
Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 1

CS483 Analysis of Algorithms
Lecture 03 – Divide-n-Conquer∗

Jyh-Ming Lien

February 06, 2008

∗this lecture note is based onAlgorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani andIntro-
duction to the Design and Analysis of Algorithms by Anany Levitin.

Today, we will learn...

⊲ Today, we will learn...

Introduction

Sort & Select

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 2

� In this lecture we will two main topics:

– Sort and selection

⊲ Mergesort and quicksort
⊲ Binary search
⊲ Closest-pair and convex-hull algorithms

– Multiplication

⊲ Multiplication of large integers
⊲ Matrix multiplication
⊲ Polynomial multiplication

� We will approach these problems using the divide-and-conquer
technique

Introduction

Today, we will learn...

⊲ Introduction

Divide and Conquer

Divide and Conquer
Divide and Conquer
Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 3

Divide and Conquer

Today, we will learn...

Introduction

⊲ Divide and Conquer

Divide and Conquer
Divide and Conquer
Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 4

� Divide and conquer was a successful military strategy long before it
became an algorithm design strategy

– Coalition uses divide-conquer plan in Fallujah
By Rowan Scarborough and Bill Gertz, THE WASHINGTON TIMES

Coalition troops are employing a divide-and-conquer strategy in Fallujah,
Iraq, capitalizing on months of pinpointed intelligence toseal off
terrorist-held neighborhoods and then attack enemy pockets.

� Example: Your CS 483 instructor give you a 50-question assignment
today and ask you to turn it in the tomorrow. What should you do?

Divide and Conquer

Today, we will learn...

Introduction

Divide and Conquer

⊲ Divide and Conquer
Divide and Conquer
Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 5

� The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these

solutions

Divide and Conquer Examples

Today, we will learn...

Introduction

Divide and Conquer

Divide and Conquer

⊲
Divide and Conquer
Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 6

� Example: Given a listA = {2, 3, 6, 4, 12, 1, 7}, compute
7

∑

i=1

Ai

Master Theorem

Today, we will learn...

Introduction

Divide and Conquer

Divide and Conquer
Divide and Conquer
Examples

⊲ Master Theorem

Sort & Select

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 7

� If we have a problem of sizen and our algorithm divides the problems
into b instances, witha of them needing to be solved. Then we can set
up our running timeT (n) as:T (n) = aT (n/b) + f(n), wheref(n) is
the time spent on dividing and merging.

� Master Theorem: If f(n) ∈ Θ(nd), with d ≥ 0, then

T (n) =







Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd

� Examples:

1. T (n) = 4T (n/2) + n ⇒ T (n) =

2. T (n) = 4T (n/2) + n2 ⇒ T (n) =

3. T (n) = 4T (n/2) + n3 ⇒ T (n) =

Sort & Select

Today, we will learn...

Introduction

⊲ Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 8

Sorting: Mergesort

Today, we will learn...

Introduction

Sort & Select

⊲ Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 9

� Given an array ofn numbers, sort the element from small to large.
Algorithm 0.1: MERGESORT(A[1 · · ·n])

Sorting: Mergesort

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

⊲ Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 10

� Merge two sorted arrays,B andC and put the result inA
Algorithm 0.2: MERGE(B[1 · · · p], C[1 · · · q], A[1 · · · p + q])

Sorting: Mergesort Example

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort

⊲
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 11

� Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99

� Is Mergesort stable?

Analysis of Merge Sort

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

⊲ Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 12

� Cworst(n)

Sorting: Quicksort

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

⊲ Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 13

� Given an array ofn numbers, sort the element from small to large.
Algorithm 0.3: QUICKSORT(A[1 · · ·n])

� A[1] in the above algorithm is calledpivot

Sorting: Quicksort Example

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort

⊲
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 14

� Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 22

� Is Quicksort stable?

Analysis of Quicksort

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

⊲ Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 15

� Cworst(n)

� Cbest(n)

� Cavg(n)

Why is Quicksort quicker?

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

⊲
Why is Quicksort
quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 16

� Because quicksort allows very fast “in-place partition”
Algorithm 0.4: PARTITION(A[a · · · b])

The Selection Problem

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

⊲ The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 17

� Similar to partition in quicksort!
� Find thek-th smallest element in an arrayA with n unique elements

Algorithm 0.5: SELECT(A[1 · · ·n], k)

� The algorithm above will work well forA with unique elements. How
do you change to make it work for more general cases?

� Time complexity:

Binary Search

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

⊲ Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 18

� Imagine that you are placed in an unknown building and you are given
a room number, you need to find your CS 483 instructor. What will
you do?

