CS483 Analysis of Algorithms Lecture 11 – NP-completeness *

Jyh-Ming Lien

April 23, 2009

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

Hard Problems

Hard Problems

Search Problems

Complexity Class

Reductions

□ Search problems (formal definition later):

- Search for shortest path in a graph

...

- Search for values of x, y and z to satisfy: $x^2y^{\frac{1}{2}}z xz^2 = 7$
- Search for a path in 3D space among obstacles

□ Success on solving these hard problems in polynomial time

- **Greedy** properties: without looking backward or forward, MST, shortest paths
- Optimality from subproblems: divide and conquer, dynamic programming
- **Convexity**: gradient decent/hill climbing, linear programming
- □ Success on solving these hard problems is based on some **special properties** of the problems

Hard Problems

Hard Problems Hard Problems

Search Problems

Complexity Class

Reductions

Failures

- Many problems requires 2^n , n! or even n^n (intractable)
- For some (clearly formalized) problems we don't even have algorithms to solve them
- (not to mention those problems that we can not even formalize)
- $\hfill\square$ In this lecture, we will look at
 - What are these *problems*? (Search Problems)
 - Terminology to classify *problems*: **P vs. NP**
 - How do you know if a *problem* can be solved efficiently?
 (Problem Reduction)
 - Do we have any hope of solving these *problems* efficiently?

Hard Problems	
Hard Problems	

\triangleright	Se	earc	ch F	rob	lems	
Wh	at	Ar	e Se	earc	h	
Pro	ble	ems	s?			
-				_		

Optimization Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

Search Problems

Hard Problems Hard Problems

Search Problems

 \triangleright Problems?

Search Problems Search Problems

Search Problems

Search Problems Search Problems Search Problems

Complexity Class

Reductions

What Are Search

Optimization Problems

\Box A Search problem has

- An instance of problem *I* that is input data specifying the problem
- Asked to find a solution S that meets a particular specification
- Polynomial-time Checkable: There most be an algorithm C that takes I and S and checks for correctness *efficiently*, i.e., in polynomial time

□ Example: Satisfability problem

- $I: (x \lor y \lor z)(x \lor \overline{y})$ $- S: \{x = T, y = F, z = T\}$ $- C: (T \lor F \lor T)(T \lor \overline{F})$
- □ Example: Traveling salesman problem

$$- I: G = \{V, E\}$$

$$- S: \{v_i, v_k, \cdots, v_i\}$$

$$- C:$$

Optimization Problems

Hard Problems Hard Problems

Search Problems What Are Search Problems? ▷ Optimization Problems Search Problems Search Problems Search Problems Search Problems Search Problems Search Problems

Complexity Class

Reductions

 \Box We convert an optimization problem to a search problem

- by introduce a **budge** b
- Budget does not make the problem harder or easier.

 \Box Example: Traveling salesman problem with budget b

-
$$I: G = \{V, E\}, b$$

- $S: \{v_i, v_k, \cdots, v_i\}$
- $C:$

 \Box Why do we convert an optimization problem to a search problem?

Hard Problems Hard Problems

Search Problems What Are Search Problems? Optimization Problems Search Problems Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

- □ Many problems we studied in the previous chapters are search problems, e.g., all-pairs shortest paths problem, single-source shortest paths problem, minimum spanning tree, maximum flow minimum cut, matching, ...
 - But why are these problem tractable? These problems seem to have Very Large search spaces
 - Many algorithms seem to defeat the curse of expoentiality!
- \Box Now, after we have seen the most brilliant successes, it's about time for us to face some failure in this quest.
 - Satisfability (SAT, 2SAT, 3SAT)
 - MST and TSP (traveling salesman problem) with or without budget b
 - Euler and Rudrata
 - Minimum cuts and balanced cuts
 - Integer linear programming or ILP ($Ax \le b$) and Zero-one Equations or ZOE (Ax = 1)
 - Three dimensional matching
 - Independent set, vertex cover, clique problem (with budget *b*)
 - Longest path

Hard Problems Hard Problems

Search Problems What Are Search Problems? **Optimization Problems** Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Search Problems

