
Behavior-Based Motion Planning for Group Control

Christopher Vo Joseph F. Harrison Jyh-Ming Lien

Abstract— Despite the large body of work in both motion
planning and multi-agent simulation, little work has focused
on the problem of planning motion for groups of robots using
external “controller” agents. We call this problem the group
control problem. This problem is complex because it is highly
underactuated, dynamic, and requires multi-agent cooperation.

In this paper, we present a variety of new motion planning
algorithms based on EST, RRT, and PRM methods for shepherds
to guide flocks of robots through obstacle-filled environments.
We show using simulation on several environments that under
certain circumstances, motion planning can find paths that
are too complicated for naı̈ve “simulation only” approaches.
However, inconsistent results indicate that this problem is still
in need of additional study.

I. INTRODUCTION

An interesting yet mostly unexplored instance of multi-
robot motion planning is the group control (or at a larger
scale, the swarm control) problem. The objective of this
problem is to control and navigate a group of agents (such
as a crowd of people or a flock of sheep) using external
“controller” agents (such as police officers or shepherd dogs).
The solution provided by the planner is a sequence of actions
for the controller agents that will guide the group to a
goal. The group control problem is challenging because it
is highly underactuated, involves complex dynamics, and
requires multi-agent cooperation.

The group control problem has many important applica-
tions in security (e.g., simulation of disaster scenarios and
responses [1], [2], [3]); in civil crowd control (e.g., planning
evacuation routes for sporting or spectator events [4]); in
pollution control (e.g., collecting oil spills [5]); in agricul-
ture (e.g., sheep herding [6]); in transportation safety (e.g.,
preventing bird strikes [7]); in education and training (e.g.,
providing immersive museum exhibits and training systems);
and entertainment (e.g., interactive games, virtual crowds in
cinema).

Despite the importance of the group control problem,
methods for creating group control strategies are still poorly
understood. A recent study [8] has highlighted the lack of
research into effective strategies for crowd control and the
catastrophic consequences that may result from flawed strate-
gies. Riots and fatalities due to poorly controlled crowds
are a frequent reminder of the need for better strategies. In
late 2008, 249 people died and more than 425 were injured
at a Hindu temple in India when a bomb threat caused a
stampede. Also in 2008, a man in a New York Wal-Mart was
trampled to death by a crowd of eager holiday shoppers.

All authors are with Department of Computer Science, George Mason
University, 4400 University Drive MSN 4A5, Fairfax, VA 22030 USA,
{cvo1, jharri1, jmlien}@cs.gmu.edu

Motion planning algorithms and data structures such as
Rapidly Exploring Random Trees (RRTs), Expansive-Spaces
Trees (ESTs), and Probabilistic Roadmaps (PRMs) have
proven to be elegant and powerful ways to find paths in high-
dimensional configuration spaces. They have already been
applied successfully to a wide variety of complex scenarios
including robots with various kinematic, dynamic, or non-
holonomic constraints [9]; manipulation planning [10], [11];
and multi-agent planning [12], [13].

The track record of these probabilistic methods, particu-
larly on high-dimensional configuration spaces, makes them
attractive for planning in the group control problem. In this
paper, we propose several new motion planners for the group
control problem based on RRT, EST, and PRM methods. We
test these algorithms on a variety of obstacle-filled environ-
ments, and compare them to a “simulation-only” approach
which uses only simple behaviors with the help of the medial
axis of the workspace. In general, we find that the exploration
offered by motion planning sometimes improves the success
rate, particularly in environments where the the medial axis
passes through narrow passages. However, in cases where
there are many viable paths, our planning methods do not
as yet show enough improvement to justify the additional
computation time required and in some cases are less likely
to reach the goal.

II. RELATED WORK

A. Related Work: Swarm Control

The group motion control problem is one that merges
the simulation and modeling of multi-agent dynamics with
cooperation, planning, and control. There is a large body
of work on the dynamics and modeling of human crowds,
but there is still very little work on swarm motion control
via agent interactions, and no work has been proposed to
systematically study group motion control as a whole.

Works that explore the crowd control problem have used
a variety of simple approaches such as introducing new
objects or agents into the environment. For example, the
effect of adding barriers into disaster scenario environments
was studied in [2]. Other works have attempted to model the
effect of adding agents with various social forces. The effect
of adding robots with attractive social forces was examined
in [14], and crowd dynamics in the presence of “leader”
individuals was modeled in [15].

