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� A term coined by Richard Bellman in the 1940s

(Image from ieee.org. Richard Bellman, 1920 - 1984)
� Some problems solved by dynamic programming

– Longest increasing subsequences
– Fibonacci number
– Knapsack problem
– All-pairs shortest path problem (Floyd’s algorithm)
– Optimal binary search tree problem
– Multiplying a sequence of matrices
– String matching (or DNA sequence matching), where we search for the

string closest to the pattern
– Convex decomposition of polygons
– ...
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� f(n) = f(n − 1) + f(n − 2), f(0) = 1, f(1) = 1
� Recursive brute force approach:

� DP approach:

� What’s the difference?
� What’s the difference between divide-n-conquer and dynamicprogramming?
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� Example:

� Algorithm

Algorithm 0.1: DAG-SHORTEST-PATH(G, s)
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� Given a sequence of integers, find the longestincreasingsequence.
� Example 1: 5, 2, 8, 6, 3, 6, 9, 7 (the longest increasing subsequences

is: 2, 3, 6, 9)
� How do we solve this problem using dynamic programming?
� Key observation: Convert the numbers into a DAG!
� Example 2: 3, 5, 1, 3, 11, 19, 4, 17, 21, 9, 13, 18

� Algorithm
Algorithm 0.2: LIS(A)
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� (x + y)n = C(n, 0)xn + · · · + C(n, k)xn−kyk + · · · + C(n, n)yn

� Now, our problem is how to computeC(n, k) for all k = 0 · · ·n efficiently
� We know thatC(n, k) = n!

k!(n−k)!
, which is the combination size of pickingk

elements fromn elements.
� Brute force algorithm: ComputeC(n, 0), C(n, 1), C(n, 2), · · ·C(n, n)

individually
� But we know that the same computations are repeated many times!
� In fact, we know thatC(n, k) = C(n − 1, k − 1) + C(n − 1, k)
� This idea has been discovered many many years ago in China, India, Iran, and

Italy, etc, but one of its most famous names is Pascal’s Triangle named after
Blaise Pascal, a french mathematician

(image of Blaise Pascal 1623–1662)
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� Example:C(7, k), k = 0, · · · , 7
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

� Algorithm
Algorithm 0.3: BINOMIAL (n)

� Time complexity
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� Knapsack Problem: Givenn objects, each object has weightw and
valuev, and a knapsack of capacityW , find most valuable items that
fit into the knapsack

� Brute force approach

– generate a list of all potential solutions
– evaluate potential solutions one by one
– when search ends, announce the solution(s) found

� What is the time complexity of the brute force algorithm?
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� Dynamic programming approach

– Assume that we want to compute the optimal solutionS(w, i) for
capacityw < W with i items

– Assume that we know the optimal solutionsS(w′, i′) for all
w′ ≤ w andi′ ≤ i

– Option 1:Don’t add thek-th item to the bag, then
S(w, i) = S(w, i − 1)

– Option 2:Add thek-the item to the bag, then
S(w, i) = S(w − wi, i − 1) + vi

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12kg, $4
1kg, $2
2kg, $2
1kg, $1
4kg, $10

� Time complexity?



Knapsack Problem and Memory Functions

Dynamic Programming
A Toy Example: Fibonacci
number (again)

Shortest path in DAGs
Longest increasing
subsequences

Binomial Coefficient

Binomial Coefficient

Knapsack Problem

Knapsack Problem

.
Knapsack Problem and
Memory Functions

Summary

Analysis of Algorithms CS483 Lecture 07 – Dynamic Programming 01 trans – 10

� So far, we look at four DP-based algorithms, all of them are bottom-up approaches.
� We can in fact design DP-based algorithms using top-down (recursive) approach.

– One important benefit of top-down approach is that we can avoidsolving
unnecessary subproblems

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12kg, $4
1kg, $2
2kg, $2
1kg, $1
4kg, $10

� Algorithm

Algorithm 0.4: NAPSK(w, i)

if V [w, i] < 0

then



















if w < W [i]
then value←NAPSK(w, i− 1)
elsew < W [i]
then value← max{NAPSK(w, i− 1),NAPSK(w −W [i], i− 1) + V [i]}

V [w, i]← value

return (V [w, i])
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� Things you need to know about dynamic programming (dp)

– programming in dp (and linear programming) is a mathematical
term, which meansoptimization or planning, i.e. it should not be
confused with “computer programming” or “programming
language”

– dp solves problems withoverlapping sub-problems
– dp solves problems which haveoptimal substructure, i.e., its

optimal solution can be constructed from optimal solutions of its
sub-problems

– dp stores the results of sub-problems for later reuse
– dp works by converting a problem into a set of sub-problems and

representing these sub-problems as a DAG.

� Next week: Dynamic Programming 2

– Edit distance (string matching)
– Chain matrix multiplication
– All pairs shortest distance
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