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� Similar to dynamic programming, “programming” here means
optimization

� Linear programming (LP) problems are optimization problems whose
objectiveandconstraintsare alllinear (i.e., exponents of all
variables are 1)

� Many real-life problems can be expressed as LP problems

– Example: Profit maximization

. You are selling two kinds of chocolates: Pyramide and
Pyramide Nuit

. You make $1 profit by selling one box of Pyramide and $6
profit by selling one box of Pyramide Nuit

. Your factory can only make 200 and 300 boxes of Pyramide
and Nuit, resp., per day

. Your worker can only produce 400 boxes per day.

. You want to maximize your profit

– How many boxes of Pyramide and Pyramide Nuit do you make to
maximize your profit?
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� Let x1 andx2 be the number of boxes we want to produce for
Pyramide and Pyramide Nuit.

� Objective Function:
� Constraints:

1.

2.

3.

4.

� A LP problem can havezero, one, or infinity optimal solutions

1. x > 5, x ≤ 3
2. max{x1 + x2}, x1, x2 > 0
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� Each linear constraint can be represented as ahalfspace

� A set of feasible solutions of a LP problem forms aconvexset

� The objective function can be represented as ahyperplane

� When there is a unique solution, this solution must be a vertex of the
convex set formed by the constraints

� Example:maximizex1 + 6x2

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400
x1 ≥ 0
x2 ≥ 0
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� LPs can be solved by thesimplex method (named one of the top ten
best algorithms in 20th century)

� Closely related tohill-climbing by jumping from one vertex to an
adjacent vertex

� Simplex is a type of “iterative improvement” method
� We will cover simplex in the next lecture (for now we assume we have

a simplex package that solves our problems).
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� We have a company making hand-made carpets and today is Jan/1st.

– We now have 30 employees and each of them makes 20 carpets
and get $2000 per month.

– Each employee gets paid 80% more by working overtime but can
only put in at most 30% overtime.

– We can hire and fire employee. Hiring costs $320 and firing costs
$400 per worker.

– Storing surplus will cost $8 per carpet per month.
– We do not have surplus now and we must end the year without

surplus.
– The demand for all months ared1, d2, . . . , d12

� How do we minimize our total cost?
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� Our company now is a network services provider

– The network has 3 nodes:A, B, C

– ConnectionA − B pays $3 per unit of bandwidth
– ConnectionB − C pays $2 per unit of bandwidth
– ConnectionA − C pays $4 per unit of bandwidth
– Each connection requires at least two units of bandwidth
– Each connection can be routed in two ways: long and short routes
– Bandwidths of the network are shown below

� How do we route these connections to maximize our network’s
revenue?
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� Variants

1. Objective functions: maximization and minimization
2. Constraints: equation or/and inequalities
3. Restrictions: variables are often restricted to be non-negative

� Standard form

1. Objective functions: minimization
2. Constraints: equation
3. Restrictions: variables are all non-negative

� Reduction to standard form

maximizex1 + 6x2

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400
x1 ≥ 0
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� Assuming that you are working for an oil company and the company owns a
network of pipe lines along which oil can be sent, you are asked to find out the
maximum capacity of oil can be sent from a citys to another cityt over the
network.

� Maximum-flow problem : Given a weighted direct graphG = {V, E},
whose edge weight indicates the maximum capacity of an edge,find the
maximum flow from a vertexs (source) and to another vertext (sink) so that
the following requirements are satisfied.

– The flowfe on edgee must be0 ≤ fe ≤ ce

– Flow is conserved, i.e.,
∑

(u,v)∈E

fuv =
∑

(v,w)∈E

fvw
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� Variables:
� Objective:
� Constraints:
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� Iterative improvement

– Start with 0 capacity
– Repeat: Find a path froms to t, and increase the flow along this

path as much as possible

� Example:
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� To make the algorithm work: We allow path tocancel existing flow
� Residual graphGf , whose edge weight indicate the remaining

capacity of an edge. Two types of edge weights are available inGf :

1. cuv − fuv, if (u, v) is an edge ofG andfuv < cuv

2. fvu, if (u, v) is an edge ofG andfuv > 0

� Example:
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� Example

Flow Residual graphGf
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Flow Residual graphGf

� Time complexity:
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� Graph cut: (s, t)-cut is the removal of a set of edges so that a connected component
splitss andt into two connected components

� The total capacity (edge weights) of a cut is an upper-bound ofthe capacity flow from
one component to the other component

� Theorem:Maximum-flow Minimum cut : The maximum flow of a graph froms to t

equals to the capacity of the smallest(s, t)-cut

� Question: How to compute the minimum cut of a given graph?
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� Givenn men andn women, we add an edge between a man and a woman if they like
each other. Can you find aperfect matching?

