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Abstract

Minkowski sum is a fundamental operation in many ge-
ometric applications, including robotics, penetration depth
estimation, solid modeling, and virtual prototyping. How-
ever, due to its high computational complexity and sev-
eral nontrivial implementation issues, computing the ex-
act boundary of the Minkowski sum of two arbitrary poly-
hedra is generally a difficult task. In this work, we pro-
pose to represent the boundary of the Minkowski sum ap-
proximately using only points. Our results show that this
point-based representation can be generated efficiently. An
important feature of our method is its straightforward im-
plementation and parallelization. We also demonstrate
that the point-based representation of the Minkowski sum
boundary can indeed provide similar functionality as mesh-
based representations can. We show several applica-
tions in motion planning, penetration depth approxima-
tion and modeling. An implementation of the proposed
method can be obtained from our project webpage at:
http://www.cs.gmu.edu/∼jmlien/mksum/

1 Introduction

Minkowski sum of two sets P andQ in R
d is defined as:

P ⊕ Q = {p + q | p ∈ P, q ∈ Q}. (1)

Typically, P and Q represent polygons in R
2 or polyhedra

in R
3. Minkowski sum is an important operation due to it’s

fundamental role in many geometric applications, including
image analysis, robotics, penetration depth estimation, solid
modeling, and virtual prototyping, to name just a few.
Several methods have been proposed during the last three

decades to compute Minkowski sum and its boundary; see
surveys in [7,9,27]. In particular, due to the straightforward
implementation in images, Minkowski operations comprise
a wide spectrum of applications in mathematical morphol-
ogy [24]. Even though computing Minkowski sums from
continuous representations, e.g., polygons, is more difficult
than from image-based representations, efficient methods

Figure 1. The Minkowski sum boundary (right) of the
“dancing children” model (left) and a unit cube. The
Minkowski sum boundary is composed of 274,976 points
generated in 34.5 seconds using four parallel threads.

have been proposed, e.g., using convolutions [12]. Even
in 3-dimensions, several methods [7, 8, 11, 15] are known
to compute the Minkowski sum of convex polyhedra effi-
ciently.
For general 3-d polyhedra, a typical strategy for com-

puting the Minkowski sum boundary of two polyhedra, de-
noted as P and Q, is to first apply convex decompositions
to P and Q, and then compute the pairwise Minkowski
sums between the decompositions of P and Q. The final
Minkowski sum boundary is extracted from the union of
all the pairwise Minkowski sums. Despite the popularity
of this strategy, it has several disadvantages. First, because
there can be O(n + m) components produced by convex
decomposition, the total number of the pairwise Minkowski
sums can be very large, i.e., O(mn), wherem and n are the
size of P and Q, respectively. For example, to compute the
Minkowski sum of the Stanford bunny and the David model,
whose convex surface decompositions contain 16549 and
85132 components, resp., we have to compute more than
1.4 billion pairwise Minkowski sums! In the worst case,
the Minkowski sum computation can take O(m3n3) time
[14]. Second, it is generally difficult to robustly gener-
ate the union of the pairwise Minkowski sums. Many de-
generate cases need to be considered carefully in imple-
mentation. Even though several boolean-operation meth-
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Figure 2. An overview of our method. First, point sets SP and SQ are sampled from the input polyhedra P and Q. The the
Minkowski sum SP⊕Q of SP and SQ is computed. Finally, the boundary points S is filtered (via normal filter, octree filter and
collision detection (CD) filter) from SP⊕Q to represent the Minkowski sum boundary of P and Q.

ods, e.g., [1, 13], have been proposed, no existing methods
can be used to compute Minkowski sum properly due to
the errors accumulated after performing a few union oper-
ations in a series. The recently proposed approximation-
based Minkowski sum [27] is designed to avoid this issue.
It is these difficulties that motivate us to seek an alterna-

tive approach. Please note that this work does not attempt
to address all these existing issues. Instead, our goal is to
provided a very simple method to robustly compute an ap-
proximate (i.e., point based) and accurate (i.e., every point
is a valid boundary point) representation of Minkowski sum
boundary.

