CS483 Analysis of Algorithms Lecture 08 – Dynamic Programming 02 *

Jyh-Ming Lien

April 02, 2008

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

Edit Distance

Edit Distance	Given two s
Edit Distance	• •1 /1
Edit Distance	similar thes
Edit Distance and DAG	Edit distance
Chain Matrix	Luit uistand
Multiplication	substitution
Chain Matrix	-
Multiplication	S –
Chain Matrix Multiplication	C II
Transitive closure	5 0
Warshall's Algorithm	
Warshall's Algorithm	How do you
Warshall's Algorithm	now do you
All-pairs Shortest path problem	
•	– Brute fo
Floyd's Algorithm	
Floyd's Algorithm	
Floyd's Algorithm	
Travelling Salesman Problem (TSP)	
Travelling Salesman	
Problem (TSP)	\mathbf{C} 1
Conclusion	– Greedy
Conclusion	·
Conclusion	

- strings "lqorihten" and "algorithm", can you tell how se strings are?
- ce is the number of operations (deletions, insertions, s) that you can convert from one string to the other.

S		Ν	0	W	Y	_	S	Ν	0	W	_	Υ
S	U	Ν	Ν	_	Y	S	U	Ν		_	Ν	Y
		Cos	st: 3					(Cost:	5		

u compute the smallest edit distance between two strings?

orce method? What's the time complexity?

algorithm?

Dynamic programming

Edit Distance

 \square

 \square

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion

Conclusion

Observation: Given two strings $x[1 \cdots n]$ and $y[1 \cdots m]$. No matter how we match x to y, at the end of the match, we can only have:

- x[n] matches to y[m]
- x[n] matches to empty
- y[m] matches to empty
- Question: Is it possible x[n] matches to y[i < m]? or y[m] matches to x[j < n]?

Example: EXPONENTIAL vs. POLYNOMIAL

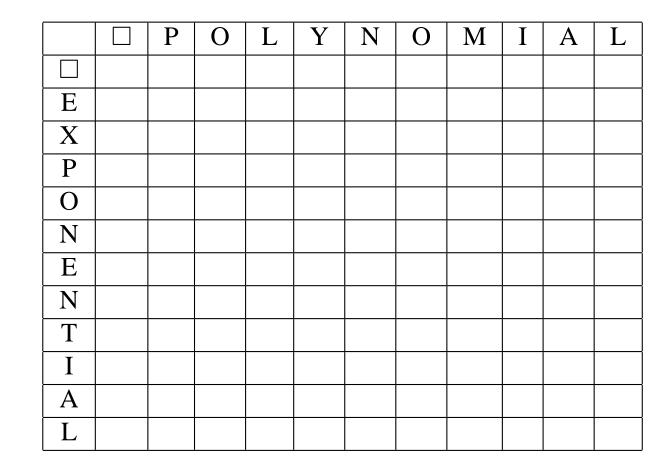
- What are possible endings?
- What are the subproblems we should consider?
- How do we get an optimal answer?

Edit Distance

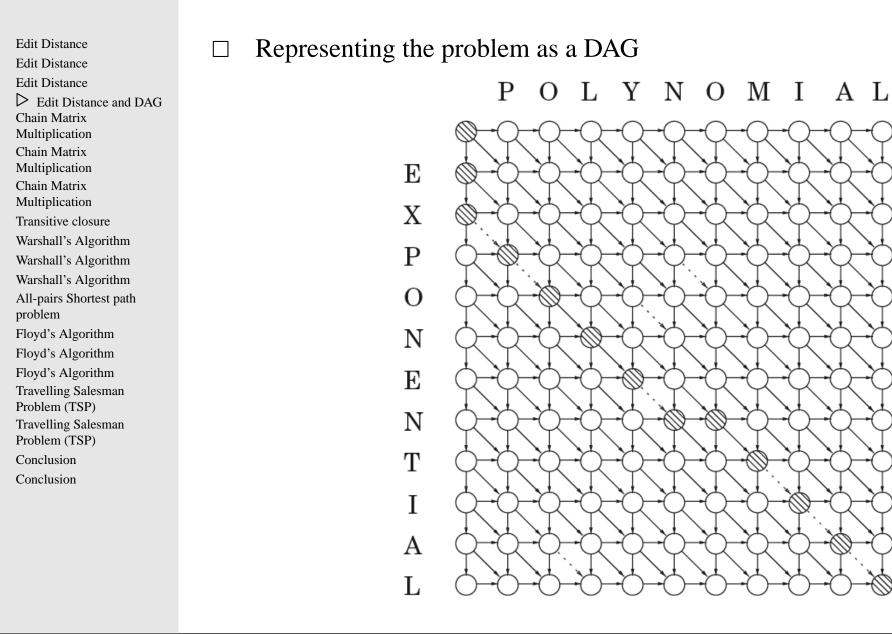
Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