There are several works in robotics and computer anima-
tion related to modeling behaviors such as shepherding. For
example, Schultz et al. [16] applied a genetic algorithm to
learn rules for a shepherd robot. Its objective was to control
the movement of other robots (sheep) that react by moving

away from the shepherd. Vaughan et al. [17] simulated
and constructed a robot that shepherds a flock of geese
in a circular environment. In computer animation, Funge
et al. [18] simulated an interesting shepherding behavior in
which a T. rex chases raptors out of its territory. Potter et
al. [19] studied a herding behavior using three shepherds
and a single sheep in a simple environment. None of the
aforementioned methods have shown the ability to guide
flocks in environments with obstacles.

Swarm control can also be viewed as a cooperative prob-
lem. The survey from Parker [20] provides an overview of
multi-robot systems. From the perspective of multi robot sys-
tems, the task of crowd control requires inherent cooperation,
in which the success of a robot in the team depends on the
actions of other robots. Inherent tasks (such as crowd control)
are distinguished from non-inherent tasks (such as covering)
in that they cannot easily be decomposed into independent
sub-tasks and thus are generally more difficult. Multiple
robots may also move in formation [21] to accomplish a
given task. In our previous research on shepherding behaviors
[22], we observe that formations can be used effectively to
control the motion of the flock. Similar observations have
also been found in sociological studies of crowd control [23].
Recently, Shell and Matarić [1] have used multiple robots to
deploy and assist with the evacuation of pedestrians.

Swarm control is also related to competitive activities such
as pursuit and evasion behaviors, and sports such as soccer. A
simplified version of the pursuit and evasion problem which
considers only one pursuer and one evader has been studied
for decades using methods such as game theory [24], co-
evolutionary algorithms [25], and neural networks [26] (see
survey [27] for detail).

Controlling groups of agents may also be viewed as a type
of robotic manipulation problem. Several researchers have
attempted to use multiple robots to cooperatively manipulate
or move passive objects, for example pushing a disc [28], or a
box [29], or kicking a ball [30]. A passive object will move
only if external force is applied to it. On the other hand,
crowd control attempts to manipulate the motion of active
objects which have the ability to move on their own. This
usually makes active objects more difficult to control. So
far, no methods have been proposed to manipulate multiple
active objects using multiple robots.

B. Related Work: Simulation and Scalability

There has been extensive work to simulate behaviors
of large groups of humans or animals. A wide variety of
models have been explored, including cellular automata [31],
behavior-based modeling [32], [33], [34], [18] and flow-
dynamics-based simulation [3], [35], [36], [37]. While some
of these approaches have crowd control in mind, the existing
simulations [38], [39], [40] have only considered simple
scenarios.

Scalable group simulation is an important application of
computer graphics, particularly in simulating crowds and
pedestrians [31], [41], [42], [43]. A critical requirement of
a natural looking simulation is to populate the environment

(a)

(b)

(c)

Fig. 1. (a) An environment and associated terms. Steering the flock using
(b) a straight line (c) a side-to-side motion.

with large sets of interacting agents. This requirement raises
several scalability issues in behavior computation, trajectory
control, rendering, and authoring. Several methods have been
proposed to deal with the computational scalability issues
using topological data structures [44], hierarchical structures
[45], k-d trees, quad-trees [46], and the concept of “region of
interest” [12]. Computational scalability can also be tackled
using top-down approaches based on the observation that the
dynamics of a crowd share many common properties with
flow dynamics. Rather than simulating individual agents, the
flow of a crowd is computed [3], [35], [36], [37].

In multi-robot systems, much work on group behaviors has
focused on formation-keeping e.g., [47], coordination, task
allocation, mapping and localization. We refer the reviewers
to the surveys on recent work on multi-robot systems by
Schultz et al. [48], [49], [50].

Computational scalability is also an important issue when
a large crowd of robots is involved. Many systems address
this issue by using a multiple layer or architecture or using
simpler behaviors. For example, Goldenstein et al. [51] dealt
with scalability by using a three-layer system. Parker et al.
[52], [53] handled this issue by adopting a heterogeneous
approach i.e., by partitioning different tasks to three distinct
classes of robots. Research in swarm robotics (such as I-
Swarm and Swarm-bots; see surveys in [54]) have focused
on using the emergent behaviors of a large number of cheap
homogeneous robots to accomplish tasks such as covering
and foraging.

There is also a significant amount of work in planning for
multi-robot (or multi-agent) navigation [55], [56], [13]. More
recently, Sung et al. [57] proposed a system that simulates
goal-directed crowds using motion graph and constraint
solver for several types of constraints. Lau and Kuffner
[58] proposed a behavior planning algorithm that performs a
global search of the Finite State Machine. Sud et al [59] used
first- and second-order Voronoi diagrams and van den Berg
et al. [60] used the idea of a “reciprocal velocity obstacle”
for real-time multi-agent planning.