1.1 Our Approach

In this work, we propose an efficient method to compute
the Minkowski sum boundary of two polyhedra. Our strat-
egy is to represent the boundary of the Minkowski sum
using only points without connecting them into meshes.
Because of this point-based representation, our method is
more efficient and easier to implement than mesh-based rep-
resentations. In particular, our approach does not require
convex decomposition, thus does not need to merge results
from the sub-problems. Neither of these steps is trivial.
Our approach is simple. Given two polygons or polyhe-

dra P andQ, our goal is to generate a point set S so that the
external boundary ∂(P ⊕Q) of the Minkowski sum P ⊕Q
is well covered (this term will be defined later in Section 3)
by S. Figure 1 shows a result produced by our method.
To generate the point set S, we uniformly sample two

point sets from the boundaries of both P and Q and name
them SP and SQ. Then, each point in SQ is replaced by SP .
We denote the resulting points of this step as SP⊕Q. Finally,
in our last step, we filter out (inner) points that are not on
the boundary. Later in this paper, we will introduce three
filters, namely collision detection filter (Section 4), normal
filter (Section 5), and octree filter (Section 6). In Figure 2,
we provide an overview of the proposed method.
It is clear that SP⊕Q has Θ(mn) points, where m and

n are the size of SP and SQ, respectively. Therefore, in
the worst case, our approach takes O(mnTfilter) time to
compute a Minkowski sum boundary, where Tfilter is the
time complexity of filtering a single point, which is domi-
nated by collision detection computation. Fortunately, be-
cause the proposed approach does not depend on the solu-
tions obtained from the sub-problems, our method can be
easily parallelized to handle large geometric models.
Minkowski sum is an important operation because it can

be applied to many geometric problems. Therefore, it is
crucial for us to show that our point-based representation
can also provide a wide range of applications. In Section 8,
we will show that the point-based representation of the
Minkowski sum boundary can indeed provide similar func-
tionality as mesh-based representations. We demonstrate
the applications in motion planning, penetration depth ap-
proximation and solid modeling using the proposed point-
based Minkowski sum boundaries.

1.2 Key Contributions

We propose an algorithm to compute Minkowski sum
boundary. The resulting representation is point based. Our
approach gives up exact and continuous representation but
gains several benefits which have not been provided by ex-
isting methods. These benefits include:

• efficiency,
• robustness (even for non-manifold models with open
surfaces),

• easy implementation (i.e., no convex decomposition
and no need to perform union),

• easy parallelization,
• multiresolution representations, and
• similar functionality as mesh-based representations

An implementation of the proposed method can be ob-
tained (for non-commercial use) from our project webpage
at: http://www.cs.gmu.edu/∼jmlien/mksum/



2 Related Work

Our work is inspired by the increasingly popular work
on point set data (PSD) in computer graphics and computer
vision, e.g., modeling [21], rendering [2,23], feature extrac-
tion [20], collision detection [16], boolean operation [1],
mesh offsetting [6], and surface analysis [19]. One of the
reasons for its popularity is that the connectivity informa-
tion is not always easy to obtain and maintain. Similarly,
in Minkowski sum computation, while obtaining the point-
based representation is easy, obtaining an explicit or contin-
uous representation, e.g., a mesh, can be difficult to com-
pute.
Many methods have been proposed to compute

Minkowski sum (see surveys in [7, 9, 27]). Here, we fo-
cus on work that computes the Minkowski sum boundaries
of polygons and polyhedra.
Ghosh [9] proposed a unified approach to handle 2-d or

