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Abstract. This paper describes an approach that enables a computer-
aided design tool to learn conceptual knowledge as it is being used, 
and as a consequence adapts its behaviours to the changing 
environment. This allows the tool to improve the effectiveness of 
designers in their design tasks over time. Design experiments evaluate 
the effectiveness of this prototype system in recognizing optimization 
problems in heterogeneous design scenarios. 

1. Introduction 

The development of computer-aided design tools has moved from 
representation to knowledge encoding and support in knowledge-based 
systems. A large number of design knowledge systems have been prototyped 
or commercialized, such as OPTIMA (Balachandran, 1988) and KNODES 
(Rutherford and Maver, 1994). However, it is argued that a knowledge base 
that is constructed in finite time and stored and processed on a finite 
machine is an incomplete and imperfect sample of the indefinite amount of 
potentially relevant design knowledge out there (Mitchell, 1994). Designing 
is intrinsically dynamic and interactive, in the sense that designers reflect on 
their actions (Schon, 1983) and often change the course of the developing 
design (Gero, 1998). Many CAD researchers turned to building systems 
that can automatically learn to cope with this ill-structured problem. 
Machine learning techniques have been widely adopted in knowledge-
based systems to provide knowledge acquisition, modification and 
generalization, for example ECOBWEB (Reich and Fenves, 1991) and 
BRIDGER (Reich, 1993). These systems treat knowledge as universally 
applicable context-free generalizations and descriptions (Reffat and Gero, 
2000), so that they can be reused in different circumstances. It is argued that 
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there are disadvantages of a black-box, context-free learning machine 
(Lieberman and Selker, 2000). A learning machine should encompass 
contexts and the changing circumstances.  

Interaction has been taken into account in developing systems to resolve 
uncertainty in a dynamic process. This includes research in the field of user 
modeling and intelligent interfaces, for example, interface agents (Maes, 
1994) and PBE systems (Lieberman, 2001). Adaptive interfaces concentrate 
on learning users’ habitual actions in using software applications and 
provide proactive help in the sense that they anticipate users’ needs and 
present help before it is requested (Selker, 1994). However, there are two 
limitations: 1. In adaptive interfaces, interactions are reduced to utilizing 
user feedback as action selection criteria. From this perspective, adaptive 
interfaces are non-autonomous and merely react to their environments. 
2. Adaptive interfaces have to cope with the “trade-off” between 
generalization and context (Lieberman and Selker, 2000). This creates a 
dichotomy between abstraction and context, which should be viewed as a 
coherent unity in what is called a concept in designing. 

A fundamental question is how to enhance design effectiveness using 
computer-aided tools. The effectiveness of a design process is often 
associated with the term “efficacy” when a design tool is applied in a design 
activity. The efficacy of the tool usually refers to the ability to produce a 
desired amount of a desired effect. To enhance the efficacy of a CAD tool, 
we need a mechanism to bring changes in the system that are adaptive, in the 
sense that these changes enable the system to tackle the same task or tasks 
drawn from the same population more successfully the next time (Simon, 
1983).  A design tool that adapts based on its experience of its use is claimed 
to be effective (Gero, 2003). This paper describes an approach that enables a 
computer-aided design tool to be built on an adaptive paradigm, so that a 
design tool can learn conceptual knowledge as it is being used, and as a 
consequence adapts its behaviours to the changing environment to improve 
the effectiveness of designers in their design tasks over time.  We present a 
computational model that is founded on notions of situatedness from 
cognitive science and computational agency. 

