the Matlab Optimization Toolbox). Matlab Optimization
Toolbox is a collection of functions that extend the capability of the
MATLAB numeric computing environment. The toolbox includes
routines for a variety of optimization classes, including unconstrained
and constrained nonlinear minimization, quadratic and linear
programming, and nonlinear optimization. It has been widely used by
engineers in various domains. A situated agent learns knowledge from how
Matlab is utilized by a designer in solving various optimization problems
and uses the learned concepts to affect the tool’s future use. This section
presents a number of experiments that have been carried out on the
implemented prototype system. The basic assumption for the experiments is
that a user has already worked out the objective function and constraints; he
or she uses a design tool to solve that problem. The purpose of the
experiments is to evaluate the situated agent-based design tool through:

• examining whether the system can learn new concepts from
interactions;

• investigating whether the implemented model can develop adaptive
behaviours in different circumstances based on the knowledge
structures it learned; and

• studying the characteristics of the agent’s behaviours in various
circumstances and evaluating the efficacy of the implemented
prototype system.

4.1. EXPERIMENT RESULTS

This test (Test 1) focuses on observing and analyzing the agent’s behaviours
in heterogeneous design optimization scenarios. A sequence of 15 design
scenarios is created and adopted. Each scenario represents a design task
which is further composed of a number of design actions. For example, a
typical design optimization task consists of a number of actions:

• defining objective function and identifying objective function type;
• defining design variables, variable types, design constraints and

constraint types;
• typing in gradients of objective function and constraints, defining

matrices, such as Hessian matrix and its type;
• selecting optimizers, submitting design problem or editing design

problem; submitting feedback on agent’s outputs.

10 W. PENG AND JS. GERO

The sequence of 15 tasks is represented as {L, Q, Q, L, NL, Q, NL, L, L,
NL, Q, Q, L, L, L}, in which “Q”, “L” and “NL” represent quadratic, linear
and nonlinear design optimization problems respectively. The initial
experience of the agent holds one instance of a design optimization scenario
solved by a quadratic programming optimizer. We use the symbols in Table
2 to represent these behaviours. According to data obtained from this test,
we can further cluster the system’s learning behaviour into three stages:
Stages I, II and III. We use behaviour rate (Br) to measure distributions of
various behaviours in each stage. The behaviour rate (Br) for each stage is
defined as:

stagetheinbehavioursofnumbersTotal

behaviourparticularaofNumbers
Br =

TABLE 2. Symbols that represent various behaviours

SYMBOLS BEHAVIOURS (BE) DESCRIPTIONS

C1 Conception process 1 –
conceptual labelling

Focusing on the target concept from the
activated experience

C2 Conception process 2 –
conception via constructive
learning

Creating perceptual experience from memory
construction (constructive learning)

C3 Conception process 3 –
conception via inductive
learning

Creating conceptual experience from
generalization (inductive learning)

H Hypothesizing Deducing proto-concepts from hypotheses
Ia CIAC neural network

activation
Activating the perceptual experience structure
(CIAC) to get response

Ir CIAC neural network re-
activation

Re-activating the perceptual experience
structure (CIAC) to get response

P Perception Low-level behaviour in creating percepts and
memory cue

Rex Reflexive experience
response

Returning experience that reaches reflexive
threshold (no reasoning and activation required)

S Sensation Low-level behaviour in creating sensory data
Vd Validation Comparing anticipation with environment

changes
Wa Weight adaptation Reinforcing the experience when it is useful

The Br of a particular behaviour represents the frequency of this

behaviour in the learning stage in which it occurs. The results of various Br
for the three stages are presented in Figures 2-4. Stage I consists of Tasks 1
to 5. No high-level experience or processes (C3, H) are involved in this
stage. The system reacts and learns via C2 (constructive learning), as
depicted in Figure 2.

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 11

S 21%

P 22%

H 0%
C

3
 0%

C
2
 9%

C
1
 13%

I
r
 0%

V
d
 9%

I
a
 13%

R
ex

 0%

W
a
 13%

Figure 2. Agent behaviour in learning Stage I

In Stage II (tasks 6 to 12), high-level processes, such as reactivation (Ir),
inductive learning (C3) and hypothesizing (H) become dominant and the
system is concentrated on reflection, Figure 3. In Stage III (tasks 13 to 15),
the experience for a certain type of design optimization problem becomes
highly grounded and the system commences its reflexive behaviour, as
illustrated in Figure 4.