3-d convex and non-convex objects by introducing negative
shape and slope diagram representation. Slope diagram is
closely related to Gaussian map, which has been used to
compute to implement very efficient Minkowski sum com-
putation of convex objects by Fogel and Halperin [7].
Several other methods have been proposed to handle

convex objects. Guibas and Seidel [12] proposed an output
sensitive method to compute convolution curves, a super-
set of the Minkowski sum boundaries. Kaul and Rossignac
[15] proposed a linear time method to generate a set of
Minkowski sum facets. Output sensitive methods that com-
pute the Minkowski sum of polytopes in d-dimension have
also been proposed by Gritzmann and Sturmfels [11] and
Fukuda [8].
Because the Minkowski sum of convex polyhedra is easy

to compute, most methods that compute the Minkowski
sum of non-convex polyhedra first compute the convex de-
composition and then compute the union of the Minkowski
sums of the convex components [18]. Unfortunately, neither
the convex decomposition nor the union of the Minkowski
sums is trivial to compute. In this paper, we propose a
new method to compute the point-based representation of
the Minkowski sum without computing the union and the
convex decomposition.
Following the same divide-and-conquer technique,

Varadhan and Manocha [27] proposed an approach to gen-
erate meshes that approximate Minkowski sum boundary
using marching cube technique to extract iso-surface from
the signed distance field. They proposed an adaptive sub-
division to improve the robustness and efficiency of their
method. They demonstrate several applications, includ-
ing motion planning [26], penetration depth estimation, and
morphological operations. Because their approach still de-
pends on convex decomposition, it still suffers from exces-
sive number of convex components in the decomposition.
Peternell et al. [22] proposed a method to compute the

Minkowski sum of two solids using points densely sampled

from the solids, and compute local quadratic approxima-
tions of these points. However, their method only identifies
the outer boundary of the Minkowski sum using a regular
grid, i.e., no hole boundaries are identified. This can be a
serious problem in particular for motion planning and pen-
etration depth computation.

3 Point-Based Minkowski Sum Boundary

In this section, we will describe a method to compute
Minkowski sum boundary in point-based representation.
Our goal is to produce a set of points to cover the bound-
ary of the Minkowski sum of two given polyhedra. More
specifically, we will generate a point set S so that S is a d-
covering of the Minkowski sum boundary, where d is a user
specified value. Intuitively, d controls the sampling density
of a boundary. A smaller d will produce a denser “approx-
imation” of the boundary. A more precise definition of d-
covering is provided below.

Definition 3.1. d-covering. We say a set of points S is a
d-covering of a surfaceM if, for every pointm ofM , there
exists a point in S whose distance tom is less than d.
Our strategy to accomplish this goal is straightforward.

Our approach is composed of three main steps. First, we
sample two point sets from the input P and Q. Second, we
generate the Minkowski sum of the point sets simply using
the definition in Equ. 1. Third, we separate the boundary
points (both hole and external boundaries) from the internal
points. Algorithm 3.1 outlines this strategy. In the follow-
ing, we will discuss each of these main steps in detail.

Algorithm 3.1: POINT-BASED-MSUM(P, Q, d)

comment: P andQ are polyhedra and d defines sampling density

SP ←sample(P, d); SQ ←sample(Q, d)
SP⊕Q ← ∅
for each p ∈ SP

do
j
for each q ∈ SQ

do SP⊕Q ← {SP⊕Q, p + q}
S ← FILTER(P, Q, SP⊕Q) (i)

Sample points. Let P andQ be two polyhedra. We gen-
erate two point sets from P and Q, denoted as SP and SQ.
The point set S representing the Minkowski sum boundary
of P and Q is simply

(SP ⊕ SQ) ∩ ∂(P ⊕ Q) .

Because we want the point set S to cover the entire
Minkowski sum boundary w.r.t. a user specified interval
d, we have to make sure that the points SP is a dp-covering
of ∂P and the points SQ is a dq-covering of ∂Q. It is our
task to determine the values of dp and dq from the input d.



Fortunately, as shown in Theorem 3.2, we can guaran-
tee that the final point set is at least a d-covering of the
Minkowski sum boundary of P and Q by simply letting
dp = dq = d. Moreover, since the boundaries of P and
Q are known, we can easily make sure that SP and SQ d-
cover ∂P and ∂Q, respectively.

Theorem 3.2. Let SP and SQ be two d-covering point sets
sampled from two polyhedral surface ∂P and ∂Q and let
SP⊕Q = SP ⊕ SQ and S = SP⊕Q ∩ ∂(P ⊕ Q). Then, S
must be a d-covering point set of ∂(P ⊕ Q).