� A graph isbipartite if you can split the vertices to two groups such that there is no edge
connecting vertices in the same group

A bipartite graph Not a bipartite graph
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� Solving maximum bipartite matching problem:
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� Let’s make the problem more realistic: Givenn men andn women, every man (woman)
will rank all women (men).

� We say a set of marriages (matching) is unstable if there are two pairs (m, w) and
(m′, w′) with the following properties:

1. m prefersw′ to w

2. w
′ prefersm to m

′

� Example 1 (m,m′,w,w′):

1. m prefersw to w
′

2. m
′ prefersw to w

′

3. w prefersm to m
′

4. w
′ prefersm to m

′

� Example 2 (m,m′,w,w′):

1. m prefersw to w
′

2. m
′ prefersw′ to w

3. w prefersm′ to m

4. w
′ prefersm to m

′

� Givenn men andn women and a list of preferences, can you find a stable marriage for
them?
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� Ideas:

– The idea is to have the pair(m, w) enter a state called
“engagement” before marriage

– A free (not engaged) manm canpropose to a womenw, there will
be two possibilities:

1. w rejectsm (whenw prefers her fiancee)
2. w andm are engaged (whenw is free orw prefersm)

– A man can only propose to a woman once
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� Algorithm
Algorithm 0.1: STABLEMATCHING(n)

while there are free men

do























































pick a free manm
Let w be the woman with the highest ranking, to whom
m has not yet proposed
if w is free

then wandm are engaged

else















if w prefersm′

then m is still free

else
{

w andm are engaged
m′ is now free

Each engaged couple are now married

� What is the time complexity?
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� Properties

– A woman remain engaged after she was proposed first time. Herfiancee
gets better and better.

– A man can become free after engagement (his fiancee left him). His
fiancee get worse and worse.

– This algorithm is biased to man: the matching is always aman-optimal
matching

� Is the algorithm correct?
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TSPortrait of Dantzig by Robert Bosch. George Dantzig (1914-2005) was the
father of linear programming and the inventor of the SimplexMethod.
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� Simplex algorithm is an iterative improvement method

– starting with a vertexv of the convex set (of feasible solutions)
– find another vertexv′ adjacent tov with a higher objective value
– v = v′, until no better adjacent vertex

� Example:maximizex1 + 6x2

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400
x1 ≥ 0
x2 ≥ 0

� Some more geometry

– A vertex is formed by intersectingn constraints (for a problem withn variables)
– Two adjacent vertices will sharen − 1 constraints (and one different constraint)
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� For a the simplex algorithm, we need to:

– find an initial solution
– update the current solution

� In some cases, our initial point is simple, i.e.,(0, 0, · · · , 0), which gives us
many advantages:

1. This vertex is the intersection ofxi ≥ 0 constraints
2. When all coefficients in the objective function arenegative, our initial solution is

optimal
3. To pick an adjacent vertex, we simply pick a variablexi whose coefficient in the

objective function is positive and try to maximizexi

� Example:maximizex1 + 6x2

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400
x1 ≥ 0
x2 ≥ 0
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� Now, what do we do when our current solution is not at(0, 0, · · · , 0)
anymore?

� Well, we transform our problem so the current solution is at(0, 0, · · · , 0)
� Transform coordinate system:

– Note that coordinates are defined as distances to the constraints
– After we move to an adjacent vertex,oneconstraint is changed
– Therefore, the coordinate defined by the new constraint needs to be

updated
– The distance from a point to a hyper-planeaix = bi is simplybi − aix

� Example:maximizex1 + 6x2

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400
x1 ≥ 0
x2 ≥ 0
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� Let’s finish the example
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� What if (0, 0, · · · , 0) is not a feasible vertex? How do we start the process?
� We can modify the original LP problem by addingm artificial variableszi,

wherem is the number of constraints. Now our new LP problem becomes:

– z0 ≥ 0, z1 ≥ 0, ... zm−1 ≥ 0
– Addzi to the left size of thei-th constraint
– minimizez0 + z1 + · · · + zm−1

� First the initial vertex of the modified LP is easy to obtain:
(x1 = 0, x2 = 0, · · · , xn−1 = 0, z0 = b0, z1 = b1, · · · , zm−1 = bm−1)

� Once we have the initial vertex, we can use the Simplex algorithm to solve the
modified LP problem

� Now, if we havez0 + z1 + · · · + zm−1 = 0, we have an initial solution to
solve the original LP problem

� If z0 + z1 + · · · + zm−1 6= 0, the original LP will not have a feasible solution
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