CS483 Analysis of Algorithms
Lecture 09 — Linear Programming O1*

Jyh-Ming Lien

April 09, 2009

*this lecture note is based @sgorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani &mtco-
duction to the Design and Analysis of Algorithms by Anany Levitin.
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Similar to dynamic programming, “programming” here means
optimization

Linear programming (LP) problems are optimization problems whose
objective andconstraints are alllinear (i.e., exponents of all

variables are 1)

Many real-life problems can be expressed as LP problems

— Example: Profit maximization

> You are selling two kinds of chocolates: Pyramide and
Pyramide Nuit

> You make $1 profit by selling one box of Pyramide and $6
profit by selling one box of Pyramide Nuit

> Your factory can only make 200 and 300 boxes of Pyramide
and Nuit, resp., per day

> Your worker can only produce 400 boxes per day.

> YOu want to maximize your profit

— How many boxes of Pyramide and Pyramide Nuit do you make to
maximize your profit?
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Example: Profit maximization

'Lf;:g:r”;jggrammmg O Letxz; andz, be the number of boxes we want to produce for
Example: Profit Pyramide and Pyramide Nulit.
maximization

Geometric Interpretations [] ObJeCt|Ve Fu nction:
of LP problems )
Solving LP problems ] ConStra| ntSZ
(Simplex)

Example: Production 1

Planning "

Example: Production

Planning

Example: Bandwidth

Allocation 2 .

Example: Bandwidth

Allocation

LP variants and Standard

form
3.

Flows in networks

Simplex

O A LP problem can haveero, ong orinfinity optimal solutions

1. 2>52<3
2. max{xl + 332},331,1‘2 > ()
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Geometric Interpretations of LP problems
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Each linear constraint can be representedlaalfapace

A set of feasible solutions of a LP problem formsanvexset

The objective function can be represented ag@erplane

When there is a unique solution, this solution must be a vertex of the
convex set formed by the constraints

Example:maximize 21 + 6z2

oy
L2
r1 + x2
L1
2

IV IV AIAIA TN

200
300
400
0
0

Analysis of Algorithms

CS483 Lecture 09 — Linear Programming 01 trans — ¢



Solving LP problems (Simplex)

et oo 0 LPs can be solved by trsemplex method (named one of the top ten
S = Pt best algorithms in 20th century)

ceometic Interpretations ] Closely related tdnill-climbing by jumping from one vertex to an

of LP problems )
Solving LP problems adj ace nt ve I’teX
> (Simplex)

Example: Production Profit $ 1900
Planning 300

Example: Production
Planning

Example: Bandwidth
Allocation

Example: Bandwidth
Allocation 200 $ 1400

LP variants and Standard
form

Flows in networks

Simplex 100 A
$0 o = ¢ $200
0 100 200

O Simplex is a type of “iterative improvement” method
O  We will cover simplex in the next lecture (for now we assume we have
a simplex package that solves our problems).
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Example: Production Planning
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We have a company making hand-made carpets and today is Jan/1s

We now have 30 employees and each of them makes 20 carpets
and get $2000 per month.

Each employee gets paid 80% more by working overtime but can
only put in at most 30% overtime.

We can hire and fire employee. Hiring costs $320 and firing costs
$400 per worker.

Storing surplus will cost $8 per carpet per month.

We do not have surplus now and we must end the year without
surplus.