Proof. A facet f on the Minkowski sum boundary can only
come from two sources: A facet of P orQ or a pair of edges
from P and Q [15]. It is obvious that when the facet f is
from a facet of P or Q, SP⊕Q must have enough points
to d-cover the facet f . When the facet f is formed by two
edges from P and Q, we should consider the worst case.
Since the points from the edges are d-covering, in the worst
case, these points will form a grid and each cell in the grid
is a d × d square. In this case, the longest distance from an
arbitrary point on the facet f to a grid point is

√
(
d

2
)2 + (

d

2
)2 =

d√
2

< d .

Therefore, in the worst case, the gird and therefore SP⊕Q is
a d-covering of the facet f . We conclude that SP⊕Q (thus
S) must be a d-covering point set of ∂(P ⊕ Q) if SP and
SQ are d-covering of ∂P and ∂Q.

ComputeMinkowski sum. This step is straightforward.
Using SP and SQ, we compute SP⊕Q by simply following
the Minkowski sum definition in Eqn. 1. It is obvious that
the size of SP⊕Q is Θ(mn), where m and n are the size
of SP and SQ, respectively. Because of this quadratic or-
der of growth, storing the coordinates of the entire point set
SP⊕Q in memory may become unpractical when m and n
are both large. Fortunately, this problem can be easily ad-
dressed, i.e., we can always compute the point coordinate
when needed without storing it.
Extract boundary points. In this final step, we sepa-

rate (filter) points to two groups: Boundary points and inner
points. Boundary points will be returned as our final answer
and inner points will be discarded.
We propose three filters in this paper. The first filter,

named normal filter discussed in Section 5, determines if
a pair of sampled points (from P and Q, resp.) is an inner
point by examining their origins (defined later in Defini-
tion 5.1) and orientations. The second filter, named octree
filter described in Section 6, constructs an octree, which al-
lows us to explore only points near the boundary and avoid
definite inner points. These two filters are efficient, but
they alone cannot filter out all inner points. The third filter,
named CD filter described in Section 4, uses collision de-
tection to separate boundary points from inner points. This

last filter is computational more expensive but it provides
an unambiguous decision.
These three filters can be combined to form the FILTER

subroutine on line (i) of Algorithm 3.1. Several combina-
tions are studied in our experiments (see Figure 5 in Sec-
tion 8). Because CD filter is the simplest, we will discuss it
first next.

4 Collision Detection (CD) Filter

Minkowski sum boundary is closely related to the con-
cept of “contact space” in Robotics. Every point in the con-
tact space represents a configuration that places the robot
in contact with (but without colliding with) the obstacles.
Given a translational robot P and obstacles Q, the con-
tact space of P and Q can be represented as ∂((−P ) ⊕ Q),
where −P = {−p | p ∈ P}. In other words, if a point x is
on the boundary of the Minkowski sum of two polyhedra P
and Q, then the following condition must be true:

(−P ◦ + x) ∩ Q◦ = ∅ ,

whereQ◦ is the open set ofQ and P +x denotes translating
P to x. Using this observation, the CD filter simply places
−P at a point of SP⊕Q and test if −P is in collision with
Q. If −P is collision free, the point is reported as a point
on the Minkowski sum boundary.

5 Normal Filter

In normal filter, we check a pair of points from SP and
SQ and determine if it will form an inner point. Kaul and
Rossignac [15] have shown that a facet of the Minkowski
sum boundary can only come from a facet of P and a vertex
from Q (or vice versa) or from a new facet formed by two
edges of P andQ if the facet, vertex and edges are properly
oriented [15]. Our strategy is derived directly from their
observation. Since our points are sampled from the polyhe-
dral surface, we first define the origin of a sample to ease
our discussion.