 \Box Let E(i, j) be the edit distance for the subproblem of strings with lengths *i* and *j*

 $\Box \quad E(i,j) = \min\{E(i-1,j-1) + \operatorname{diff}(x[i],y[j]), E(i-1,j) + 1, E(i,j-1) + 1\}$



Edit Distance and DAG



Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix \triangleright Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

Given four matrices, $A[50 \times 20]$, $B[20 \times 1]$, $C[1 \times 10]$, $D[10 \times 100]$, we wish to compute $A \times B \times C \times D$.

$\Box \quad \text{If we compute } (((A \times B) \times C) \times D), \text{ we will perform } x \\ \text{multiplications?}$

- $\square \quad \text{What about } ((A \times B) \times (C \times D))?$
- □ How do we find the best way to group matrices so that the number of multiplications is minimized?
 - Brute force

- Greedy algorithm

– Dynamic programming

Edit Distance
Edit Distance
Edit Distance
Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
\triangleright Multiplication
Chain Matrix
Multiplication
Transitive closure
Warshall's Algorithm
Warshall's Algorithm
Warshall's Algorithm
All-pairs Shortest path
problem
Floyd's Algorithm
Floyd's Algorithm
Floyd's Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)
Conclusion
Conclusion

□ Dynamic programming and DAG

- 1. A pair of parentheses groups two matrices
- 2. The final matrix represents the root
- 3. Example: $(((A \times B) \times C) \times D)$ and $((A \times B) \times (C \times D))$

- \Box So, our goal is to build an optimal binary tree
- Given four matrices, $A[50 \times 20]$, $B[20 \times 1]$, $C[1 \times 10]$, $D[10 \times 100]$, we wish to compute $A \times B \times C \times D$.
 - 1. Subproblems with two matrices:
 - 2. Subproblems with three matrices:
 - 3. Subproblems with four matrices:

Edit Distance Edit Distance **Edit Distance** Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix ▷ Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

General cases: Give a list of matrices $\{A_i\}$, C(i, j) be the minimum cost of $A_i \times \cdots \times A_j$, then

$$C(i,j) = \min_{i \le k < j} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$$

 \Box Example: $A[50 \times 20], B[20 \times 1], C[1 \times 10], D[10 \times 100]$

0	j = 1	j = 2	j = 3	j = 4	j = 5
i=1					
i=2					
i=3					
i=4					
i=5					

Transitive closure

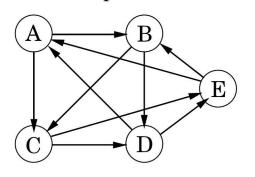
Edit Distance Edit Distance **Edit Distance** Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication \triangleright Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP)

Conclusion

Conclusion

- □ Transitive closure of a graph is a set of vertex pairs of a graph, which can be connected by one or multiple paths
- \square We can represent the transitive closure using a matrix A. The element $A_{i,j}$ is "1" if there are one or multiple paths between vertices i and j.

 \Box Example:



□ Can you design a brute force algorithm? What is its time complexity?