The demand for all months atk, ds, . . ., d;2

How do we minimize our total cost?
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Example: Bandwidth Allocation
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> Allocation
Example: Bandwidth
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Our company now is a network services provider

— The network has 3 nodeg, B, C

— ConnectionA — B pays $3 per unit of bandwidth

— ConnectionB — C pays $2 per unit of bandwidth

— ConnectiotA — C pays $4 per unit of bandwidth

— Each connection requires at least two units of bandwidth

— Each connection can be routed in two ways: long and shotgsou
— Bandwidths of the network are shown below

user

form A
Flows in networks 12
Simplex

a

11
13 ¢
10 8
U:SBBI' UE?[‘
O How do we route these connections to maximize our network’s
revenue”’
Analysis of Algorithms CS483 Lecture 09 — Linear Programming 01 trans — ¢



Example: Bandwidth Allocation
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LP variants and Standard form
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Example: Production
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Example: Production
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Example: Bandwidth
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Example: Bandwidth
Allocation

LP variants and
D> standard form

Flows in networks

O Variants

1. Objective functions: maximization and minimization
2. Constraints: equation or/and inequalities
3. Restrictions: variables are often restricted to be nayatiee

0 Standard form

1. Objective functions: minimization

2. Constraints: equation

3. Restrictions: variables are all non-negative

0 Reduction to standard form

Simplex maximize 1 + 6x2
z1 < 200
xo < 300
1 +x2 < 400
r1 > 0
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Maximum-flow problem

Introduction [0 Assuming that you are working for an oil company and the cangmavns a
Clows A networks network of pipe lines along which oil can be sent, you are as&dind out the
LDP il S maximum capacity of oil can be sent from a cityo another cityt over the
problem network.

Maximum-flow problem
Residual graph

Example (a) .// .-
Example =
Minimum Cut /\I
Maximum Bipartite P 2
Matching (s F=>lb)

Maximum Bipartite N A
Matching 3
Stable Matching ]

Stable Matching
Stable Matching
Stable Matching

Simplex 0  Maximum-flow problem: Given a weighted direct graph = {V, E'},
whose edge weight indicates the maximum capacity of an dingiethe
maximum flow from a vertex (source) and to another vertéxsink) so that
the following requirements are satisfied.

— The flow fe on edgee must bed < f. < ¢,
— Flowisconserved,ie, Y fuv= Y fow

(u,v)€EE (v,w)eEE
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LP and Maximum-flow problem

Introduction I:I Varlables
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Maximum-flow problem

Introduction

Flows in networks

Maximum-flow problem

LP and Maximum-flow

problem
Maximum-flow

> problem

Residual graph
Example
Example

Minimum Cut
Maximum Bipartite
Matching
Maximum Bipartite
Matching

Stable Matching
Stable Matching
Stable Matching
Stable Matching

Simplex

O Iterative improvement

— Start with O capacity

— Repeat Find a path froms to ¢, and increase the flow along this

path as much as possible

O Example:
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Residual graph

lnticdblan O To make the algorithm work: We allow path ¢ancel existing flow

A IRt O Residual grapliz/, whose edge weight indicate the remaining

Maximum-flow problem

LP and Maximum-flow capacity of an edge. Two types of edge weights are availalfli¢ in

problem
Maximum-flow problem

> Residual graph 1. Cyp — fuw, if (u,v)is an edge off and f,, < cus
S 2. fou, If (u,v)is an edge otz and f,, > 0

Example
Minimum Cut

Maximum Bipartite ] Exam ple

Matching

Maximum Bipartite
Matching

Stable Matching
Stable Matching
Stable Matching
Stable Matching

Simplex
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Example

Introduction [] Example

Flows in networks

Maximum-flow problem Flow Residual gl’ap'Gf
LP and Maximum-flow

problem

Maximum-flow problem
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Example
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Example

Introduction

Flows in networks Flow Residual graple

Maximum-flow problem

LP and Maximum-flow
problem
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Example

> Example
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Matching
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Simplex

[0 Time complexity:
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Minimum Cut

lnticeliclion [J Graph cut: (s,t)-cutis the removal of a set of edges so that a connected component

Flows in networks splits s andt into two connected components

Maximum-flow problem

LP and Maximum-flow
problem

Maximum-flow problem
Residual graph

Eﬁjzglg [0 The total capacity (edge weights) of a cut is an upper-bournideoapacity flow from