Definition 5.1. The origin of a sample x, denoted asO(x),
is a facet, an edge or a vertex of a polyhedron from which x
is sampled.
Let p and q be a pair of points sampled from P and Q,

respectively. We decide if p+q is an inner point by checking
the orientation of O(p) and O(q). There are only five cases
we need to consider (the first two cases are illustrated in
Figure 3):

1. O(p) is a vertex and O(q) is a facet or vice versa.
2. O(p) and O(q) are both edges.
3. O(p) is a vertex and O(q) is an edge or vice versa.
4. O(p) and O(q) are both vertices.
5. Otherwise.
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Figure 3. Normal filter. (a) An example of four points sampled from P and Q. Points p1 and p2 are sampled from a facet and
an edge of P , respectively. Points q1 and q2 are sampled from a vertex and an edge of Q, respectively. (b) The point p1 + q1 is an
example of the case 1. (c) The point p2 + q2 is an example of the case 2.

Case 1. First, we define a supporting planeP at the point
p+q parallel to facetO(q). Then, we translateP by q so that
vertexO(p) coincides with the point p + q. The point p + q
must be an inner point when the (open) half space defined
by the plane P intersects any edges incident to vertexO(p).
An example of case 1 is shown in Figure 3(b).
Case 2. Similarly, we define a supporting plane P at

point p + q whose outward normal is the cross product of
two vectors parallel to edges O(p) and O(q). Then, we
translate P by q and Q by p so that edges O(p) and O(q)
coincide with the plane P . The point p+ q must be an inner
point when the facets that incident to edges O(p) and O(p)
are on the different sides of the plane P . An example of this
case is shown in Figure 3(c).
Case 3. Case 3 can be divided into two Case 1 and sev-

eral Case 2. The point p + q must be an inner point when
Case 1 reports vertex O(p) and two incident facets of O(q)
at p + q as inner point and when Case 2 reports all edges
incident to vertex O(p) and edge O(q) at p + q as inner
point.
Case 4. Case 4 can be divided into several Case 1 and

Case 2. The point p+ q must be an inner point when Case 1
reports vertex O(p) and all incident facets of O(q) as inner
point and also reports all incident facets ofO(p) and vertex
O(q) as inner points and when Case 2 reports all incident
edges of O(p), all incident edges of O(q) at p + q as inner
point.
Case 5. All points in this category are considered as

inner points.
Lemma 5.2 shows the correctness of the filter. Note that

normal filter will not identify all inner points (unless P and
Q are both convex), thus it needs to be used with CD filter.

Theorem 5.2. Normal filter eliminates only inner points.

Proof. Since boundary points can only exist on a subset of
the supporting planes defined by a vertex and a facet or by

two edges with properties described above [15], points that
are not on these supporting planes must be inner points.

6 Octree Filter

The goal of this octree filter is to reject points that are far
away from the boundary. Our plan is to use a few known
boundary points as “seeds” to guide (propagate) the search
of unknown boundary points. For the rest of the section,
we will first describe how the filter applies to the exter-
nal boundary (Section 6.1) and then to the hole boundaries
(Section 6.2).

6.1 Extract external boundary

The octree filter has two main steps: Obtain initial
boundary points (seeds) and explore boundary using seeds.
Initial boundary points (seeds). External boundary can

be exacted more easily (than hole boundaries) because we
can quickly compute some initial boundary points (seeds)
from SP⊕Q. In our implementation we simply use points
on the minimum axis-aligned bounding box of SP⊕Q as our
seeds.
Explore boundary. Another reason why exacting exter-

nal boundary is easier is stated in the following lemma.

Lemma 6.1. If the Minkowski sum has only one (external)
boundary, a point p must be an inner point, if all other
points in a ball centered at p with radius d (which is the
sampling density in Algorithm 3.1) are all inner points.
Imagine superimposing a regular grid on SP⊕Q with cell

size d. Initially, each cell is marked as unknown cells except
those that contain seeds and are marked as boundary cells.
Now, we can start to explore the boundary by examining the
points in the unknown cells that are neighboring to bound-
ary cells. If all points in an unknown cell are reported as



inner points by CD filter, then this cell is marked as an in-
ternal cell. Otherwise the cell is marked as a boundary cell.
This process is repeated until no unknown cells are next to
boundary cell.
Adaptive octree. Instead of using a regular grid, we use

