CS483 Analysis of Algorithms
Lecture 07 — Dynamic Programming 01"

Jyh-Ming Lien

May 26, 2008

*this lecture note is based @gorithmsby S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani &rtcb-
duction to the Design and Analysis of AlgorithbysAnany Levitin.

Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans —

Dynamic Programming

> pynamic Programming] A term coined by Richard Bellman in the 1940s
A Toy Example: Fibonacci === -

number (again) i
Shortest path in DAGs

Longest increasing
subsequences

Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem

Knapsack Problem and £ /|
Memory Functions i]

S (Image from ieee.org. Richard Bellman, 1920 - 1984)
[0 Some problems solved by dynamic programming

— Longest increasing subsequences

— Fibonacci number

— Knapsack problem

— All-pairs shortest path problem (Floyd's algorithm)

— Optimal binary search tree problem

— Multiplying a sequence of matrices

— String matching (or DNA sequence matching), where we sdarche
string closest to the pattern

— Convex decomposition of polygons

Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans —:

A Toy Example: Fibonacci number (again)

omenieergenmg [0 f(n) = f(n— 1)+ f(n—2), {(0) =1, /(1) =1

A Toy Example: .
Fibonacci number [0 Recursive brute force approach:

> (again)
Shortest path in DAGs

Longest increasing
subsequences

Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem

Knapsack Problem and
Memory Functions

Summary

[0 DP approach:

[0 What’s the difference?
[0 What’s the difference between divide-n-conquer and dyngmagramming?

Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans —

Shortest path in DAGs

Dynamic Programming

A Toy Example: Fibonacci
number (again)

> Shortest path in DAGs
Longest increasing
subsequences

Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem

Knapsack Problem and
Memory Functions

Summary

O Example:

B —®
B—0 ©

O Algorithm

Algorithm 0.1: DAG-SHORTESTFPATH(G, s)

Analysis of Algorithms

CS483 Lecture 07 — Dynamic Programming 01 trans — ¢

Longest increasing subsequences

Dynamic Programming
A Toy Example: Fibonacci
number (again) |:|
Shortest path in DAGs
Longest increasing
subsequences

Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem

Knapsack Problem and
Memory Functions

Summary

OO0

[

Given a sequence of integers, find the longesteasingseqguence.
Example 1: 5, 2, 8, 6, 3, 6, 9, 7 (the longest increasing subsequence:
Is: 2, 3,6, 9)

How do we solve this problem using dynamic programming?

Key observation: Convert the numbers into a DAG!

Example 2: 3,5, 1, 3,11, 19,4,17, 21,9, 13, 18

Algorithm

Algorithm 0.2: LIS(A)

Analysis of Algorithms

CS483 Lecture 07 — Dynamic Programming 01 trans —!

Binomial Coefficient

Dynamic Programming

A Toy Example: Fibonacci
number (again)

Shortest path in DAGs
Longest increasing
subsequences

> Binomial Coefficient
Binomial Coefficient
Knapsack Problem
Knapsack Problem

Knapsack Problem and
Memory Functions

Summary

OO

OO

(x+1y)" =C(n,0)x" +---+C(n, k)" Fy* + -+ C(n,n)y"

Now, our problem is how to computé(n, k) for all k = 0 - - - n efficiently
We know thatC'(n, k) = Wlk)' which is the combination size of pickirig
elements fronn elements.

Brute force algorithm: Comput€'(n,0),C(n,1),C(n,2),---C(n,n)
individually

But we know that the same computations are repeated manyt times

In fact, we know thaC'(n, k) = C(n — 1,k — 1)+ C(n — 1,k)

This idea has been discovered many many years ago in China, lrah, and
Italy, etc, but one of its most famous names is Pascal’s gleanamed after

Blaise Pascal, a french mathematician

(image of Blaise Pascal 1623-1662)

Analysis of Algorithms

CS483 Lecture 07 — Dynamic Programming 01 trans — ¢

Binomial Coefficient

Dynamic Programming

A Toy Example: Fibonacci
number (again)

Shortest path in DAGs
Longest increasing
subsequences

Binomial Coefficient

> Binomial Coefficient
Knapsack Problem
Knapsack Problem

Knapsack Problem and
Memory Functions

Summary

O Example:C(7,k), k
012|334

OO WN KO

7
0 Algorithm

Algorithm 0.3: BINOMIAL (n)

[0 Time complexity

Analysis of Algorithms

CS483 Lecture 07 — Dynamic Programming 01 trans —°

Knapsack Problem

omamierogramming] Knapsack Problem: Givem objects, each object has weightand

oy Example: Fibonacci) -

umber (agan) valuev, and a knapsack of capaciy/, find most valuable items that
ortest patn In S ., .