[> Minimum Cut one component to the other component

Maximum Bipartite
Matching

Maximum Bipartite
Matching

Stable Matching

Stable Matching . .. .
Stable Matching [1  Theorem:Maximum-flow Minimum cut : The maximum flow of a graph fromto ¢

Stable Matching equals to the capacity of the smallésit)-cut

Simplex

[] Question: How to compute the minimum cut of a given graph?
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Maximum Bipartite Matching

Introduction

Flows in networks

Maximum-flow problem

LP and Maximum-flow
problem
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Example

Example
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> Matching
Maximum Bipartite
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Simplex

[

[

Givenn men andn women, we add an edge between a man and a woman if they like
each other. Can you findgerfect matching?

A graph isbipartite if you can split the vertices to two groups such that there isdgee

connecting vertices in the same group

A bipartite graph

Not a bipartite graph
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Maximum Bipartite Matching

Introduction [] Solving maximum bipartite matching problem:

Flows in networks
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Stable Matching

Introduction [] Let’'s make the problem more realistic: Givermen andn women, every man (woman)
Flows in networks will rank all women (men).

tﬂsmuaa‘l?guiozgvm [] Wesaya s_et of marriag_es (matchi_ng) is unstable if there are tw® (paj w) and

oroblem (m/,w") with the following properties:

Maximum-flow problem

/
Residual graph 1. m prefersw’ tow

2. w’ prefersm tom’

Example
Example [ Example 1n,m’w,w’):
Minimum Cut
Maximum Bipartite 1. m prefersw to w’
Matching 2. m/ prefersw to w’
Maximum Bipartite 3. w prefersm to m/’
Matching 4. w’ prefersm tom’
> stable Matching
/ /\-
Stable Matching D Example 2 (n,m W, W )

Stable Matching

_ 1. m prefersw to w’
Stable Matching

2. m/ preferSw/ to w

/
Simplex 3. w prefersm’ tom

4. w' prefersm tom’

[] Givenn men and» women and a list of preferences, can you find a stable marriage for
them?
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Stable Matching

Introduction D

Flows in networks

Maximum-flow problem
LP and Maximum-flow
problem

Maximum-flow problem
Residual graph
Example

Example

Minimum Cut
Maximum Bipartite
Matching

Maximum Bipartite
Matching

Stable Matching
> Stable Matching
Stable Matching
Stable Matching

Simplex

ldeas:

The idea is to have the pdaim, w) enter a state called
“engagement” before marriage

A free (not engaged) mam canpropose to a womenw, there will
be two possibilities:

1. w rejectsm (whenw prefers her flancee)
2. w andm are engaged (whem is free orw prefersm)

A man can only propose to a woman once
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Stable Matching

Introduction ] Algorlthm

Flows in networks Algorlthm 0.1: STABLEMATCHING(’I’L)

Maximum-flow problem
LP and Maximum-flow

S while there are free men
M
aximum-flow problem ]
Residual graph ( ple a free mann
Ez:zg:g Let w be the woman with the highest ranking, to whom
Minimum Cut m has not yet proposed
Maximum Bipartite . ;
Matching if wis free
e do { thenwandm are engaged
Stable Matching (if w preferSm/
Stable Matching . .
> stable Matching else ¢ then m is still free
Stable Matching else J W andm are engaged
Simplex \ \ m' is now free

Each engaged couple are now married
I

O What is the time complexity?
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Stable Matching
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Maximum-flow problem
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problem

Maximum-flow problem
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Example

Example

Minimum Cut
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Matching
Maximum Bipartite
Matching

Stable Matching
Stable Matching
Stable Matching
> Stable Matching

Simplex

Properties

— A woman remain engaged after she was proposed first timefidtheee

gets better and better.

— A man can become free after engagement (his fiancee left kiim)

flancee get worse and worse.