2. Situatedness and Adaptation 

The concept of “situatedness” has been developed in different areas resulting 
in diverse terms, such as “situated action” (Suchman, 1987) and “situated 
cognition” (Clancey, 1997). Situatedness involves both the context and the 
observer’s experiences and the interactions between them. It is inseparable 
from interactions in which knowledge is dynamically constructed. Situated 
cognition copes with the way humans construct their internal worlds via its 
interaction with the external world (Gero, 2003). The notion of adaptation 
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originates from the ability of a biological system to accommodate 
incremental changes and to react to unexpected events in its environment. 
Adaptation can be viewed as the system’s capability of modifying its 
behaviours to its context and improving its performance over time (Boer and 
Canamero, 1999). The adaptive behaviour results from the interaction 
between an agent and its environment (Beer, 1997). In this paper, we present 
a situated agent-based design tool, which consists of an existing design tool, 
a situated agent and interactions between the agent and its environment. A 
situated agent is wrapped around the design tool, learns from and adapts to 
its interactions with the design environment. Adaptation enables the design 
tool to cope with situatedness in a dynamic design process (Gero and Peng, 
2004). The concepts about interactions are constructed and grounded into the 
agent’s experiences. These experiences bias the agent’s later memory 
construction when a similar situation is encountered. The constructive 
memory model embodies a mechanism whereby an agent learns new 
concepts.  

2.1. SITUATED AGENTS 

A situated agent is a software agent built on the notion of “situatedness”. 
Adaptivity, the agent’s capability to learn and improve with experience 
(Bradshaw, 1996), is a salient feature of a situated agent. A constructive 
memory model (Gero, 1999) serves as an operational utility that implements 
the idea of “situatedness” into agent architecture. Adaptive behaviours, in 
terms of reflexive, reactive and reflective behaviour (Maher and Gero, 
2002), can result from the multi-level processing and constraints imposed by 
a situated agent architecture. 

Experience is a general notion that comprises the knowledge or skill of 
some thing gained through direct involvements or activities. This paper 
represents experience as structures. They can be classified into three 
categories: 

1. The sensory experience holds discrete symbolic labels for discerning 
sense-data. They are the built-in features for sensors. Each sensor 
captures a particular type of information. Once an environment 
stimulus is detected, the agent attaches an initial meaning to it, based 
on its sensory experience;  

2. The perceptual experience captures historical representations of 
perceptual categories and their interrelationships, including entities, 
properties and entity–property relationships with degrees of beliefs;  

3. The conceptual experience comprises the grounded invariants over 
the lower level perceptual experience. The conceptual experience 
explicitly states the regularities over the past observations of 
perceptual instances.  
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Situated agents can sense and put forward changes to the environment via 
sensors and effectors. Sensors gather environmental changes into data 
structures called sense-data. Sensation (S) is the process that transfers sense-
data into multi-modal sensory experiences. This is through “push” and 
“pull” processes. A push process is a data-driven process in which changes 
from the external world trigger changes in the agent’s internal world, for 
example, the agent’s experience. A pull process is an expectation-driven 
process in which the agent updates the internal world according to the 
expectation-biased external changes (Gero and Fujii, 2000; Gero and 
Kannengiesser, 2006). The push and pull processes can occur at different 
levels of processing, for example, sensation, perception and conception. The 
pushed sense-data are also called exogenous sense-data (Se). They are 
triggered by external environmental changes, that is, actions performed by 
designers in using the design tool. The pulled sense-data are intentionally 
collected during the agent’s expectation-driven process. Sensory data (Se+a) 
consist of two types of variables: the exogenous sense-data (Se) and the 
autogenous sensory experience (Sa). Sa is created from matching the agent’s 
exogenous sense-data (Se) with the agent’s sensory level experience. 
Sensory experience (Se+a) are a combination of the agent’s exogenous sense-
data (Se) and the related autogenous information (Sa). For instance, sense-
data Se is captured by sensors as a sequence of unlabelled events: 

• Se (t) = {…… “a mouse click on a certain text field”, key stroke of 
“x”, “y”……}. 

Based on the lowest level of sensory experience, which holds modality 
information, the agent creates an autogenous variable (Sa) with its initial 
label for the Se:  

• Sa (t) = {“Label for the clicked text field”}.  

Thus, sensory experience Se+a can be created as: 

• Se+a (t) = {…… [“Label for the clicked test field” | Key strokes “x”, 
“y”]……} 

Perception (P) generates percepts based on the agent’s sensory 
experiences. Percepts are intermediate data structures that are generated 
from mapping sensory data into categories. Sensory experience Se+a is 
categorized to create initial percept (Pi) which can be used to generate a 
memory cue. The initial percept can be structured as a triplet “Percept 
(Object, Property, Values of properties)”. It is expressed as: 

• Pi (t) = Object {Property for the clicked test field, value of that 
property “xy”} 
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The perceptual object can be used to cue a memory of the agent’s 
experience. A cue refers to a stimulus that can be used to activate the agent’s 
experience to obtain a memory of that experience. It is generated from 
matching percepts with the agent’s perceptual experience. A cue is 
subsequently assigned with an activation value to trigger responses from the 
agent’s experience. The cueing function is implemented using experience 
activation (Ia) and reactivation (Ir), in which a memory cue is applied to 
the experience structure to get a response.  

