CS483 Analysis of Algorithms Lecture 07 – Dynamic Programming 01 *

Jyh-Ming Lien

May 26, 2008

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

 Dynamic Programming A Toy Example: Fibonacci number (again)
 Shortest path in DAGs
 Longest increasing subsequences
 Binomial Coefficient
 Binomial Coefficient
 Knapsack Problem
 Knapsack Problem and
 Memory Functions
 Summary

A term coined by Richard Bellman in the 1940s

(Image from ieee.org. Richard Bellman, 1920 - 1984)

- □ Some problems solved by dynamic programming
 - Longest increasing subsequences
 - Fibonacci number
 - Knapsack problem
 - All-pairs shortest path problem (Floyd's algorithm)
 - Optimal binary search tree problem
 - Multiplying a sequence of matrices
 - String matching (or DNA sequence matching), where we search for the string closest to the pattern
 - Convex decomposition of polygons

A Toy Example: Fibonacci number (again)

Dynamic Programming
A Toy Example:
Fibonacci number
▷ (again)
Shortest path in DAGs
Longest increasing
subsequences
Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and
Memory Functions
Summary

 $\Box \quad f(n) = f(n-1) + f(n-2), f(0) = 1, f(1) = 1$ \Box Recursive brute force approach:

 \Box DP approach:

 \Box What's the difference?

□ What's the difference between divide-n-conquer and dynamic programming?

Dynamic Programming A Toy Example: Fibonacci number (again) ▷ Shortest path in DAGs Longest increasing subsequences Binomial Coefficient Binomial Coefficient Knapsack Problem Knapsack Problem and Memory Functions Summary $\square Example:$ A - C - E B - D - F

\Box Algorithm

Algorithm 0.1: DAG-SHORTEST-PATH(G, s)

Dynamic Programming
A Toy Example: Fibonacci
number (again)
Shortest path in DAGs
Longest increasing
Subsequences
Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and
Memory Functions
Summary

□ Given a sequence of integers, find the longest *increasing* sequence.
□ Example 1: 5, 2, 8, 6, 3, 6, 9, 7 (the longest increasing subsequences is: 2, 3, 6, 9)

 \Box How do we solve this problem using dynamic programming?

 \Box Key observation: Convert the numbers into a DAG!

□ Example 2: 3, 5, 1, 3, 11, 19, 4, 17, 21, 9, 13, 18

Algorithm

Algorithm 0.2: LIS(*A*)

Binomial Coefficient

Dynamic Programming A Toy Example: Fibonacci number (again) Shortest path in DAGs Longest increasing subsequences ▷ Binomial Coefficient Binomial Coefficient Knapsack Problem Knapsack Problem and Memory Functions

Summary

 $(x+y)^n = C(n,0)x^n + \dots + C(n,k)x^{n-k}y^k + \dots + C(n,n)y^n$

- \square Now, our problem is how to compute C(n, k) for all $k = 0 \cdots n$ efficiently
 - We know that $C(n,k) = \frac{n!}{k!(n-k)!}$, which is the combination size of picking k elements from n elements.
- \square Brute force algorithm: Compute $C(n,0), C(n,1), C(n,2), \cdots C(n,n)$ individually
- □ But we know that the same computations are repeated many times!
- \Box In fact, we know that C(n,k) = C(n-1,k-1) + C(n-1,k)
- □ This idea has been discovered many many years ago in China, India, Iran, and Italy, etc, but one of its most famous names is Pascal's Triangle named after Blaise Pascal, a french mathematician

(image of Blaise Pascal 1623–1662)

Binomial Coefficient

Dynamic Programming A Toy Example: Fibonacci number (again) Shortest path in DAGs Longest increasing subsequences Binomial Coefficient ▷ Binomial Coefficient Knapsack Problem Knapsack Problem Knapsack Problem and Memory Functions Summary	Example $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ Algo$	orith	1 	, k =	4	5	7 6	7
		orith	m 0.3	NOM	IAL(<i>r</i>	ı)		

Knapsack Problem

Dynamic Programming A Toy Example: Fibonacci number (again) Shortest path in DAGs Longest increasing subsequences Binomial Coefficient Binomial Coefficient ▷ Knapsack Problem Knapsack Problem Knapsack Problem and Memory Functions Summary \Box Knapsack Problem: Given *n* objects, each object has weight *w* and value *v*, and a knapsack of capacity *W*, find most valuable items that fit into the knapsack

- \Box Brute force approach
 - generate a list of all potential solutions
 - evaluate potential solutions one by one
 - when search ends, announce the solution(s) found

 \Box What is the time complexity of the brute force algorithm?

Dynamic Programming A Toy Example: Fibonacci number (again) Shortest path in DAGs Longest increasing subsequences Binomial Coefficient Binomial Coefficient Knapsack Problem Knapsack Problem Knapsack Problem and Memory Functions Summary

□ Dynamic programming approach

- Assume that we want to compute the optimal solution S(w, i) for capacity w < W with *i* items
- Assume that we know the optimal solutions S(w', i') for all $w' \le w$ and $i' \le i$
- Option 1: Don't add the k-th item to the bag, then S(w, i) = S(w, i 1)
- Option 2: Add the k-the item to the bag, then $S(w,i) = S(w - w_i, i - 1) + v_i$

w	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12kg, \$4															
12kg, \$4 1kg, \$2															
2kg, \$2															
1kg, \$1															
4kg, \$10															

\Box Time complexity?

Dynamic Programming
A Toy Example: Fibonacci
number (again)
Shortest path in DAGs
Longest increasing
subsequences
Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and
Memory Functions
Summary

So far, we look at four DP-based algorithms, all of them are bottom-up approaches.
 We can in fact design DP-based algorithms using top-down (recursive) approach.

One important benefit of top-down approach is that we can avoid solving unnecessary subproblems

w	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12kg, \$4															
1kg, \$2 2kg, \$2															
2kg, \$2															
1kg, \$1															
4kg, \$10															

```
\Box Algorithm
```

```
\label{eq:starsest} \left\{ \begin{array}{l} \textbf{Algorithm 0.4: NAPSK}(w,i) \\ \textbf{if } V[w,i] < 0 \\ \textbf{fif } w < W[i] \\ \textbf{then } value \leftarrow \texttt{NAPSK}(w,i-1) \\ \textbf{else } w < W[i] \\ \textbf{then } value \leftarrow \max\{\texttt{NAPSK}(w,i-1),\texttt{NAPSK}(w-W[i],i-1)+V[i]\} \\ V[w,i] \leftarrow value \\ \textbf{return } (V[w,i]) \end{array} \right.
```

Summary

Dynamic Programming A Toy Example: Fibonacci number (again) Shortest path in DAGs Longest increasing subsequences Binomial Coefficient Binomial Coefficient Knapsack Problem Knapsack Problem Knapsack Problem and Memory Functions ▷ Summary

 \Box Things you need to know about dynamic programming (dp)

- **programming** in dp (and linear programming) is a mathematical term, which means **optimization** or planning, i.e. it should not be confused with "computer programming" or "programming language"
- dp solves problems with **overlapping sub-problems**
- dp solves problems which have **optimal substructure**, i.e., its optimal solution can be constructed from optimal solutions of its sub-problems
- dp stores the results of sub-problems for later reuse
- dp works by converting a problem into a set of sub-problems and representing these sub-problems as a DAG.
- □ Next week: Dynamic Programming 2
 - Edit distance (string matching)
 - Chain matrix multiplication
 - All pairs shortest distance