III. PRELIMINARIES

A. Shepherd Behaviors

In this section, we define some of the terms and concepts
that are used later in the paper. A shepherd is an external
agent that influences the movement of the flock. A flock is a
collection of agents that try to steer away from the shepherd.
The shepherd’s task is to steer the flock to desired locations.
In addition to steering the flock, the shepherd attempts to
keep the flock in a cohesive group, where each member is
in visible range of at least one other member of the group.
Separation of the flock into multiple groups may be caused
by repulsive forces exerted by obstacles, or by shepherds.

A configuration is the full specification of the position
and velocity of flock members and shepherds. Therefore,
a group control problem with n flock members and m
shepherds in a 2-d workspace will have a configuration
space in 4(n + m) dimensions. A roadmap is an abstract
representation of the feasible configuration space in a given
environment, given as a directed graph G = (V,E), where
each node in V represents a valid configuration, and each
directed edge (p, q) ∈ E denotes that it is possible for the
flock to travel from configuration p to configuration q. We
use the term milestone to denote any intermediate position
that the shepherd attempts to steer the flock towards, and
we use the term steering point to denote any position to
which the shepherd moves himself in order to influence the
movement of the flock; see Figure 1(a).

We define a shepherd’s locomotion as the manner in
which a shepherd moves to control the movement of a flock.
The shepherd’s locomotion remains an invariant in different
shepherding behaviors and dramatically affects the quality
of simulation. We divide the shepherd’s locomotion into
two sub-problems: approaching and steering. In approaching
locomotion, the shepherd attempts to get close to the flock.
In steering locomotion, the shepherd attempts to push to
flock forward. Two examples of the shepherd’s steering
locomotion can be seen in Figures 1(b) and (c). We will
use the shepherd’s locomotion to move the flock forward in
the local planner discussed next.

B. Local Planning

In traditional probabilistic motion planning methods, a lo-
cal planner is used to connect pairs of nearby configurations.
Examples of traditional local planners include: the straight-
line planner (which simply connects configurations through
direct interpolation); the rotate-at-s planner [61]; and the A∗

planner. The local planner used in our planning method is a
simulation defined by a set of behavior rules for how each
of the agents will move.

More specifically, our local planner first finds a path in
workspace from the center of the flock to the goal position.
In our implementation, the path is extracted from the medial
axis of the free workspace. (Examples of these workspace
medial axes can be found in Fig. 3.) Then, the shepherd
pushes the flock along the path by performing a sequence
of locomotions determined by on the current state of the

flock. As with most traditional local planners, this local
planner may fail to lead the flock to a given milestone. For
example, the shepherds may not have enough room to push
the flock, or a passage may be too narrow for the flock to pass
through. The SIMULATE procedure in Algorithm 1 sketches
an overview of the local roadmap.

IV. OUR METHODS

In our motion planning method, the input is a non-toroidal
workspace W , an initial configuration qinit, and a goal
configuration qgoal. If a solution is found, it is given by the
planner as a path through the feasible configuration space C-
free of valid configurations that guides the flock from qinit to
qgoal. These planners incrementally build the roadmap. The
connectivity of nodes of the roadmap is determined by the
local planner described in III-B.

A. RRT-based planners

Our RRT-based planner (see Algorithm 1) constructs the
roadmap G by repeatedly attempting to extend G towards
new randomly generated configurations in W . For RRT, the
procedure SELECT-INTERMEDIATE GOAL chooses a random
configuration g in the workspace, and the procedure SELECT-
NODE-TO-EXPAND chooses the node already in G that is
closest to g.

Algorithm 1 Tree-Based Planner
procedure TREE-BUILD(qinit)

G.init(qinit)
for k = 1 to K do

g ← SELECT-INTERMEDIATE-GOAL
p← SELECT-NODE-TO-EXPAND
r ← SIMULATE(G,p,g,simsteps)
if r = Success then

G.add edge(p, g)
return G

procedure SIMULATE(G,p,g,simsteps)
for i = 1 to simsteps do

for shepherd s in S do
Use workspace roadmap to find a path to g
Select a milestone m on the path.
Calculate new target tnew for s
Move s towards tnew

if flock is close to g then
return Success

B. EST-based planners

Our EST planner is similar to the RRT planner presented in
Algorithm 1, with a few key differences. Instead of expand-
ing the tree towards a randomly generated configuration, EST
operates by first choosing an existing node p in G to expand
based on a probability distribution πG (in the procedure
SELECT-NODE-TO-EXPAND). Then, within a neighborhood
of p, it selects an intermediate milestone g to expand to
(SELECT-INTERMEDIATE-GOAL). A key design decision in

Start

Goal

(a) Meta Graph (b) Path

Fig. 2. (a) Broken T environment with a meta graph. The dark areas in
the figure are obstacles. Each node in a meta graph is shown as an oriented
disc. (b) A path found by the fuzzy meta-graph planner.

the implementation of EST algorithms is the choice of πG to
prevent excessively dense sampling of configurations in the
workspace. We have implemented several variations of the
EST method which vary only in the selection of πG:
• BASICEST – The node to expand is selected randomly;

that is, πG is uniformly distributed.
• NAIVEEST – The distribution πG is weighted so that

nodes with fewer neighbors are more likely to be
selected over nodes with more neighbors.