Conception is the process of categorizing perceptual sequences and 
chunks in order to form proto-concepts. A concept is regarded as a result of 
an interaction process in which meanings are attached to environmental 
stimuli. In order to illustrate a concept formation process, we use the 
term “proto-concept” to illustrate the intermediate state of a concept. A 
proto-concept is a knowledge structure that depicts the agent’s 
interpretations and anticipations about its external and internal 
environment at a particular time. Conception consists of three basic 
functions: conceptual labeling (C1), constructive learning (C2) and induction 
(C3). Conceptual labeling creates proto-concepts based on experiential 
responses to an environment cue. This includes deriving anticipations from 
these responses and identifying the target. Constructive learning allows the 
agent to accumulate lower level experiences. Induction can generalize 
abstractions from the lower level experience and is responsible for 
generating conceptual knowledge structures. 

The hypothesizing process (H) generates a hypothesis from current 
learned proto-concepts. It is where reinterpretation takes place in allowing 
the agent to learn in a “trial and error” manner. A situated agent reinterprets 
its environment using hypotheses which are explanations that are deduced 
from its domain knowledge (usually conceptual). An agent needs to refocus 
on or construct a new proto-concept based on hypotheses. Validation (Vd) is 
the process in which the agent verifies its proto-concepts and hypotheses. It 
pulls information from the environment to observe whether the environment 
is changing as expected. A valid concept or experience will be grounded into 
experiences by incorporation or reinforcement.  

The grounding process refers to the experiential grounding (Liew, 2004). 
This reinforces the valid concepts or activated experience via changing the 
structures of the experience so that the likelihood of the grounded experience 
being activated in similar circumstances is increased. This is implemented 
by a grounding via weight adaptation process (Wa), which adjusts the 
weights of each excitatory connection of the valid concept of a Constructive 
Interactive Activation and Competition (CIAC) neural network (Peng and 
Gero, 2006), which is an extension of IAC neural network (McClelland, 
1981), so that those nodes that fire together become more strongly 
connected. 
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2.2. ADAPTIVE BEHAVIOURS AND LEARNING MECHANISMS 

The agent’s reflexive behaviour occurs at a macroscopic level when the 
experiential response to current sensed data is sufficiently strong to reach a 
reflexive threshold. A sensory experience can affect action directly. In this 
circumstance, the agent reflexes to environment stimuli based solely on its 
experience without activation. In its reactive mode, an agent applies its 
perceptual experience to respond to an environment stimulus in a self-
organized way. The perceptual experience, in terms of a habitual sequence 
of actions, is manifested as an initial concept. The agent reflects on its 
actions by drawing new sense-data from a lower level and hypothesizing a 
new concept. A situated agent reflexes, reacts or reflects corresponding to 
concepts constructed from its constructive memory model.  

“Situatedness” emphasizes the role of social relations and interactions in 
learning. An agent that is designed to be situated at a conceptual level can be 
implemented using various machine learners. The situated learning can be 
studied on the following two levels: 1. At a meta-level, learning refers to the 
concept formation process arising from a constructive memory model for a 
situated agent; 2. At a base-level, various concept formation composites can 
be modeled via various machine learners, for example, connectionist neural 
networks, inductive and analytical machine learning algorithms. The 
learning process is the process wherein the agent constructs new concepts, 
such that the agent’s experiences (as structure) are reinterpreted, re-
structured and constructed in the current context.  