Longest increasing f|t |nt0 the knapsaCk

subsequences

Binomial Coefficient - ?

Binomial Coefficient

> Knapsack Problem n ,’
- Enps

Knapsack Problem

Knapsack Problem and

Memory Functions

Summary

19 =

0 Brute force approach

— generate a list of all potential solutions
— evaluate potential solutions one by one
— when search ends, announce the solution(s) found

O What is the time complexity of the brute force algorithm?

Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans — ¢

Knapsack Problem

Dynarmic Programming O Dynamic programming approach

A Toy Example: Fibonacci

number (again)

Shortest path in DAGs —
Longest increasing

subsequences

Binomial Coefficient
Binomial Coefficient
Knapsack Problem

> Knapsack Problem

Knapsack Problem and
Memory Functions

Assume that we want to compute the optimal solutigm, i) for
capacityw < W with ¢ items

Assume that we know the optimal solutiofitw’,) for all

w' < wandiy <1

Option 1:Don’t add the k-th item to the bag, then
S(w,i) = S(w,i—1)

Summary
— Option 2: Add the k-the item to the bag, then
S(w,i) = S(w —w;,i — 1) 4+ v;
w 112|134 |5|6|7|8|9|10| 11| 12| 13| 14 | 15
12kg, $4
1kg, $2
2kg, $2
1kg, $1
4kg, $10
0 Time complexity?
Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans — ¢

Knapsack Problem and Memory Functions

zyT”amEiC Pfo?fér_:ing , [] So far, we look at four DP-based algorithms, all of them are bottip approaches.
number agany 0 0 We can in fact design DP-based algorithms using top-down (ree)mpproach.
Shortest path in DAGs)) . .
Longest increasing — One important benefit of top-down approach is that we can aaidng
subsequences unnecessary subproblems
Binomial Coefficient
i‘”om‘a'fsefglc‘e”t w 1(2(3|4|5|6|7|8|9|10| 11| 12| 13| 14 | 15
napsac roplem
Knapsack Problem 12kg’ $4
> Knapsack Problem and]_kg, $2
Memory Functions

Summary 2kg’ $2

1kg, $1

4kg, $10

[] Algorithm
Algorithm 0.4: NAPSK(w, 7)
if Viw,i] <0
(if w < Wi

then value «NAPSK(w,i — 1)
then ¢ elsew < W1i]
then value «+— max{NAPSK(w, 7 — 1),NAPSK(w — Wi],i — 1) + V[i]}
\ V[w, 1] < value
return (V{w,i])
.

Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans — 1(

Summary

Dynamic Programming 1 T '

AyTog i oo O Things you need to know about dynamic programming (dp)

numper (again
Shortest path in DAG — programming in dp (and linear programming) is a mathematical
subsequences. term, which meanseptimization or planning, i.e. it should not be
oroma coceen confused with “computer programming” or “programming

Knapsack Problem Iang uage"

Knapsack Problem . .

Knapsack Problem and — dp solves problems witbverlapping sub-problems

Memory Functions
> Summary

— dp solves problems which haegtimal substructure, i.e., its
optimal solution can be constructed from optimal solutions of its
sub-problems

— dp stores the results of sub-problems for later reuse

— dp works by converting a problem into a set of sub-problems and
representing these sub-problems as a DAG.

0 Next week: Dynamic Programming 2

— Edit distance (string matching)
— Chain matrix multiplication
— All pairs shortest distance

Analysis of Algorithms CS483 Lecture 07 — Dynamic Programming 01 trans — 1.

	Dynamic Programming
	A Toy Example: Fibonacci number (again)
	Shortest path in DAGs
	Longest increasing subsequences
	Binomial Coefficient
	Binomial Coefficient
	Knapsack Problem
	Knapsack Problem
	Knapsack Problem and Memory Functions
	Summary