S 11%

P 11%

H 5%

R
ex

 0%

I
a
 11%

V
d
 13%

I
r
 10%

C
1
 16%

C
2
 2%

C
3
 11%

W
a
 10%

Figure 3. Agent behaviour in learning Stage II

A comparative study of these learning stages shows a higher percentage
of C2 (constructive learning) in Stage I (9%, compared with 2% for Stage II
and 0% for Stage III). This means that the system is in the initial stage of
learning – constructing new memories. There are no high-level behaviours
(Ir, H, C3) and much higher percentages of sensation (S) and perception (P)
in the initial stage of learning (Stage I). The system’s behaviours are more
low-level oriented at this point, due to the lack of resources in
generalization. With conceptual knowledge being formed at the beginning of
Stage II, the system manifests a reflective behaviour in which it revisits its
experience to reactivate and make hypotheses.

12 W. PENG AND JS. GERO

S 15%

P 15%

H 0%

R
ex

 5%
I
a
 11%

V
d
 11%

I
r
 0%

C
1
 11%

C
2
 0%

C
3
 16% W

a
 16%

Figure 4. Agent behaviour in learning Stage III

As illustrated in Figure 3, the agent’s reflection-related behaviours, such
as H and Ir contribute to 5% and 10% of its overall behaviours, compared to
0% in other stages. The salient feature for Stage III is that the system
demonstrates a higher percentage of reflexive behaviour (5% against 0%)
than those in the other two stages. Stages I, II and III are similar in reaction,
validation and grounding related behaviours, such as Ia Vd and Wa, because
the system has similar proportions of grounded reactive experience. This
three-stage taxonomy can be explained by the internal structures created in
the experiment. Conceptual knowledge is learned at task 6, which is the
grounded commonality over the incrementally gathered perceptual
experience (from the CIAC neural network). This concept enables the
system to create hypotheses and therefore contributes to the system’s
reflective behaviour at Stage II. At the end of task 14, the experience for the
linear optimization problem is so strong that it is on the threshold of
producing the reflexive behaviour in Stage III.

4.2. A COMPARISON TEST

In this test, we investigate the performance of three systems: a static system,
a reactive system and a situated system, in learning to recognize design
optimization problems. The design scenario of Test 1 is adopted. A static
system can only use the predefined knowledge to predict a design task. A
reactive system can use a priori knowledge to respond to an environmental
cue. It can also learn via constructive learning, provided it encounters a new
design problem. A situated system not only employs its existing experience
to react, it also reflects using the hypotheses created based on the
accumulated conceptual knowledge. The performance is defined as the
correctness of the system’s response to an environmental cue, which predicts
an interaction situation, and hence assists the applied design task. We use
prediction success rate (Ps) to measure the overall performance of a system
in this test:

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 13

testtheinspredictionofnumbersTotal

spredictioncorrectofNumber
Ps =

The prediction success rate corresponds to the percentage of correctly
predicted examples over total test examples. Based on the results measured
from this test, we can calculate prediction success rates for each system. A
situated system produces a prediction success rate of 0.80, followed by the
rates of 0.67 for the reactive system and 0.33 for the static system
respectively. We conjecture the reason for this is the ability of a situated
system to generalize across observations and subsequently to deduce
explanations for environmental changes. It is also noted that the agent uses
the conceptual knowledge to hypothesize and reflect from Task 10, thus
providing better performance from that point.

5. Conclusion

Experimental results show that the implemented system can learn new
concepts through its use in interactions in design optimization. Another
finding is that the agent can develop adaptive knowledge structures through
constructing a memory, during which the agent coordinates the system’s
experience and environmental context in a situated manner. The system
exhibits adaptive behaviours to this end. Compared to a static system based
on pre-defined knowledge and a reactive agent which learns by the
constructive learning, this situated agent-based design interaction tool
performs better. In summary, the approach plays potential roles in enhancing
design effectiveness through introducing mechanisms that enable a
computer-aided design tool to adapt based on its experience of its use in a
dynamic design process. The framework developed here may also lay
foundations for future research into adaptive and personalized design tools.

References

Balachandran, MB: 1988, A Model for Knowledge-Based Design Optimization, PhD Thesis,
University of Sydney, Sydney.

Beer, RD: 1997, The dynamics of adaptive behaviour: A research program, Robotics and
Autonomous Systems 20: 257-289.

Boer, B and Canamero, D: 1999, Situated learning in autonomous agents, in J Joan Bliss, R
Saljo and P Light (eds), Learning Sites: Social and Technological Resources for
Learning, Pergamon, Amsterdam, pp. 236-248.