• MINEST – The node with the fewest neighbors is
chosen every time.

C. PRM-based planner

In our PRM based method, we build a meta graph contain-
ing the set of possible navigation routes in a fuzzy way. Each
node in a meta graph defines a set of flock configurations
(excluding the shepherd positions) that are conforming to the
properties of the node. As in the other methods, edges in the
meta graph approach are directed. The weight of an edge in
a meta graph presents the probability of successful herding
from the start node to the end node of the directed edge. An
visual depiction of a meta graph is shown in Figure 2. In a
similar fashion to fuzzy or lazy PRM approaches [62], [63],
paths from the meta graph are extracted and evaluated until
a path is found, or until no path can be found to connect the
start and the goal configurations in the meta graph.

Each node in a meta graph represents a meta configuration.
Each meta configuration C is as an oriented disc in a four
dimensional space, and is this composed of four values: posi-
tion (pC = (xC , yC)), orientation (θC) and radius (rC). Each
meta configuration intuitively defines a set of conforming
flocks. We say a flock is conforming to a meta configuration
C if the minimum enclosing circle of the flock is enclosed
by C and the angle between the mean velocity of the flock
and θC is less than a user defined threshold.

We say that a meta configuration is free if the disc does
not intersect an obstacle. To generate one free meta config-
uration, we first assign a random position and orientation,
whose ranges are fixed.

To assign a random radius, we compute the smallest
enclosing disc as follows: First, we consider a group con-

taining Nf flock members where each individual member is
enclosed in a radius Rf circle. The compact area of a group
is the smallest circle that one can put all group members
into. Ideally, shepherds should control the flock so that all
members are inside its compact area.

This is an inverse version of the computationally difficult
packing circles in a circle problem [64]. The objective of this
problem is to find the maximum radius of K equally-sized
smaller circles that can be packed into a unit circle. Since we
do not have to compute the exact value of the radius Rc of the
compact area, we approximate it by considering a bounding
square of Nf flock members. In this case, the compact area
will be the minimum circle enclosing that square. That is,
we approximate Rc as:

Rc = Rf
√

2Nf (1)

The radius of our meta configuration is set to be a random
value between Rc and 3Rc.

The weight of an edge that connects meta configurations
C1 and C2 represents the probability that a flock conforming
to C1 can be guided by the shepherds so that the flock is
conforming to C2. This can be estimated in several ways.
For example, we can estimate this probability by generating
a set of random flocks conforming to C1, and, for each
flock, we find a path to pC2 using one of the tree-based
planners described above. While this approach is accurate,
it is inefficient due to the requirement of running many
(usually thousands or even tens of thousands) of simulations.
The approach we use estimates the probability by using the
differences in position and orientation between C1 and C2.
The distance is defined as the follows:

dist(C1, C2) =

∞ if θC1,V ≥ τ ,
∞ if θC2,V ≥ τ ,
|θC1−θC2 |

π + dist(pC1 ,pC2)

D otherwise,

where θCi,V is the angle between V and Ci’s facing direc-
tion, V = pC2−pC1 , dist(pC1 , pC2) is the Euclidean distance
between pC1 and pC2 and D is the diagonal distance of the
bounding box. In each iteration of the query phase, a path is
extracted from the meta graph. To check the feasibility of a
consecutive pair of meta configurations in the path, we use
simulation to determine if the final configuration of the flock
conforms to the end meta configuration.

Note that this meta-graph planner is not probabilistically
complete. That is, there are some situations where our
planner cannot find the answer even if the path exists – such
as in problems that require the flock to form a long line. This
is because we confine our radius of our meta configurations
and disallow the discs from the meta configurations from
intersecting workspace obstacles.

V. EXPERIMENTAL RESULTS

We tested the proposed motion planners on the five
environments shown in Fig. 2 and Fig 3. In the Spiral
environment (Fig. 2), the start configuration is at the center
and the goal is outside the outer most wall of a spiral-shaped

Goal

Start

(a) S Env.

Start

Goal

(b) Spiral Env.

Goal

Start

(c) Maze 1 Env.

Goal

Start

(d) Maze 2 Env.