Complexity Class

Reductions

Satisfability problems (Horn-SAT, 2SAT, 3SAT, KSAT) Horn's formula \square

- Implications: $(z \land w) \Rightarrow u$
- Pure negative clauses: $(\bar{u} \lor \bar{v} \lor \bar{y})$
- Horn-SAT: Solvable using greedy algorithm

2SAT \square

- in conjunctive normal form (CNF)
- Each clause has two literals
- example: $(x \lor y) \land (\bar{x} \lor z) \land (x \lor \bar{w})$
- Can be solve in polynomail time
- 3SAT \square
 - in conjunctive normal form (CNF)
 - Each clause has 3 literals
 - example: $(x \lor y \lor w) \land (\bar{x} \lor z \lor \bar{y}) \land (x \lor u \lor \bar{w})$
 - No polynomial time algorithm

Hard Problems Hard Problems

Search Problems What Are Search Problems? Optimization Problems Search Problems Search Problems Search Problems Search Problems

Search Problems

Complexity Class

Reductions

□ Euler's tour and Rudrata's problem

Rudrata's problem visit all vertices without repeating **No polynomial time algorithm**

 \square

Hard Problems Hard Problems

Search Problems What Are Search Problems? Optimization Problems Search Problems Search Problems Search Problems Search Problems Search Problems Search Problems

Com	plexity	Class

Reductions

- □ Longest path (Taxicab rip-off problem)
 - Give a graph and two nodes s and t, find a path with length at least b from s to t without repeating vertices.
 - no polynomial time algorithm
 - Minimum cuts and balanced cuts
 - Find cuts that split the graph into two sets S and T
 - Minimum cuts problem can be solved using linear programming
 - Balanced cuts: $|S| \ge n/3 |T| \ge n/3$ and there are at most *b* edges between *S* and *T*
 - Balanced cuts problem has no polynomial time algorithm

Hard Problems Hard Problems

Search Problems What Are Search Problems? Optimization Problems Search Problems Search Problems Search Problems Search Problems Search Problems

Search Problem

```
Complexity Class
```

Reductions

Knapsack problem and Subset sum

- In subset sum, each item has same value and weight
- Both problems have no polynomial time algorithms

Integer linear programming or ILP ($Ax \le b$) and Zero-one Equations or ZOE (Ax = 1)

- Simplex method is not polynomial but LP can be solved in polynomial time
- ILP requires the values of all variables to be integer
- ZOE is a special type of ILP where all values in A are 0 or 1
- Both problems have no polynomial time algorithms

Hard Problems Hard Problems

Search Problems

Complexity Class

Problem Complexity

P vs. NP P vs. NP vs. NP hard vs. NP complete P vs. NP vs. NP hard vs. NP complete

Reductions

Complexity Class

Problem Complexity

 \square

Hard Problems Hard Problems

Search Problems

Complexity Class

Problem Complexity

P vs. NP P vs. NP vs. NP hard vs. NP complete P vs. NP vs. NP hard vs. NP complete

Reductions

Tractable: a problem is tractable if there is an algorithm can solve the problem deterministically in *polynomial time*

Is a problem tractable or intractable?

- yes (given an algorithm to support this answer)

– no

- because it's been proved that no algorithm exists at all (e.g., Turing's Halting Problem.)
- because it's been be proved that any algorithm takes exponential time (Traveling Sales Men Problem)

– we have no idea...

Hard Pro Hard Pro

Search P

Complex

Problem

 $\triangleright \mathbf{P} \mathbf{vs}$ P vs. NP NP com P vs. NP

NP com

Reductio

oblems oblems	Hard problems, easy problems	
Problems	Hard problems NP-complete	Easy problems P
	SAT, 3SAT	2SAT
Complexity	Traveling Salesman Problem, Rudrata path	Chinese Postman Problem, Euler path
. NP	3D matching	Bipartite matching
vs. NP hard vs.	Independent set	Independent set on trees
vs. NP hard vs.	Integer linear programming	Linear programming
plete	Balance cut	Minimum cut
ons	P : polynomial	
	- Given an instance I , we can find a polynomial	nial time algorithm to find an solution S
	NP: nondeterministic polynomial	
	 Given an instance I and a proposed solution algorithm C to check if S is an solution of Remember: A problem in NP does NOT not solution. 	on S, we can find a polynomial time I in I hean it is a hard problem
	NP hard: all problems in NP can be redu	iced to a NP hard problem
	– A NP hard problem is at least as hard	as the hardest problem in NP
	NP complete : in NP and also in NP hard	