Bradshaw, J (ed.): 1996, Software Agents, MIT Press, Cambridge.
Clancey, W: 1997, Situated Cognition: On Human Knowledge and Computer

Representations, Cambridge University Press, Cambridge.
Gero, JS: 1998, Conceptual designing as a sequence of situated acts, in I Smith (eds),

Artificial Intelligence in Structural Engineering, Springer, Berlin, pp. 165-177.
Gero, JS: 1999, Constructive memory in design thinking, Design Thinking Research

Symposium: Design Representation, MIT, Cambridge, pp. 29-35.

14 W. PENG AND JS. GERO

Gero, JS: 2003, Design tools as situated agents that adapt to their use, in W Dokonal and U
Hirschberg (eds), eCAADe21, eCAADe, Graz University of Technology, pp. 177-180.

Gero, JS and Fujii, H: 2000, A computational framework for concept formation in a situated
design agent, Knowledge-Based Systems 13(6): 361-368.

Gero, JS and Kannengiesser, U: 2006, A framework for situated design optimization, Design
& Decision Support Systems 2006, Springer-Verlag, Berlin, in press,

Gero, JS and Peng, W: 2004, A situated agent-based design assistant, CAADRIA 2004, Yonsei
University Press, Korea, pp. 145-157.

Lieberman, H: 2001, Introduction, in H Lieberman (eds), Your Wish is My Command:
Programming by Example, Morgan Kaufmann, San Francisco, pp. 1-7.

Lieberman, H and Selker, T: 2000, Out of context: Computer systems that adapt to, and learn
from, context, IBM Systems Journal 39(3&4): 617-632.

Liew, P-S: 2004, A Constructive Memory System for Situated Design Agents, University of
Sydney, Sydney.

Maes, P: 1994, Agents that reduce work and information overload, Communications of the
ACM 37: 31-40.

Maher, ML and Gero, JS: 2002, Agent models of 3D virtual worlds, ACADIA 2002:
Thresholds, California State Polytechnic University, Pomona, California State
Polytechnic University, Pomona, pp. 127-138.

McClelland, JL: 1981, Retrieving general and specific information from stored knowledge of
specifics, Proceedings of the Third Annual Meeting of the Cognitive Science Society,
Erlbaum, Hillsdale, NJ, pp. 170-172.

Mitchell, WJ: 1994, Three paradigms for computer-aided design, in G Carrara and YE Kalay
(eds), Knowledge-Based Computer-Aided Architectural Design, Elsevier Science,
Amsterdam, The Netherlands, pp. 379-388.

Peng, W and Gero, J: 2006, Using a constructive interactive activation and competition neural
network to construct a situated agent's experience, PRICAI 2006: Trends in Artificial
Intelligence, Ninth Pacific Rim International Conference on Artificial Intelligence,
Springer, Guilin, pp. 21-30.

Radford, AD and Gero, JS: 1988, Design by Optimization in Architecture and Building, Van
Nostrand Reinhold, New York.

Reffat, R and Gero, JS: 2000, Computational situated learning in design, in JS Gero (eds),
Artificial Intelligence in Design'00, Kluwer Academic Publishers, Dordrecht, pp. 589-
610.

Reich, Y: 1993, The development of BRIDGER: A methodological study of research in the
use of machine learning in design, Artificial Intelligence in Engineering 8(3): 165-181.

Reich, Y and Fenves, S: 1991, The formation and use of abstract concepts in design, in D
Fisher, M Pazzani and P Langley (eds), Concept Formation: Knowledge and Experience
in Unsupervised Learning, Morgan Kaufmann, San Mateo, CA, pp. 323-353.

Rutherford, JH and Maver, TW: 1994, Knowledge-based design support, in G Carrara and YE
Kalay (eds), Knowledge-Based Computer-Aided Architectural Design, Elsevier Science,
Amsterdam, The Netherlands, pp. 243-267.

Schon, D: 1983, The Reflective Practitioner: How Professionals Think in Action, Basic
Books, London.

Selker, T: 1994, COACH:A teaching agent that learns, Communications of the ACM 37(7):
92-99.

Simon, HA: 1983, Why should machine learn, Machine Learning: An Artificial Intelligence
Approach, Springer-Verlag, Berlin, pp. 25-37.

Suchman, LA: 1987, Plans and Situated Actions: The problem of human-machine
communication, Cambridge University Press, Cambridge.

 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 15

This is a copy of the paper: Peng, W and Gero, JS (2007) Computer-aided
design tools that adapt, in Dong, A,Vande Moere, A and Gero, JS (eds),
CAADFutures2007, Springer, pp. 417-430.