� Binary Search:

– Very efficient algorithm for searching insorted array
Example: find 70 in{3, 14, 27, 31, 39, 42, 55, 70, 74, 81, 85, 93, 98}

– Efficient search in even in high dimensional unknown space
Example:

Binary Search

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

⊲ Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 19

� Given a sorted arrayA of n numbers, find a keyK in A

Algorithm 0.6: BINARY SEARCH(A[1 · · ·n], K)

� Binary search is in fact a bad (degenerate) example of
divide-and-conquer

Analysis of Binary Search

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – note 1 of slide 19

� Cworst(n)

� Cbest(n)

� Cavg(n)

Closest Pair

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

⊲ Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 20

� Find the closest distance between points in a given point set
Algorithm 0.7: CP(P [1 · · ·n])

comment:P is a setn points

Closest Pair

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

⊲ Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 21

� Find the closest distance between points in a given point set
Algorithm 0.8: COMBINE(c, P, P1, P2, d)

� What is the time complexity?

Convex Hull

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

⊲ Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 22

� Here we consider a divide-and-conquer algorithm calledquickhull
� Quickhull is similar to quicksort

why?
� Observations (given a point setP in 2-d):

– The leftmost and rightmost points inP must be part of the convex hull
– The furthest point away from any line must be part of the convex hull
– Points in the triangle formed by any three points inP will not be part of

the convex hull

Quickhull

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort

Sorting: Quicksort
Sorting: Quicksort
Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

⊲ Quickhull

Multiplication

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 23

� Qhull
Algorithm 0.9: QHULL(P [1 · · ·n])

comment:P is a setn points

� Animation: http://www.cs.princeton.edu/∼ah/alg anim/version1/QuickHull.html

Analysis of Quickhull

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – note 1 of slide 23

� Worst case:

� Best case:

� Avg case:

Multiplication

Today, we will learn...

Introduction

Sort & Select

⊲ Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 24

Interger multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

⊲ Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 25

� What is the time complexity of multiplying two integers usingthe algorithms
we learned in elementary schools?
Example: how do you compute this:12345 × 67890?

� Is there a better way of multiplying two intergers than this elementary-school
method?
Carl Friedrich Gauss (1777-1855) discovered that
AB = (a10

n

2 + b)(c10
n

2 + d) =

Example: how do you compute this:12345 × 67890?

Carl Friedrich Gauss

Interger multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

⊲ Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 26

� Divid-and-conquer interger multiplication
Algorithm 0.10: M(A[1 · · ·n], B[1 · · ·n])

� What is the time complexity?

Matrix multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

⊲ Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 27

Strassen’s Matrix Multiplication:

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 A12

B21 B22

]

=

[

m1 + m4 − m5 + m7 m3 + m5

m2 + m4 m1 + m3 − m2 + m6

]

� m1 = (A11 + A22)(B11 + B22)
� m2 = (A21 + A22)B11

� m3 = A11(B12 − B22)
� m4 = A22(B21 − B11)
� m5 = (A11 + A12)B22

� m6 = (A21 − A11)(B11 + B12)
� m7 = (A12 − A22)(B21 + B22)

Matrix multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

⊲ Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 28

� What is the time complexity?

� Do you still remember what the time complexity of the brute-force
algorithm is?

Polynomial multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

⊲
Polynomial
multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 29

� two degree-n polynomials:

A(x) = anxn + an−1x
n−1 + · · · + a1x + a0

B(x) = bnxn + bn−1x
n−1 + · · · + b1x + b0

� Multiplication of two degree-n polynomial

C(x) = A(x)B(x) = c2nx2n + c2n−1x
2n−1 + · · · + c1x + c0

� The coefficientck is:

� A brute force method for computingC(x) will have time complexity=

� Can we do better?

Representing polynomial

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

⊲
Representing
polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 30

� Fact: A degree-n polynomial is uniquely defined by anyn + 1
distinct points

� A degree-n polynomialA(x) can be represented by:

–
–

� We can convert between these two representations: 1.5cm

� The value representation allows us to develop faster algorithm!

– We only need2n + 1 points forC(x)
– It’s easy and efficient to generate these2n + 1 points fromA(x)

andB(x)

Polynomial multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

⊲
Polynomial
multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 31

� General idea:

1. ConvertA andB to value representation (Evaluation)
2. Perform multiplication to obtainC in value representation
3. ConvertC back to coefficient representation (Interpolation)

Evaluation O(n log n)

Coefficient representation

B(x0), B(x1), . . . , B(x2n)

A(x0), A(x1), . . . , A(x2n)
C(x0), C(x1), . . . , C(x2n)

Multiplication O(n)

Value representation

A(x) = anx
n + an−1x

n−1 + . . . + a1x + a0

B(x) = bnx
n + bn−1x

n−1 + . . . + b1x + b0

C(xi) = A(xi)B(xi)

C(x) = c2nx
2n + c2n−1x

2n+1 + . . . + c1x + c0

Multiplication O(n2)

Interpolation O(n log n)

Polynomial evaluation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

⊲ Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 32

� f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

� Polynomial evaluation: Givenx, computef(x)
� Brute force algorithm

Algorithm 0.11: F(x)

� Time complexity of this brute force algorithm?