Hard	Problems	
Hard	Problems	

Complexity Class

Problem Complexity

P vs. NP P vs. NP vs. NP hard ▷ vs. NP complete P vs. NP vs. NP hard vs. NP complete

Reductions

 \Box Their relationship

Hard	Problems	
Hard	Problems	

Complexity Class

Problem Complexity

P vs. **NP** P vs. NP vs. NP hard vs. NP complete

 \triangleright P vs. NP vs. NP hard \triangleright vs. NP complete

Reductions

Problems in P
sorting, MST,

□ Problems in NP complete SAT, TSP, ILP, ...

Problems in NP but not in P or in NP complete factoring, graph isomorphism

Problems not in NP
 Halting problem, counting the number of perfect matching, matrix permanent,
 ...

 \square P=NP? (Most Computer Scientists believe P \neq NP)

□ There are many more complexity classes than these three (PSpace, Co-NP, ExpTime, ExpSpace,...)

In fact, there are 462 complexity classes according to the "Complexity zoo" http://qwiki.caltech.edu/wiki/Complexity_Zoo (maintained by Scott Aaronson and Greg

Kuperberg)

Hard Problems

Hard Problems

Search Problems

Complexity Class

▷ Reductions

Reductions

Reductions

 $\text{TSP} \rightarrow \text{TSP}$ with budget b

Rudrata (s, t)-Path \rightarrow

Rudrata cycle

 $3SAT \rightarrow Independent \ Set$

Independent Set \rightarrow Vertex

Cover Independent Set \rightarrow Clique

 $SAT \rightarrow 3SAT$

 $3SAT \rightarrow 3D$ Match

3D Match \rightarrow ZOE

 $ZOE \rightarrow Rudrata$

 $Rudrata \rightarrow TSP$

All Problems in NP \rightarrow SAT

Reductions

Analysis of Algorithms

Reductions

Hard Problems \Box Hard Problems Search Problems _ Complexity Class NP-complete Reductions \triangleright Reductions Reductions TSP \rightarrow TSP with budget b Rudrata (s, t)-Path \rightarrow Rudrata cycle Instance $3SAT \rightarrow Independent Set$ Τ Independent Set \rightarrow Vertex Cover Independent Set \rightarrow Clique $SAT \rightarrow 3SAT$ $3SAT \rightarrow 3D$ Match 3D Match \rightarrow ZOE $ZOE \rightarrow Rudrata$ Rudrata \rightarrow TSP All Problems in NP \rightarrow SAT

If we reduce a problem A to a problem B in polynomial time (denoted as $A \rightarrow B$, we can say that B is as hard as A if not harder

- If $A \to B$ and A is NP-complete then we know that B is also NP-complete

Reductions

$\mathbf{TSP} \rightarrow \mathbf{TSP}$ with budget b

Hard Problems
Hard Problems
Search Problems
Complexity Class
Complexity Class
Reductions
Reductions
Reductions
\triangleright budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
$3SAT \rightarrow Independent Set$
Independent Set \rightarrow Vertex
Cover
Independent Set \rightarrow Clique
$SAT \rightarrow 3SAT$
$3SAT \rightarrow 3D$ Match
3D Match \rightarrow ZOE
$ZOE \rightarrow Rudrata$
Rudrata \rightarrow TSP
All Problems in NP \rightarrow SAT
57 II

Rudrata (s, t)-Path \rightarrow Rudrata cycle

Hard Problems Hard Problems	Is Rudrata cycle harder than Rudr
Search Problems	
Complexity Class	
Reductions	
Reductions	
Reductions	
TSP \rightarrow TSP with budget b	
Rudrata (s, t) -Path $\triangleright \rightarrow$ Rudrata cycle	
$3SAT \rightarrow Independent Set$	
Independent Set \rightarrow Vertex Cover	
Independent Set \rightarrow Clique	
$SAT \rightarrow 3SAT$	
$3SAT \rightarrow 3D$ Match	
3D Match \rightarrow ZOE	
$ZOE \rightarrow Rudrata$	
Rudrata \rightarrow TSP	
All Problems in NP \rightarrow	
SAI	

rata (s, t)-Path? No. Because ...