Warshall's Algorithm

Edit Distance Edit Distance **Edit Distance** Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure \triangleright Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

 \Box Important observation: If there is a path from *a* to *z* via *s* then there must be a path from *a* to *s* and from *s* to *z*

 \Box Let A^k be the optimal answer when we only allow the first k nodes to be intermediate nodes in paths. We can compute the optimal solution for k + 1 nodes A^{k+1} efficiently

 \Box What is A^0 ?

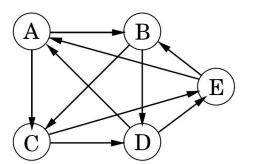
 \Box For k > 0,

$$A^{k+1}[i,j] = \begin{cases} 1 & (A^k[i,j]=1) \\ A^k[i,k] \text{ and } A^k[k,j] & (\text{otherwise}) \end{cases}$$

Warshall's Algorithm

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm ▷ Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

 \Box Example:



via Ø	A	B	C	D	E	via A	A	B	C	D	E
A						A					
В						В					
C						C					
D						D					
E						E					
via B	A	B	C	D	E	via C	A	B		D	E
A						A					
B						B					
C											
D						D					
via D	A	B		D		via E	A	B	C	D	E
A											
B						B					
C											
D] D					

Warshall's Algorithm

 \Box

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm ▷ Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

Algorithm

Algorithm 0.1: WARSHALL($A[1 \cdots n]$)

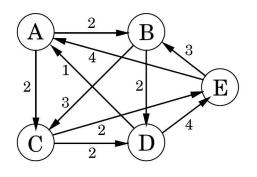
$$\begin{aligned} & \text{for } i \leftarrow \{1 \cdots n\} \\ & \text{do } \begin{cases} & \text{for } j \leftarrow \{1 \cdots n\} \\ & \text{do } \begin{cases} & \text{for } k \leftarrow \{1 \cdots n\} \\ & \text{do } A^k[i,j] \leftarrow (A^{k-1}[i,k] \text{ and } A^{k-1}[k,j]) \text{ or } A^{k-1}[i,j] \end{cases} \end{aligned}$$

 \Box Time complexity?

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path \triangleright problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

□ In this problem we want to find the shortest paths connecting all possible pairs of vertices of a graph

 \Box Example:

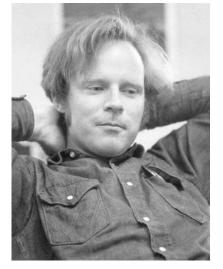


 \Box What is the brute force algorithm and its time complexity?

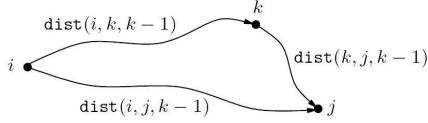
Floyd's Algorithm

Edit Distance Edit Distance **Edit Distance** Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

A.k.a. Floyd-Warshall algorithm (or the Roy-Floyd algorithm)
Robert Floyd (1936-2001)



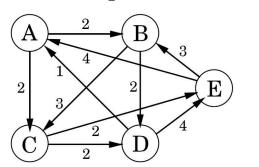
(Robert Floyd, 1972, from http://sigact.acm.org/floyd/)
The algorithm is very similar to Warshall's algorithm
Basic idea: Let A^{k-1} be the optimal answer when we only allow the first k - 1 nodes to be intermediate nodes in paths. We can compute the optimal solution for k nodes A^k efficiently



Floyd's Algorithm

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm ▷ Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

 \Box Example:



via Ø	A	В	C	D	E	via A	A	B	C	D	E
A						A					
B						B					
C											
						D					
E											
via B	A	B		D		via C	A	B	C	D	E
A						A					
B											
D											
via D	A	B		D	E	via E	A	B		D	
A											
B											
C											
D						D					

Floyd's Algorithm

 \Box

Edit Distance Edit Distance **Edit Distance** Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm ▷ Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP)