Fig. 3. Environments used for experiments. The workspace medial axes are
shown in all figures. We use these medial axes as the workspace roadmap
for local planning.

obstacle. In the S environment (Fig. 3(a)), the start and
end configurations are at the ends of an S-shaped passage.
In the Broken T environment (Fig. 3(b)), the free space is
separated by three bars, with the middle bar equidistant to the
bars on the side. We also tested the planners on two maze
environments. The first maze (Fig. 3(c)) is similar to the
S environment with additional road blocks in the S-shaped
passage. The second maze (Fig. 3(d)) is composed of several
cylinders – a larger cluster at the upper-right corner and a
smaller cluster at the lower-left corner.

We compared our planners to a simulation-only approach,
which only uses the simulator to steer the flock with the help
from the medial axis of the workspace. This simulation-only
approach is the same method used in [22], [65]. In our test
suite, we have 12 variants of EST-based planners: MINEST,
NAIVEEST, and BASICEST with neighborhood sizes of 3,
5, 7 and 9. In our test suite we also have one RRT-based
planner, and one fuzzy meta-graph planner.

In Table I, we show success rates for each of the algo-
rithms. Each success rate in the table is an average over 50
runs, and all comparisons are statistically significant at the
95% confidence level.

We find that planners do well in the Broken T, S and
Spiral environments. We also find that planners do poorly
on the maze environments. We believe the reason for this
is that we do not allow the planners to search for long
enough. For example, the fuzzy meta-graph planner will need
to exhaustively check all the shorter but more difficult paths
before it can try the longer path with larger clearance. This
is clearly shown in the S and maze 1 environments. The

TABLE I
PROPORTION OF SUCCESSFUL RUNS.

Method S Broken T Spiral Maze 1 Maze 2
Simulation Only 0.72 0.58 0.16 0.6 0.92

MinEST (nhood=3) 0.25 0.5 0.5 0.45 0.6
MinEST (nhood=5) 0.5 0.65 0.25 0.3 0.35
MinEST (nhood=7) 0.55 0.45 0 0.35 0.35
MinEST (nhood=9) 0.5 0.35 0 0.15 0.25

NaiveEST (nhood=3) 0.15 0.25 0 0 0.25
NaiveEST (nhood=5) 0.25 0.75 0 0.05 0.2
NaiveEST (nhood=7) 0.6 0.85 0 0.1 0.25
NaiveEST (nhood=9) 0.65 0.75 0 0.05 0.25
BasicEST (nhood=3) 0.25 0.3 0 0 0.15
BasicEST (nhood=5) 0.4 0.6 0 0 0.3
BasicEST (nhood=7) 0.5 0.8 0 0 0.45
BasicEST (nhood=9) 0.7 0.8 0 0.05 0.15

rbrmRRT 0.4 0.25 0 0 0.2
dbrmRRT 0.8 0.45 0 0.15 0.3

Fuzzy Meta-Graph 0.96 0.58 0.62 0.08 0.28

Note: Simulation Only and Fuzzy Meta-Graph were run 50 times each;
the rest were run 20 times each.

main difference between maze 1 and S environment are the
introduction of islands in the S shaped passage.

In the S environment, the fuzzy meta-graph planner clearly
out-performs simulation-only. In the maze 1 environment, the
performance of simulation methods degraded only slightly,
whereas the success rate of the fuzzy meta-graph planner
drops significantly.

One important observation we had is that motion planning
helps improve the success rate, albeit slowly. In Fig. 4,
we show the success rate of the planning approaches on
a sample of initial configurations. This plot confirms the
hypothesis that simulation-only approaches may often get
stuck, whereas many of the planning approaches eventually
find solutions given a larger simstep budget. This is partic-
ularly clear in the S and spiral environments as shown in
Fig. 4(a) and Fig. 4(b) . The planners have lower success
rates before 80K simulation steps but end at much a higher
success rate (60% vs. 18%). Even in the maze environments,
in which the planners perform poorly, in Fig. 4(c), we can
still see the continuing improvement throughout the entire
experiment.

VI. CONCLUSION

The combination of motion planning techniques and
behavior-based simulation allows us to study the effects of
planning on domains such as group and swarm control. Using
simple extensions to existing EST and RRT methods, we
have demonstrated that planning can potentially be beneficial
to explore more solutions in scenarios where simulation
alone is not adequate. However, there are still cases (such
as environments cluttered with islands) where our planning
techniques perform poorly, and more research is needed to
understand and address those issues.