$\textbf{3SAT} \rightarrow \textbf{Independent Set}$

Hard Problems
Hard Problems
Search Problems
Complexity Class
Reductions
Reductions
Reductions
$\text{TSP} \rightarrow \text{TSP}$ with budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
\triangleright Set
Independent Set \rightarrow Vertex
Cover
Independent Set \rightarrow Clique
$SAT \rightarrow 3SAT$
$3SAT \rightarrow 3D$ Match
$3D \text{ Match} \rightarrow ZOE$
$ZOE \rightarrow Rudrata$
Rudrata \rightarrow TSP All Problems in NP \rightarrow
SAT

Independent Set \rightarrow Vertex Cover

$\textbf{Independent Set} \rightarrow \textbf{Clique}$

$SAT \to 3SAT$

Hard Problems
Hard Problems
C 1 D 11
Search Problems
Complexity Class
Reductions
Reductions
Reductions
TSP \rightarrow TSP with budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
$3SAT \rightarrow Independent Set$
Independent Set \rightarrow Vertex
Cover
Independent Set \rightarrow Clique
\triangleright SAT \rightarrow 3SAT
$3SAT \rightarrow 3D$ Match
3D Match \rightarrow ZOE
$ZOE \rightarrow Rudrata$
Rudrata \rightarrow TSP
All Problems in NP \rightarrow
SAT

$3SAT \rightarrow 3D$ Match

Hard Problems
Hard Problems
Search Problems
Search Floblenis
Complexity Class
Reductions
Reductions
Reductions
TSP \rightarrow TSP with budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
$3SAT \rightarrow Independent Set$
Independent Set \rightarrow Vertex
Cover
Independent Set \rightarrow Clique
$SAI \rightarrow 3SAI$
\lor 3SAT \rightarrow 3D Match
3D Match \rightarrow ZOE
$ZOE \rightarrow Rudrata$
Rudrata \rightarrow TSP
SAT SAT

3D Match \rightarrow **ZOE**

Hard Problems
Hard Problems
Search Problems
Carran la mitra Class
Complexity Class
Reductions
Reductions
Reductions
TSP \rightarrow TSP with budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
$3SAI \rightarrow Independent Set$
$\begin{array}{c} \text{Independent Set} \rightarrow \text{ vertex} \\ \text{Cover} \end{array}$
Independent Set \rightarrow Clique
$SAT \rightarrow 3SAT$
$3SAT \rightarrow 3D$ Match
\triangleright 3D Match \rightarrow ZOE
$ZOE \rightarrow Rudrata$
Rudrata \rightarrow TSP
All Problems in NP \rightarrow
SAT

$\textbf{ZOE} \rightarrow \textbf{Rudrata}$

II 1D 11
Hard Problems
Hard Problems
Search Problems
Complexity Class
Reductions
Reductions
Reductions
TSP \rightarrow TSP with budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
$3SAT \rightarrow$ Independent Set
Independent Set \rightarrow Vertex
Cover
Independent Set \rightarrow Clique
$SAT \rightarrow 3SAT$
$3SAT \rightarrow 3D$ Match
3D Match \rightarrow ZOE
\triangleright ZOE \rightarrow Rudrata
Rudrata \rightarrow TSP
All Problems in NP \rightarrow
SAT

$\textbf{Rudrata} \rightarrow \textbf{TSP}$

All Problems in $NP \to SAT$

Hard Problems
Hard Problems
Saarah Drohlams
Search Problems
Complexity Class
Reductions
Reductions
Reductions
TSP \rightarrow TSP with budget b
Rudrata (s, t) -Path \rightarrow
Rudrata cycle
$3SAT \rightarrow$ Independent Set
Independent Set \rightarrow Vertex
Cover
Independent Set \rightarrow Clique
$SAT \rightarrow 3SAT$
$3SAT \rightarrow 3D$ Match
3D Match \rightarrow ZOE
$ZOE \rightarrow Rudrata$
Rudrata \rightarrow TSP
All Problems in NP \rightarrow
▷ SAT