Conclusion

Conclusion

Algorithm

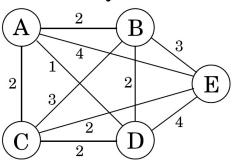
Algorithm 0.2: FLOYD $(A[1 \cdots n])$

$$\begin{aligned} & \text{for } i \leftarrow \{1 \cdots n\} \\ & \text{do } \begin{cases} & \text{for } j \leftarrow \{1 \cdots n\} \\ & \text{do } \begin{cases} & \text{for } k \leftarrow \{1 \cdots n\} \\ & \text{do } A^k[i,j] \leftarrow \min\{(A^{k-1}[i,k] + A^{k-1}[k,j]), A^{k-1}[i,j]\} \end{cases} \end{aligned}$$

 $\Box \quad \text{Time complexity}?$

Edit Distance Edit Distance **Edit Distance** Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman \triangleright Problem (TSP) Travelling Salesman Problem (TSP) Conclusion Conclusion

 \square **Problem**: Find the shortest path from A to A by visiting each vertex exactly once



 \Box Brute force:

 \Box Greedy:

□ Dynamic programming:

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman \triangleright Problem (TSP)

Conclusion

Conclusion

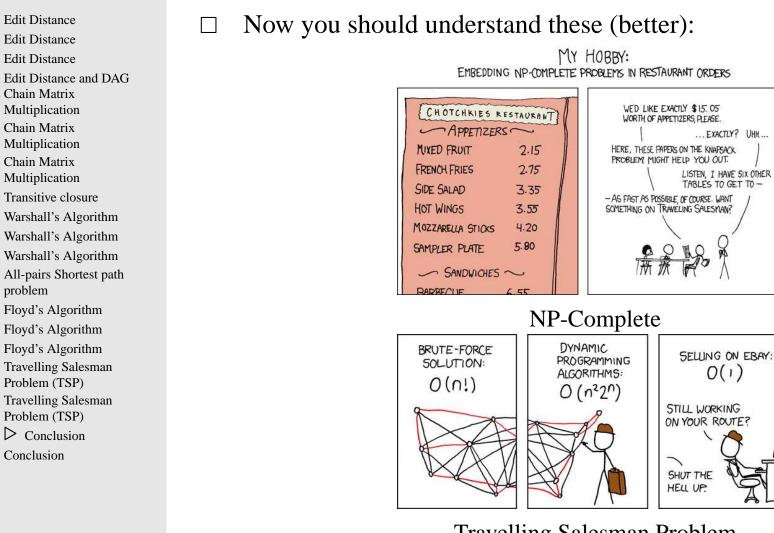
□ Given a graph with n nodes and starting vertex is 1.
□ Algorithm

Algorithm 0.3: $FLOYD(A[1 \cdots n])$

 $\begin{aligned} & \text{for } s \leftarrow \{2 \cdots n\} \\ & \text{do } \begin{cases} \text{for all subsets } S \subset \{1, 2, \cdots, n\} \text{ of size } s \text{ and containing } 1 \\ & \text{do } \begin{cases} \text{for } j \in S \text{ and } j \neq 1 \\ & \text{do } C(S, j) = \min_{i \in S, i \neq j} \{C(S - \{j\}, i) + d_{ij}\} \end{cases} \end{aligned}$

☐ Time complexity?

Conclusion



Travelling Salesman Problem (from Randall Munroe, creator of xkcd)

... EXACTLY? UHH ...

O(1)

Conclusion

Edit Distance Edit Distance Edit Distance Edit Distance and DAG Chain Matrix Multiplication Chain Matrix Multiplication Chain Matrix Multiplication Transitive closure Warshall's Algorithm Warshall's Algorithm Warshall's Algorithm All-pairs Shortest path problem Floyd's Algorithm Floyd's Algorithm Floyd's Algorithm Travelling Salesman Problem (TSP) Travelling Salesman Problem (TSP) Conclusion \triangleright Conclusion

 \Box We have solved the following problems using dynamic programming

- Longest increasing sequence
- Binomial coefficients of $(a + b)^n$ (Pascal's triangle)
- Knapsack problem
- Edit distance
- Matrix multiplication chain (optimal binary tree)
- Transitive closure (Warshall's algorithm)
- All pairs shortest paths (Floyd's algorithm)
- TSP
- □ It is usually more difficult to represent a problem as a set of sub-problems
- □ Next couple of weeks: Linear programming.