� Can we do better?

Horner’s Rule

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

⊲ Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 33

� Horner’s rule

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

= (anxn−1 + an−1x
n−2 + · · · + a1)x + a0

= (· · · (anx + an−1)x + · · ·)x + a0

� Polynomial evaluation using Horner’s rule
Algorithm 0.12: F(x)

� Time complexity:
� Example:f(x) = 2x4 − x3 + 3x2 + x − 5 atx = 4

A n log n time polynomial evaluation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule

⊲
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 34

� Basic idea: How we selectxi affects the run time.
� Example: If we pick±x0,±x1, . . . ,±xn/2−1, thenA(xi) and

A(−xi) have many overlap

– x5 + 2x4 + 3x3 + 4x2 + 5x + 6 =
– A(x) =
– When evaluatexi, A(xi) =
– When evaluate−xi, A(−xi) =

� What we need isxi such that

n-th roots of unity

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

⊲ n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 35

� Idea: Usen-th roots of unity:zn = 1 as ourxi

� Background:

– Complex numberz = r(cos(θ) + i sin(θ))

⊲ Usually denoted asreiθ or (r, θ)
⊲ (r1, θ1) × (r2, θ2) = (r1r2, θ1 + θ2)

– Let ωn = cos(2π
n) + i sin(2π

n) = e2πi/n be a complexn-th root of
unity

– Other roots include:ω2
n, ω3

n, . . . , ωn−1
n , ωn

n

– Properties:

⊲ ωj
n = −ω

j+n/2
n

⊲ Therefore,(ωj
n)2 = (−ω

j+n/2
n)2

⊲ Moreover,(ωj
n)2 = ω

j
n/2

⊲

Pn
i=1

ωi
n =

1−ωn
n

1−ωn
= 0

n-th roots of unity

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

⊲ n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 36

� Examplesn = 8:

A n log n time polynomial evaluation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity

⊲
A n log n time
polynomial evaluation

A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 37

� FFT
Algorithm 0.13: FFT((a0, a1, a2, . . . , an−1), ω)

� Time complexity?

A n log n time polynomial evaluation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation

⊲
A n log n time
polynomial evaluation

A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 38

� Hardware implementation

A n log n time polynomial interpolation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation

⊲
A n log n time
polynomial
interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 39

� Convert the valuesC(xi) back to coefficients:{ci}=FFT(C(xi), ω
−1)

� Here is why

� Mn(ω) =

� Entry (j, k) of Mn is ωjk

A n log n time polynomial interpolation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation

⊲
A n log n time
polynomial
interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 40

� Mn(ω) is invertible, i.e., columnj and columnk are orthogonal

– proof:

� Inversion formulaMn(ω)−1 = 1
nMn(ω−1)

– proof:

A closer look

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

⊲ A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 41

Conclusion

Today, we will learn...

Introduction

Sort & Select

Multiplication

⊲ Conclusion

Summary

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 42

Summary

Today, we will learn...

Introduction

Sort & Select

Multiplication

Conclusion

⊲ Summary

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 43

� Summary

– Sort and select

⊲ Mergesort and quicksort1

⊲ Binary search
⊲ Closest-pair and convex-hull algorithms

– Multiplication

⊲ Multiplication of large integers - from Gauss
⊲ Matrix multiplication
⊲ Polynomial multiplication - FFT1 (Also from Gauss)

� Divide-n-conquer strategy

– Advantages of

⊲ Make problems easier
⊲ Easy parallelization

– Disadvantages of Divide-n-conquer strategy

⊲ Recursion can be slow
⊲ Subproblems may overlap

1Named one of 10 best algorithms in last century

	Today, we will learn...
	Introduction
	Divide and Conquer
	Divide and Conquer
	Divide and Conquer Examples
	Master Theorem

	Sort & Select
	Sorting: Mergesort
	Sorting: Mergesort
	Sorting: Mergesort Example
	Analysis of Merge Sort
	Sorting: Quicksort
	Sorting: Quicksort Example
	Analysis of Quicksort
	Why is Quicksort quicker?
	The Selection Problem
	Binary Search
	Binary Search
	Closest Pair
	Closest Pair
	Convex Hull
	Quickhull

	Multiplication
	Interger multiplication
	Interger multiplication
	Matrix multiplication
	Matrix multiplication
	Polynomial multiplication
	Representing polynomial
	Polynomial multiplication
	Polynomial evaluation
	Horner's Rule
	A nlogn time polynomial evaluation
	n-th roots of unity
	n-th roots of unity
	A nlogn time polynomial evaluation
	A nlogn time polynomial evaluation
	A nlogn time polynomial interpolation
	A nlogn time polynomial interpolation
	A closer look

	Conclusion
	Summary