3.  Situated Agent-based Design Optimization Tool  

This research is presented within the design optimization domain. Many 
design optimization tools focus on gathering a variety of mathematical 
programming algorithms and providing the means for the user to access 
them to solve design problems.1 Choosing a suitable optimizer becomes a 
bottleneck in a design optimization process. The recognition of appropriate 
optimization models is fundamental to design decision problems (Radford 
and Gero, 1988). Some of the knowledge required for the recognition of an 
optimization problem can be expressed in terms of semantic relationships 
between design elements. An example of such knowledge is illustrated in 
Table 1. The application of this research to design optimization focuses on 
learning and adapting the knowledge of applying various optimization 
algorithms in different design contexts. For example, a designer working on 
optimizing a hospital layout may find that a certain optimizer is more 
efficient in solving the problem applied. As the same or other designers 
tackle a similar design problem, the same tool draws on its experience to 
                                     
1 http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/. 
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construct memories of a design situation and anticipates the tool’s potential 
use. It can offer help to designers in their interactions in designing even 
before they call for it.  

TABLE 1. An example of knowledge required in recognition of an optimization 
problem (after Radford and Gero (1988)) 

if            all the variables are of continuous type 
and        all the constraints are linear 
and        the objective function is linear 
then       conclude that the model is linear programming 
and        execute linear programming algorithm 

We further discuss a scenario that depicts potential impacts of such a 
situated agent-based design tool in a design optimization process. Under 
normal circumstances, a designer uses a design optimization tool to define 
and solve a problem. No matter how many times he or she applies the same 
tool to address similar design problems the tool remains unchanged from its 
use. The designer has to repeat each step each time. We suggest that there 
are potential benefits if design knowledge can be learned and become 
available for use without repeating the often demanding design optimization 
process (Radford and Gero, 1988).  

A design trajectory consists of a sequence of actions performed by a 
designer. It represents the procedure via which a design problem has been 
solved. An assumption here is that the system has already gained certain 
experiences in design optimization. This assumption is realistic from what 
we have seen in previous sections. For example, the knowledge of the 
optimality for the unconstrained quadratic programming problem may 
contain associative rules like: 

• Hessian matrix (positive-definite)  Local-min achieved; 
• Hessian matrix (indefinite)  Saddlepoint achieved. 

When a designer is keying in a quadratic objective function, the 
system forms a concept derived from the constructed memory (assuming 
there exists a similar design optimization instance). According to the 
problem it recognizes, the system can present the anticipated steps to 
remind the designer. These include suggestions like (also shown in Figure 
1 as “1”, “2” ad “3” of the concept formed from the system’s reactive 
behaviour): 

1. “may be a quadratic programming problem”; 
2. “may look at Hessian function and second-order of Hessian 

function to decide its type”; 



8 W. PENG AND JS. GERO  

 

3. “may be a local minimum because Hessian matrix is positive-
definite from the system’s memory of a similar design instance, 
use medium-scale quadratic optimizer”; 
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Figure 1. A scenario of constructing a design trajectory in interactions 

This concept may guide the designer to focus his or her attention on 
the contextual information that is drawn from the system’s experience 
on similar problems. This may reduce repetitions in solving a design 
problem. The system can then observe the designer’s actions in deciding 
its subsequent moves. If the designer works out the Hessian matrix to be 
indefinite, the system can draw on the knowledge of the optimality to 
deduce a possible explanation (also shown in Figure 1 as “I”, “II” ad “III” 
of the concept formed from the system’s reflective behaviour): 

I. “may still be a quadratic programming problem”; 
II. “may be a saddle point because Hessian matrix is indefinite from 

the system’s memory of a similar design instance, don’t forget 
constraints if there are”; 

III.  “may use large-scale quadratic optimizer”. 

In this way, the concept formed by the system can be infused into the 
designer’s actions. A design trajectory can be constructed and modified in 
the interactions. As illustrated in Figure 1, the concepts formed from the 
system’s reactive and reflective behaviour are accommodated into a 
designer’s design trajectory. The tool that maintains such a predictive model 
based on valid anticipations may improve the efficacy of a design process 
through introducing the agent’s experience in developing the design 
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outcome. The efficacy of such a design tool can be measured through its 
correctness in recognizing a design optimization problem.  