One avenue for future study would be to apply different
metrics for evaluating the quality of a planned path. These
metrics may include the number of times the flock separates,
or the amount of time spent shepherding.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000

Pr
op

or
tio

n
of

 S
uc

ce
ss

fu
l R

un
s

So
 F

ar

Simulation Steps

Simulation Only
BasicEST (nhood=9)

MinEST (nhood=3)
NaiveEST (nhood=9)

dbrmRRT
Fuzzy Meta-Graph

(a) S Env.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000

Pr
op

or
tio

n
of

 S
uc

ce
ss

fu
l R

un
s

So
 F

ar

Simulation Steps

Simulation Only
BasicEST (nhood=9)

MinEST (nhood=3)
NaiveEST (nhood=9)

dbrmRRT
Fuzzy Meta-Graph

(b) Spiral env.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000

Pr
op

or
tio

n
of

 S
uc

ce
ss

fu
l R

un
s

So
 F

ar

Simulation Steps

Simulation Only
BasicEST (nhood=9)

MinEST (nhood=3)
NaiveEST (nhood=9)

dbrmRRT
Fuzzy Meta-Graph

(c) Maze 1 env.

Fig. 4. Plots showing the proportion of successful runs so far versus
the number of simulation steps. Note the plateau for the simulation-only
method (the bold black line) which shows that for many of the samples,
simulation-only gets stuck and does not make progress.

ACKNOWLEDGMENT

This work has benefited from the contributions of Stephen
Donnelly, who created the experimental environments in our

test suite. We also thank Brian Hrolenok, Sean Luke, and
Keith Sullivan for their valuable input and discussion.

REFERENCES

[1] D. A. Shell and M. J. Matarić, “Directional audio beacon deployment:
an assistive multi-robot application,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2004, pp. 2588–2594.

[2] M. Brenner, N. Wijermans, T. Nussle, and B. de Boer, “Simulating
and controlling civilian crowds in robocup rescue,” in Proceedings of
RoboCup 2005: Robot Soccer World Cup IX, 2005.

[3] R. L. Hughes, “A continuum theory for the flow of pedestrians,”
Transportation Research Part B: Methodological, vol. 36, no. 6, Jul
2002.

[4] ——, “The flow of human crowds,” Annual Review of Fluid Mechan-
ics, vol. 35, no. 1, p. 169, 2003.

[5] M. F. Fingas, The basics of oil spill cleanup, 2nd ed. Lewis Publishers,
2001.

[6] A. C. Schultz and W. Adams, “Continuous localization using evidence
grids,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 4, 1998,
pp. 2833–2839.

[7] 2002, endangered Wildlife Trust. EWT airport safety project.
http://www.ewt.org.za/.

[8] J. M. Kenny, C. McPhail, D. N. Farrer, D. Odenthal, S. Heal, J. Taylor,
S. Ijames, and P. Waddington, “Crowd behavior, crowd control, and the
use of non-lethal weapons,” Penn State Applied Research Laboratory,
Tech. Rep. A274644, January 2001.

[9] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots under obstacle and dynamic balance
constraints,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001,
pp. 692–698.

[10] K. Miyazawa, Y. Maeda, and T. Arai, “Planning of graspless manipu-
lation based on rapidly-exploring random trees,” in (ISATP 2005) The
6th IEEE International Symposium on Assembly and Task Planning
From Nano to Macro Assembly and Manufacturing 2005, 2005, p. 7.

[11] J. C. Thierry Siméon, Jean-Paul Laumond and A. Sahbani, “Manipula-
tion planning with probabilistic roadmaps,” The International Journal
of Robotics Research, vol. 23, no. 7-8, p. 729, 2004.

[12] F. Morini, B. Yersin, J. Maim, and D. Thalmann, “Real-time scalable
motion planning for crowds,” in Proceedings of the International
Conference on Cyberworlds, Hannover, Germany, 2007, pp. 24–26.

[13] A. Kamphuis and M. H. Overmars, “Finding paths for coherent
groups using clearance,” in SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation. New
York, NY, USA: ACM Press, 2004, pp. 19–28.

[14] J. Kirkland and A. Maciejewski, “A simulation of attempts to influence
crowd dynamics,” in IEEE International Conference on Systems, Man
and Cybernetics, vol. 5, 2003, pp. 4328–4333.

[15] F. Aubé and R. Shield, “Modeling the effect of leadership on crowd
flow dynamics.” in ACRI, ser. Lecture Notes in Computer Science,
P. M. A. Sloot, B. Chopard, and A. G. Hoekstra, Eds., vol. 3305.
Springer, 2004, pp. 601–621.

[16] A. C. Schultz, J. J. Grefenstette, and W. Adams, “Robo-shepherd:
Learning complex robotic behaviors,” in In Robotics and Manufactur-
ing: Recent Trends in Research and Applications, Volume 6. ASME
Press, 1996, pp. 763–768.