an adaptive octree. In the adaptive octree, all boundary and
internal cells in the octree have size d, however unknown
cells can have size larger than d. An unknown cell will be
subdivided when it is next to a boundary cell unless the size
of the unknown cell is smaller than d. A benefit of using
an adaptive octree is to avoid producing a huge number of
cells. Exploration of the boundary using the adaptive oc-
tree is done in the same manner as using a regular grid.
Note that this approach is similar to the surface-tracking
algorithms, e.g., [25], in Marching Cubes method and to
the inside-outside test in Adams and Dutré’s boolean oper-
ations [1].
In Lemma 6.2, we show that an octree filter correctly

extracts the external boundary.

Theorem 6.2. Octree filter extracts all points on the exter-
nal boundary.

Proof. For simplicity we consider only the approach using
a regular grid. The method using an octree can be proved in
a similar way.
Because each grid cell has size at most d and the point

set SP⊕Q is a d-covering of the Minkowski boundary, a grid
cell that intersects the boundary must contain at least one
boundary point. Therefore, it is not possible for us to find an
empty or a non-boundary cell on the boundary. This means
we can always find all boundary cells (and boundary points)
by propagating from one boundary cell.

6.2 Extract hole boundaries

Hole boundaries are boundaries entirely enclosed in the
external boundary. In many applications, such as animation
[15], hole boundaries are less important because they are
not “visible” from outside. However, for other applications,
such as motion planning, hole boundaries usually represent
critical pathways and cannot be ignored.
It is more difficult to efficiently extract hole boundary

using the method we described above. The reason is that
seeds for some hole boundaries are not easy to obtain. If
we can find seeds for all hole boundaries, we can explore
all boundaries as what we did for the external boundary.
In fact, we can classify holes into easy holes and difficult
holes. An easy hole has at least one vertex which is formed
by a vertex of P and a vertex of Q. Otherwise, a hole is
considered as difficult. A difficult hole has vertices formed
as the intersections of edges or facets instead of the from
the existing vertices. Figure 4 shows an example with one
easy hole and three difficult holes.
Initial boundary points (seeds). We can still efficiently

identify seeds for many hole boundaries. We identify a

p

qQ

P

P ⊕ Q

p + q

Figure 4. A 2D example shows four hole boundaries.
Three small holes are difficult to generate seeds inside. The
largest hole can be found more easily because two of its ver-
tices (one circled) are from the vertices of P and Q. (This
example is a simplified version of Halperin’s Figure 5 [14].)

small set of boundary points using CD filter with the points
that pass the test in the case 4 of the normal filter, i.e., points
whose origins are vertices in P and Q. This set of points,
in many cases, are small and scattered on the external and
the hole boundaries and will be used as seeds for boundary
exploration.

7 Speedup via Parallelization

More and more dual-core, quad-core and even multi-
core processors are commercially available off-the-shelf
and make access to parallel computing more easily than
ever before. One advantage of our approach is the simplic-
ity of parallelizing the method. In fact, parallelizing Al-
gorithm 3.1 is an example of the so called embarrassingly
parallel problem, i.e., we simply need to divide SP⊕Q into
k even-size point sets for k processors and put together the
results computed by each processor without worrying about
any dependency problems. In our current implementation,
we parallelized the proposed method with less than 30 lines
(including preparation and synchronization) of C++ code
using the POSIX thread libraries. Experimental results are
shown in Figure 8 and details of the results will be discussed
in the next section.

8 Experimental Results and Applications

In this section, we show experimental results. All the
experiments are performed on a PC with two Intel Core 2
CPUs at 2.13 GHz with 4 GB RAM. Our implementation
is coded in C++. For detecting collision, we use RAPID
[10]. In Section 8.1, we studied the efficiency and robust-
ness of the proposed method using eight examples. In Sec-
tion 8.2, we demonstrate the applications of the point-based
Minkowski sum boundary, including offsetting, sweeping,
motion planning and penetration depth approximation.