4. Design Optimization Experiments  

The implemented prototype system is applied to assist the use of a design 
optimization tool (the Matlab Optimization Toolbox). Matlab Optimization 
Toolbox is a collection of functions that extend the capability of the 
MATLAB numeric computing environment. The toolbox includes 
routines for a variety of optimization classes, including unconstrained 
and constrained nonlinear minimization, quadratic and linear 
programming, and nonlinear optimization. It has been widely used by 
engineers in various domains. A situated agent learns knowledge from how 
Matlab is utilized by a designer in solving various optimization problems 
and uses the learned concepts to affect the tool’s future use. This section 
presents a number of experiments that have been carried out on the 
implemented prototype system. The basic assumption for the experiments is 
that a user has already worked out the objective function and constraints; he 
or she uses a design tool to solve that problem. The purpose of the 
experiments is to evaluate the situated agent-based design tool through: 

• examining whether the system can learn new concepts from 
interactions; 

• investigating whether the implemented model can develop adaptive 
behaviours in different circumstances based on the knowledge 
structures it learned; and 

• studying the characteristics of the agent’s behaviours in various 
circumstances and evaluating the efficacy of the implemented 
prototype system.  

4.1. EXPERIMENT RESULTS 

This test (Test 1) focuses on observing and analyzing the agent’s behaviours 
in heterogeneous design optimization scenarios. A sequence of 15 design 
scenarios is created and adopted. Each scenario represents a design task 
which is further composed of a number of design actions. For example, a 
typical design optimization task consists of a number of actions: 

• defining objective function and identifying objective function type; 
• defining design variables, variable types, design constraints and 

constraint types; 
• typing in gradients of objective function and constraints, defining 

matrices, such as Hessian matrix and its type; 
• selecting optimizers, submitting design problem or editing design 

problem; submitting feedback on agent’s outputs.  
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The sequence of 15 tasks is represented as {L, Q, Q, L, NL, Q, NL, L, L, 
NL, Q, Q, L, L, L}, in which “Q”, “L” and “NL” represent quadratic, linear 
and nonlinear design optimization problems respectively. The initial 
experience of the agent holds one instance of a design optimization scenario 
solved by a quadratic programming optimizer. We use the symbols in Table 
2 to represent these behaviours. According to data obtained from this test, 
we can further cluster the system’s learning behaviour into three stages: 
Stages I, II and III. We use behaviour rate (Br) to measure distributions of 
various behaviours in each stage. The behaviour rate (Br) for each stage is 
defined as: 

stagetheinbehavioursofnumbersTotal

behaviourparticularaofNumbers
Br =

 

TABLE 2. Symbols that represent various behaviours 

SYMBOLS BEHAVIOURS (BE) DESCRIPTIONS 

C1 Conception process 1 – 
conceptual labelling 

Focusing on the target concept from the 
activated experience 

C2 Conception process 2 – 
conception via constructive 
learning 

Creating perceptual experience from memory 
construction (constructive learning) 

C3 Conception process 3 – 
conception via inductive 
learning 

Creating conceptual experience from 
generalization (inductive learning) 

H Hypothesizing Deducing proto-concepts from hypotheses 
Ia CIAC neural network 

activation 
Activating the perceptual experience structure 
(CIAC) to get response 

Ir CIAC neural network re-
activation 

Re-activating the perceptual experience 
structure (CIAC) to get response 

P Perception Low-level behaviour in creating percepts and 
memory cue 

Rex Reflexive experience 
response 

Returning experience that reaches reflexive 
threshold (no reasoning and activation required) 

S Sensation Low-level behaviour in creating sensory data 
Vd Validation Comparing anticipation with environment 

changes 
Wa Weight adaptation Reinforcing the experience when it is useful 

 
The Br of a particular behaviour represents the frequency of this 

behaviour in the learning stage in which it occurs. The results of various Br 
for the three stages are presented in Figures 2-4. Stage I consists of Tasks 1 
to 5. No high-level experience or processes (C3, H) are involved in this 
stage. The system reacts and learns via C2 (constructive learning), as 
depicted in Figure 2. 
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Figure 2. Agent behaviour in learning Stage I 