[17] R. T. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron,
“Experiments in automatic flock control,” J. Robot. and Autonom. Sys.,
vol. 31, pp. 109–117, 2000.

[18] J. Funge, X. Tu, and D. Terzopoulos, “Cognitive modeling: Knowl-
edge, reasoning and planning for intelligent characters,” in Computer
Graphics, 1999, pp. 29–38.

[19] M. A. Potter, L. Meeden, and A. C. Schultz, “Heterogeneity in the
coevolved behaviors of mobile robots: The emergence of specialists,”
in IJCAI, December 2001, pp. 1337–1343.

[20] L. E. Parker, “Current research in multi-robot systems,” Journal of
Artificial Life and Robotics, vol. 7, 2003.

[21] T. Balch and R. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Trans. Robot. Automat., vol. 14, no. 6, pp. 926–
939, 1998.

[22] J.-M. Lien, O. B. Bayazit, R.-T. Sowell, S. Rodriguez, and N. M.
Amato, “Shepherding behaviors,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), April 2004, pp. 4159–4164.

[23] R. Applegate, Riot control: materiel and techniques. Stackpole Books,
1969.

[24] R. Isaacs, Differential games: A mathematical theory with applications
to warfare and pursuit and optimization. John Wiley, 1965.

[25] C. W. Reynolds, “Competition, coevolution and the game of
tag,” 1994. [Online]. Available: http://www.red3d.com/cwr/papers/
1994/alife4.html

[26] D. Cliff and G. F. Miller, “Co-evolution of pursuit and evasion II:
Simulation methods and results,” in From animals to animats 4,
P. Maes, M. J. Mataric, J.-A. Meyer, J. B. Pollack, and S. W. Wilson,
Eds. Cambridge, MA: MIT Press, 1996, pp. 506–515.

[27] G. Miller and D. Cliff, “Co-evolution of pursuit and evasion I:
Biological and game-theoretic foundations,” School of Cognitive and
Computing Sciences, University of Sussex, Brighton, UK, Tech. Rep.
CSRP311, 1994.

[28] D. N. A. van der Stappen and M. Overmars, “Pushing a disk using
compliance,” IEEE Trans. Robot. Automat., vol. 23, no. 3, pp. 431–
442, 2007.

[29] A. Yamashita, T. Arai, J. Ota, and H. Asama, “Motion planning of
multiple mobile robots for cooperative manipulation and transporta-
tion,” IEEE Trans. Robot. Automat., vol. 19, no. 2, pp. 223–237, 2003.

[30] P. Stone and M. Veloso, “A layered approach to learning client be-
haviors in the RoboCup soccer server,” Applied Artificial Intelligence,
vol. 12, pp. 165–188, 1998.

[31] V. Blue. and J. Adler, “Cellular automata model of emergent collective
bi-directional pedestrian dynamics,” in Artificial Life VII, The Seventh
International Conference on the Simulation and Synthesis of Living
Systems, 2000, pp. 21–30.

[32] C. W. Reynolds, “Flocks, herds, and schools: A distributed behaviroal
model,” in Computer Graphics, 1987, pp. 25–34.

[33] D. C. Brogan and J. K. Hodgins, “Group behaviors for systems with
significant dynamics,” in Autonomous Robots, 1997, pp. 137–153.

[34] X. Tu and D. Terzopoulos, “Artifical fishes: physics, locomotion,
perception, behavior,” in Proc. ACM SIGGRAPH, 1994, pp. 43–50.

[35] S. Stylianou, M. M. Fyrillas, and Y. Chrysanthou, “Scalable pedestrian
simulation for virtual cities,” in VRST ’04: Proceedings of the ACM
symposium on Virtual reality software and technology. New York,
NY, USA: ACM Press, 2004, pp. 65–72.

[36] S. Chenney, “Flow tiles,” in SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation. New
York, NY, USA: ACM Press, 2004, pp. 233–242.

[37] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” ACM
Trans. Graph., vol. 25, no. 3, pp. 1160–1168, 2006.

[38] A. Kozyrev, V. Leonov, and V. Selivanov, “Computer simulation
of critical behavior of localized masses (crowd),” in 3rd European
Symposium on Non-Lethal Weapons, 2005.

[39] E. Weisel, F. McKenzie, Q. Nguyen, M. Petty, J. Camp, J. Anthony,
and R. Albright, “Crowd federate implementation for maneuver sup-
port simulation,” in Simulation Interoperability Workshop, 2006.

[40] H. Piland, Q. Nguyen, F. McKenzie, and B. Silverman, “Incorporating
weapon effects injury model into the crowd federate,” in Proceedings
of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, 2006.