8.1 Experimental Results

Boundary Point Filters. In this set of experiments, we
compare three filters: CD filter, CD+normal (denoted as
CDn) filter, and CD+normal+oct (denoted as CDo

n) filter.
Two sets of experimental results using eight examples are
shown in Figure 5. Please notice that the plots in Figure 5
are in logarithmic scale. From the results, we observe that,
in all eight examples, computations using CDn and CDo

n fil-
ters are significantly faster by 1∼4 orders of magnitude than
computations using CD filter alone. From Figure 5 we can
see that CDo

n filter takes at most 240 seconds for all eight
examples while CD filter (except for hooks) requires at least
440 seconds. Similar results can also be observed from the
collision detection counts. Filters CDn and CDo

n make sig-
nificantly fewer collision detection calls than CD filter does.
It is obvious that these significant improvements are due to
the normal filter. Even though the octree filter can always
improve the efficiency even further, the improvement is not
as dramatic.

Robustness. Our goal here is to show that the proposed
method is robust under difficult conditions, i.e., our method
can generate correct results even for non-manifold models
or models with surface openings. In Figure 6, we show the
Minkowski sum of a cube and a model made of blocks. The
blocks model is constructed by extruding (black) squares
from a 1

2 checkerboard and the cube has the same size of
a checkerboard square. If look closer, you should find that
the blocks model is non-manifold (all blocks are connected
along their edges). As shown in Figure 6 our method cor-
rectly generates the Minkowski sum boundary.

Furthermore, we show that our method is sensitive
enough to detect a small change that we made to this ex-
ample. Instead of using the cube described above, we use a
slightly (5%) smaller cube. As shown in the bottom two im-
ages of Figure 6, our method correctly produces the narrow
columns as expected.

Multiresolution. Our method provides an easy way
to generate multiresolution representations. By specifying
a large d-covering value, we can create a low resolution
boundary efficiently. The user can use this low resolution
boundary as a quick preview. When the user decides a
higher resolution boundary is needed, more sampled can be
added. Figure 7 shows an example with four levels of detail.

Multithreading. As mentioned in Section 7, the pro-
posed method can be easily parallelized. This advantage
allows us to fully utilize the computation power provided
by the multi-core processors. An experimental results ob-
tained from a PC with two dual-core processors is shown in
Figure 8. An interesting fact that we observe from Figure 8
is that the gap between the efficiency of filters CDe and CDo

e

becomes smaller when we increase the number of threads.
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Figure 5. Comparisons of Minkowski sum computations
with CD filter, CD+norm (CDn) filter and CD+norm+oct
(CDo

n) filter using eight examples. The top two plots show
the computation time (using one thread) and collision de-
tection calls of these three filters. The bottom table shows
information of each example including the sizes of the sam-
pled points (np,nq) and the size of the Minkowski sum
boundary points n⊕.

8.2 Applications

Modeling. Our method can be used to perform op-
erations such as offsetting, erosion, and sweeping. Fig-
ure 1 shows an example of the offsetting operation of the
“dancing children” model. Offsetting is done by comput-
ing its Minkowski sum with a unit cube or a sphere. Fig-
ure 9 shows an example of sweeping operation of a pig
model. The sweep volume is generated by computing the
Minkowski sum of the pig model and a thin tube represent-
ing a trajectory.
Motion Planning. A motion planning problem, which



blocks a close view blocks⊕cube

blocks⊕cube blocks⊕(cube×0.95)

Figure 6. Top: A blocks model built from a 1
2
checker-

board and its Minkowski sum with a cube with size of a
checkerboard square. A close view reveals that the blocks
model is non-manifold. Bottom: These two images show
the dramatic difference between the Minkowski sums with
the cube and with a 5% smaller cube. These images are
taken from the same point of view inside of the Minkowski
sum boundaries.

