CS483 Analysis of Algorithms
 Lecture 07 - Dynamic Programming 01 *

Jyh-Ming Lien

May 26, 2008

[^0]
Dynamic Programming

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs Longest increasing subsequences
Binomial Coefficient Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and Memory Functions Summary
\square A term coined by Richard Bellman in the 1940s

(Image from ieee.org. Richard Bellman, 1920-1984)
\square Some problems solved by dynamic programming

- Longest increasing subsequences
- Fibonacci number
- Knapsack problem
- All-pairs shortest path problem (Floyd's algorithm)
- Optimal binary search tree problem
- Multiplying a sequence of matrices
- String matching (or DNA sequence matching), where we search for the string closest to the pattern
- Convex decomposition of polygons
- ...

A Toy Example: Fibonacci number (again)

Dynamic Programming A Toy Example: Fibonacci number D (again)
Shortest path in DAGs Longest increasing subsequences
Binomial Coefficient Binomial Coefficient Knapsack Problem Knapsack Problem Knapsack Problem and Memory Functions

Summary
$\square \quad f(n)=f(n-1)+f(n-2), f(0)=1, f(1)=1$
\square Recursive brute force approach:
\square DP approach:
$\square \quad$ What's the difference?
$\square \quad$ What's the difference between divide-n-conquer and dynamic programming?

Shortest path in DAGs

Dynamic Programming A Toy Example: Fibonacci number (again)
D Shortest path in DAGs
Longest increasing subsequences
Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and Memory Functions
Summary
\square Example:

\square Algorithm

Algorithm 0.1: DAG-SHORTEST-PATH (G, s)

Longest increasing subsequences

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs Longest increasing \checkmark subsequences Binomial Coefficient Binomial Coefficient Knapsack Problem
Knapsack Problem
Knapsack Problem and Memory Functions Summary
\square Given a sequence of integers, find the longest increasing sequence.
\square Example 1: 5, 2, 8, 6, 3, 6, 9, 7 (the longest increasing subsequences is: $2,3,6,9$)
\square How do we solve this problem using dynamic programming?
\square Key observation: Convert the numbers into a DAG!
\square Example 2: 3, 5, 1, 3, 11, 19, 4, 17, 21, 9, 13, 18
\square Algorithm
Algorithm 0.2: LIS (A)

Binomial Coefficient

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs Longest increasing subsequences
\downarrow Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and Memory Functions
Summary
$\square \quad(x+y)^{n}=C(n, 0) x^{n}+\cdots+C(n, k) x^{n-k} y^{k}+\cdots+C(n, n) y^{n}$
\square Now, our problem is how to compute $C(n, k)$ for all $k=0 \cdots n$ efficiently
\square We know that $C(n, k)=\frac{n!}{k!(n-k)!}$, which is the combination size of picking k elements from n elements.
$\square \quad$ Brute force algorithm: Compute $C(n, 0), C(n, 1), C(n, 2), \cdots C(n, n)$ individually
\square But we know that the same computations are repeated many times!
$\square \quad$ In fact, we know that $C(n, k)=C(n-1, k-1)+C(n-1, k)$
\square This idea has been discovered many many years ago in China, India, Iran, and Italy, etc, but one of its most famous names is Pascal's Triangle named after Blaise Pascal, a french mathematician

(image of Blaise Pascal 1623-1662)

Binomial Coefficient

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs Longest increasing subsequences
Binomial Coefficient
B Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and Memory Functions
Summary
\square Example: $C(7, k), k=0, \cdots, 7$

	0	1	2	3	4	5	6	7
0								
1								
2								
3								
4								
5								
6								
7								

$\square \quad$ Algorithm

Algorithm 0.3: BINOMIAL(n)

$\square \quad$ Time complexity

Knapsack Problem

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs Longest increasing subsequences Binomial Coefficient Binomial Coefficient \perp Knapsack Problem Knapsack Problem Knapsack Problem and Memory Functions Summary
$\square \quad$ Knapsack Problem: Given n objects, each object has weight w and value v, and a knapsack of capacity W, find most valuable items that fit into the knapsack

\square Brute force approach

- generate a list of all potential solutions
- evaluate potential solutions one by one
- when search ends, announce the solution(s) found
$\square \quad$ What is the time complexity of the brute force algorithm?