In Stage II (tasks 6 to 12), high-level processes, such as reactivation (Ir), 
inductive learning (C3) and hypothesizing (H) become dominant and the 
system is concentrated on reflection, Figure 3. In Stage III (tasks 13 to 15), 
the experience for a certain type of design optimization problem becomes 
highly grounded and the system commences its reflexive behaviour, as 
illustrated in Figure 4.  
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Figure 3. Agent behaviour in learning Stage II 

A comparative study of these learning stages shows a higher percentage 
of C2 (constructive learning) in Stage I (9%, compared with 2% for Stage II 
and 0% for Stage III). This means that the system is in the initial stage of 
learning – constructing new memories. There are no high-level behaviours 
(Ir, H, C3) and much higher percentages of sensation (S) and perception (P) 
in the initial stage of learning (Stage I). The system’s behaviours are more 
low-level oriented at this point, due to the lack of resources in 
generalization. With conceptual knowledge being formed at the beginning of 
Stage II, the system manifests a reflective behaviour in which it revisits its 
experience to reactivate and make hypotheses. 
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Figure 4. Agent behaviour in learning Stage III 

As illustrated in Figure 3, the agent’s reflection-related behaviours, such 
as H and Ir contribute to 5% and 10% of its overall behaviours, compared to 
0% in other stages. The salient feature for Stage III is that the system 
demonstrates a higher percentage of reflexive behaviour (5% against 0%) 
than those in the other two stages. Stages I, II and III are similar in reaction, 
validation and grounding related behaviours, such as Ia Vd and Wa, because 
the system has similar proportions of grounded reactive experience. This 
three-stage taxonomy can be explained by the internal structures created in 
the experiment. Conceptual knowledge is learned at task 6, which is the 
grounded commonality over the incrementally gathered perceptual 
experience (from the CIAC neural network). This concept enables the 
system to create hypotheses and therefore contributes to the system’s 
reflective behaviour at Stage II. At the end of task 14, the experience for the 
linear optimization problem is so strong that it is on the threshold of 
producing the reflexive behaviour in Stage III.  

4.2. A COMPARISON TEST 

In this test, we investigate the performance of three systems: a static system, 
a reactive system and a situated system, in learning to recognize design 
optimization problems. The design scenario of Test 1 is adopted. A static 
system can only use the predefined knowledge to predict a design task. A 
reactive system can use a priori knowledge to respond to an environmental 
cue. It can also learn via constructive learning, provided it encounters a new 
design problem. A situated system not only employs its existing experience 
to react, it also reflects using the hypotheses created based on the 
accumulated conceptual knowledge. The performance is defined as the 
correctness of the system’s response to an environmental cue, which predicts 
an interaction situation, and hence assists the applied design task. We use 
prediction success rate (Ps) to measure the overall performance of a system 
in this test:  



 COMPUTER-AIDED DESIGN TOOLS THAT ADAPT 13 

testtheinspredictionofnumbersTotal

spredictioncorrectofNumber
Ps =  

The prediction success rate corresponds to the percentage of correctly 
predicted examples over total test examples. Based on the results measured 
from this test, we can calculate prediction success rates for each system. A 
situated system produces a prediction success rate of 0.80, followed by the 
rates of 0.67 for the reactive system and 0.33 for the static system 
respectively. We conjecture the reason for this is the ability of a situated 
system to generalize across observations and subsequently to deduce 
explanations for environmental changes. It is also noted that the agent uses 
the conceptual knowledge to hypothesize and reflect from Task 10, thus 
providing better performance from that point. 

5.  Conclusion 

Experimental results show that the implemented system can learn new 
concepts through its use in interactions in design optimization. Another 
finding is that the agent can develop adaptive knowledge structures through 
constructing a memory, during which the agent coordinates the system’s 
experience and environmental context in a situated manner. The system 
exhibits adaptive behaviours to this end. Compared to a static system based 
on pre-defined knowledge and a reactive agent which learns by the 
constructive learning, this situated agent-based design interaction tool 
performs better. In summary, the approach plays potential roles in enhancing 
design effectiveness through introducing mechanisms that enable a 
computer-aided design tool to adapt based on its experience of its use in a 
dynamic design process. The framework developed here may also lay 
foundations for future research into adaptive and personalized design tools. 
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