asks us to find a feasible path to bring an object from the
start to the goal, can always be reduced to the problem of
finding a sequence of consecutive points in the collision-
free configuration space (denoted as C-free) [17]. The
boundary of the C-free (called contact space) is closely re-
lated to the Minkowski sum boundary. Let P and Q be a
translational robot and obstacle, respectively. The contact
space of P and Q is ∂(−P ⊕ Q).
Sampling-based motion planners have been shown to

solve difficult motion planning problems; see a survey in
[4]. These methods approximate the C-free by sampling
and connecting random configurations to form a graph (or a
tree). However, they also have the difficulty of finding paths
that are required to pass through narrow passages. Methods
[3,5] have been proposed to increase the random configura-
tions in narrow passages by carefully sampling around ob-
stacles. However, as far as we know, none of these obstacle-
based methods can guarantee to increase sampling ratio in
narrow passages. On the other hand, our Minkowski sum
method can generate points to “cover” the contact space
with a desired interval d (see Theorem 3.2) and therefore
can guarantee to increase the sampling ratio in narrow pas-
sages even when the volume of the narrow passage is near
zero. Points produced by our method can be connected into
a graph (using simple local planners) as in sampling-based
planners.
Penetration Depth Approximation. Penetration

0.5-covering 0.1-covering

0.05-covering 0.01-covering

Figure 7. Multiresolution Minkowski sum of a baby
model with a torus. Computing 0.5-, 0.1-, 0.05- and 0.01-
covering (using four threads) takes 15.2, 26.0, 47.9 and
443.9 seconds, respectively, and generates 23K, 58K, 146K
and 2652K points, respectively.

depth can be easily approximated using the point-based
Minkowski boundary. Given a query configuration of two
polyhedra P and Q, the penetration depth is the minimum
translational distance of moving P away from colliding
with Q.
Using the point-based Minkowski boundary, we can find

the penetration depth of P by computing the closest point
in S to the position of P , where S is a point set covering
∂(−P ⊕ Q). An example of this approach is illustrated in
Figure 10. Because S is a d-covering of the true Minkowski
sum boundary, we can be sure that |PD′−PD| < dwhen d
is small, where PD and PD′ are the true and approximated
penetration depths, respectively.

9 Conclusion and Discussion

In this paper, we propose a method that generates point-
based Minkowski sum boundaries. We show that gener-
ating points on the surface of the Minkowski sum of two
models is easier than generating a mesh to represent the
Minkowski sum. We proposed three filters, i.e., CD fil-
ter, CD+normal filter, and CD+normal+oct filter, to iden-
tify boundary points. In the experiments, we observe that
the combination of these three filters performs significantly
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Figure 8. Multithreading. One to four threads are used
to compute a 0.01-covering point set of the Minkowski sum
boundary of two hook-like models.

faster by several orders of magnitude than using only the
CD filter. We showed that our method is robust and provides
multiresolution and parallelization. We also demonstrate
several applications using only points (i.e., without connect-
ing them into meshes) on the Minkowski sum boundary.
These applications provide an evidence that the point-based
representation can have similar functionality as mesh-based
representations.

Limitation and Future work. There are two ma-
jor drawbacks in the current implementation. First, even
though we proved that our method generates a d-covering
point set, we may generate much more points than needed.
Because points that pass tests in the case 1 or the case 2 in
Section 5 may overlap. This overlapping can make points
in some areas become d

3 -covering! It is unclear to us how
we can minimize the number points and still provide a d-
covering point set. Second, our current implementation
does not have any mechanism to create more points to en-
hance “new” sharp features on the Minkowski sum bound-
ary (i.e., features that do not exist in the input polyhedra),
e.g., in Figure 11, many points are needed to capture the
small but important features of the grate models. We spec-
ulate that both of these two drawbacks are strongly related
(re-sampling) issues [1].

Finally, point-based representation may not be used in
some situations, such as in CAD, where continuous bound-
ary representations are usually used. Therefore, we are in-
terested in possible approaches and benefits of generating
meshes from the points produced from our method.

P ⊕ Q bottom view

Q

P

P⊕Q
top view

Figure 9. Our proposed method can be used to generate
“volumetric sweep”. This figure shows an example of cre-
ating a sweeping volume by moving a pig model along a
line.
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