Knapsack Problem

Dynamic Programming A Toy Example: Fibonacci number (again)

Shortest path in DAGs Longest increasing subsequences

Binomial Coefficient
Binomial Coefficient
Knapsack Problem

- Knapsack Problem Knapsack Problem and Memory Functions Summary
\square Dynamic programming approach
- Assume that we want to compute the optimal solution $S(w, i)$ for capacity $w<W$ with i items
- Assume that we know the optimal solutions $S\left(w^{\prime}, i^{\prime}\right)$ for all $w^{\prime} \leq w$ and $i^{\prime} \leq i$
- Option 1: Don't add the k-th item to the bag, then $S(w, i)=S(w, i-1)$
- Option 2: Add the k-the item to the bag, then
$S(w, i)=S\left(w-w_{i}, i-1\right)+v_{i}$

w	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$12 \mathrm{~kg}, \$ 4$															
$1 \mathrm{~kg}, \$ 2$															
$2 \mathrm{~kg}, \$ 2$															
$1 \mathrm{~kg}, \$ 1$															
$4 \mathrm{~kg}, \$ 10$															

$\square \quad$ Time complexity?

Knapsack Problem and Memory Functions

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs
Longest increasing subsequences
Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and \triangleright Memory Functions Summary
\square So far, we look at four DP-based algorithms, all of them are bottom-up approaches.
\square We can in fact design DP-based algorithms using top-down (recursive) approach.

- One important benefit of top-down approach is that we can avoid solving unnecessary subproblems

w	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$12 \mathrm{~kg}, \$ 4$															
$1 \mathrm{~kg}, \$ 2$															
$2 \mathrm{~kg}, \$ 2$															
$1 \mathrm{~kg}, \$ 1$															
$4 \mathrm{~kg}, \$ 10$															

\square Algorithm

```
Algorithm 0.4: \(\operatorname{NAPSK}(w, i)\)
```

Algorithm 0.4: $\operatorname{NAPSK}(w, i)$

```
Algorithm 0.4: \(\operatorname{NAPSK}(w, i)\)
if \(V[w, i]<0\)
if \(V[w, i]<0\)
if \(V[w, i]<0\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NaPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NaPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NaPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
    then \(\left\{\begin{array}{l}\text { if } w<W[i] \\ \text { then } \text { value } \leftarrow \operatorname{NAPSK}(w, i-1) \\ \text { else } w<W[i] \\ \text { then value } \leftarrow \max \{\operatorname{NAPSK}(w, i-1), \operatorname{NAPSK}(w-W[i], i-1)+V[i]\} \\ V[w, i] \leftarrow \text { value }\end{array}\right.\)
return \((V[w, i])\)
```

return $(V[w, i])$

```
return \((V[w, i])\)
```


Summary

Dynamic Programming A Toy Example: Fibonacci number (again)
Shortest path in DAGs Longest increasing subsequences
Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem
Knapsack Problem and Memory Functions
\triangleright Summary
$\square \quad$ Things you need to know about dynamic programming (dp)

- programming in dp (and linear programming) is a mathematical term, which means optimization or planning, i.e. it should not be confused with "computer programming" or "programming language"
- dp solves problems with overlapping sub-problems
- dp solves problems which have optimal substructure, i.e., its optimal solution can be constructed from optimal solutions of its sub-problems
- dp stores the results of sub-problems for later reuse
- dp works by converting a problem into a set of sub-problems and representing these sub-problems as a DAG.
\square Next week: Dynamic Programming 2
- Edit distance (string matching)
- Chain matrix multiplication
- All pairs shortest distance

[^0]: *this lecture note is based on Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and Introduction to the Design and Analysis of Algorithms by Anany Levitin.