[41] K. Ashida, S. Lee, J. Allbeck, H. Sun, N. Badler, and D. Metaxas,
“Pedestrians: Creating agent behaviors through statistical analysis of
observation data,” in Computer Animation, 2001, pp. 84–92. [Online].
Available: citeseer.ist.psu.edu/ashida01pedestrians.html

[42] R. A. Metoyer and J. K. Hodgins, “Reactive pedestrian path following
from examples,” in CASA ’03: Proceedings of the 16th International
Conference on Computer Animation and Social Agents (CASA 2003).
Washington, DC, USA: IEEE Computer Society, 2003, p. 149.

[43] S. J. Rymill and N. A. Dodgson, “Psychologically-based vision and
attention for the simulation of human behaviour,” in GRAPHITE ’05:
Proceedings of the 3rd international conference on Computer graphics
and interactive techniques in Australasia and South East Asia. New
York, NY, USA: ACM Press, 2005, pp. 229–236.

[44] F. Lamarche and S. Donikian, “Crowd of virtual humans: a new
approach for real time navigation in complex and structured envi-
ronments,” Computer Graphics Forum, vol. 23, no. 3, p. 59, 2004.

[45] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation. New York, NY, USA: ACM Press, 2005,
pp. 19–28.

[46] A. Steed and R. Abou-Haidar, “Partitioning crowded virtual environ-
ments,” in VRST ’03: Proceedings of the ACM symposium on Virtual
reality software and technology. New York, NY, USA: ACM Press,
2003, pp. 7–14.

[47] T. Balch and M. Hybinette, “Social potentials for scalable multirobot
formations,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000,
pp. 73–80.

[48] A. C. Schultz and L. E. Parker, Multi-Robot Systems: From Swarms
to Intelligent Automata. Kluwer, 2002.

[49] A. Schultz, L. E. Parker, and F. Schneider, Multi-Robot Systems: From
Swarms to Intelligent Automata: Volume II. Kluwer, 2003.

[50] L. E. Parker, F. Schneider, and A. Schultz, Multi-Robot Systems: From
Swarms to Intelligent Automata, Volume III. Springer, 2005.

[51] S. Goldenstein, M. Karavelas, D. Metaxas, L. Guibas, and
A. Goswami, “Scalable nonlinear dynamical systems for agent steering
and crowd simulation,” Computers and Graphics, vol. 25, no. 6, pp.
983–998, 2001.

[52] F. Fernandez, D. Borrajo, and L. E. Parker, “A reinforcement learning
algorithm in cooperative multi-robot domains,” Journal of Intelligent
and Robotic Systems, vol. 43, no. 2-4, pp. 161–174, 2005.

[53] A. Howard, L. E. Parker, and G. S. Sukhatme, “The SDR experience:
Experiments with a large-scale heterogeneous mobile robot team,” in
Proceedings of 9th International Symposium on Experimental Robotics
(ISER), 2004.

[54] E. Sahin and W. Spears, Swarm Robotics. Springer, 2004.
[55] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer

Academic Publishers, 1991.
[56] T.-Y. Li and H.-C. Chou, “Motion planning for a crowd of robots,”

in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), September 2003, pp. 4215–4221.

[57] M. Sung, L. Kovar, and M. Gleicher, “Fast and accurate goal-directed
motion synthesis for crowds,” in SCA ’05: Proceedings of the 2005
ACM SIGGRAPH/Eurographics symposium on Computer animation.
New York, NY, USA: ACM Press, 2005, pp. 291–300.

[58] M. Lau and J. J. Kuffner, “Behavior planning for character animation,”
in SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation. New York, NY, USA: ACM
Press, 2005, pp. 271–280.

[59] A. Sud, E. Andersen, S. Curtis, and D. M. Ming Lin, “Real-time path
planning for virtual agents in dynamic environments,” in 2007 IEEE
Virtual Reality Conference, 2007, pp. 91–98.

[60] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), pp. 1928–1935, May 2008.

[61] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for probabilistic
roadmap methods,” IEEE Trans. Robot. Automat., vol. 16, no. 4, pp.
442–447, August 2000.

[62] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy PRM for manip-
ulation planning,” IEEE/RSJ International Conference on Intelligent
Robotics and Systems, pp. 1716–1722, 2000.

[63] R. Bohlin and L. E. Kavraki, “Path planning using Lazy PRM,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000, pp. 521–528.

[64] R. Graham, B. Luboachevsky, K. Nurmela, and P. Ostergard, “Dense
packings of congruent circles in a circle,” Discrete Mat., vol. 181, pp.
139–154, 1998.

[65] J.-M. Lien, S. Rodriguez, J.-P. Malric, and N. M. Amato, “Shepherding
behaviors with multiple shepherds,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), April 2005, pp. 3413–3418.