— This algorithm is biased to man: the matching is alwagsaa-optimal

matching

Is the algorithm correct?
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Introduction
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Introduction

Introduction

Flows in networks

Simplex

> Introduction

Simplex Algorithm
Simplex Algorithm
Simplex Algorithm
Simplex Algorithm
Simplex Algorithm

TSPortrait of Dantzig by Robert Bosch. George Dantzig (190@52 was the
father of linear programming and the inventor of the SimgN&sthod.
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Simplex Algorithm

Introduction

Flows in networks

Simplex

Introduction

> Simplex Algorithm
Simplex Algorithm
Simplex Algorithm
Simplex Algorithm
Simplex Algorithm

[

[

[

Simplex algorithm is an iterative improvement method

Examplemaximize z1 + 6x2

starting with a vertex of the convex set (of feasible solutions)
— find another vertex’ adjacent ta with a higher objective value
— v =/, until no better adjacent vertex

1 < 200
zo < 300
1 +x2 < 400
1 > 0
o > 0

Some more geometry

A vertex is formed by intersecting constraints (for a problem with variables)
Two adjacent vertices will share — 1 constraints (and one different constraint)
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Simplex Algorithm

Introduction |:|

Flows in networks

Simplex

Introduction

Simplex Algorithm

> simplex Algorithm []
Simplex Algorithm

Simplex Algorithm

Simplex Algorithm

For a the simplex algorithm, we need to:

— find an initial solution

— update the current solution

In some cases, our initial point is simple, i.@,0, - - - ,0), which gives us
many advantages:

1. This vertex is the intersection of > 0 constraints
2. When all coefficients in the objective function aegative our initial solution is

optimal

3. To pick an adjacent vertex, we simply pick a variabJavhose coefficient in the
objective function is positive and try to maximizg

Example:maximize 1 + 6x2

1
T2
1 + T2
]
T2

IV IV AIAINAIA

200
300
400
0
0
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Simplex Algorithm

Introduction |:|
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Simplex

Introduction D
Simplex Algorithm |:|

Simplex Algorithm
> Simplex Algorithm
Simplex Algorithm
Simplex Algorithm

Now, what do we do when our current solution is not@to, - - - , 0)
anymore?

Well, we transform our problem so the current solution i§ad, - - - ,0)
Transform coordinate system:

Note that coordinates are defined as distances to the awmrtstr
After we move to an adjacent verteqje constraint is changed
Therefore, the coordinate defined by the new constrairdeebe
updated

The distance from a point to a hyper-plane = b; is simplyb; — a;x

Example:maximize 1 + 6x2

1 < 200
zo < 300
1 +x2 < 400
1 > 0
o > 0
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Simplex Algorithm

Introduction [0 Let’s finish the example

Flows in networks

Simplex

Introduction

Simplex Algorithm
Simplex Algorithm
Simplex Algorithm

> Simplex Algorithm
Simplex Algorithm
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Simplex Algorithm

Introduction O Whatif(0,0,---,0)is not a feasible vertex? How do we start the process?
Flows In networks [0 We can modify the original LP problem by addingartificial variablesz;,

SIuel wherem is the number of constraints. Now our new LP problem becomes:
Simplex Algorithm

Simplex Algorithm — 20 2 01 <1 2 O; v Rm—1 2 0

Simplex Algorithm — Add z; to the left size of thé-th constraint

Simplex Algorithm . e

> simplex Algorithm — minimizezp + z1 + -+ Zm—1

[0 First the initial vertex of the modified LP is easy to obtain:
(331 - 0,372 - O,°-- s Ln—1 — O,Zo - bo,Z1 = b1,'-' s Am—1 — bm_l)

[0 Once we have the initial vertex, we can use the Simplex algarto solve the
modified LP problem

0 Now, if we havezg + 21 +--- + z,,—1 = 0, we have an initial solution to
solve the original LP problem

O If z04+ 21+ -+ zm—1 # 0, the original LP will not have a feasible solution
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