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� In this lecture we will two main topics:

– Sort and selection

⊲ Mergesort and quicksort
⊲ Binary search
⊲ Closest-pair and convex-hull algorithms

– Multiplication

⊲ Multiplication of large integers
⊲ Matrix multiplication
⊲ Polynomial multiplication

� We will approach these problems using the divide-and-conquer
technique
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� Divide and conquer was a successful military strategy long before it
became an algorithm design strategy

– Coalition uses divide-conquer plan in Fallujah
By Rowan Scarborough and Bill Gertz, THE WASHINGTON TIMES

Coalition troops are employing a divide-and-conquer strategy in Fallujah,
Iraq, capitalizing on months of pinpointed intelligence toseal off
terrorist-held neighborhoods and then attack enemy pockets.

� Example: Your CS 483 instructor give you a 50-question assignment
today and ask you to turn it in the tomorrow. What should you do?
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� The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these

solutions
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� Example: Given a listA = {2, 3, 6, 4, 12, 1, 7}, compute
7

∑

i=1

Ai
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� If we have a problem of sizen and our algorithm divides the problems
into b instances, witha of them needing to be solved. Then we can set
up our running timeT (n) as:T (n) = aT (n/b) + f(n), wheref(n) is
the time spent on dividing and merging.

� Master Theorem: If f(n) ∈ Θ(nd), with d ≥ 0, then

T (n) =







Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd

� Examples:

1. T (n) = 4T (n/2) + n ⇒ T (n) =

2. T (n) = 4T (n/2) + n2 ⇒ T (n) =

3. T (n) = 4T (n/2) + n3 ⇒ T (n) =
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� Given an array ofn numbers, sort the element from small to large.
Algorithm 0.1: MERGESORT(A[1 · · ·n])
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� Merge two sorted arrays,B andC and put the result inA
Algorithm 0.2: MERGE(B[1 · · · p], C[1 · · · q], A[1 · · · p + q])
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� Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99

� Is Mergesort stable?
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� Cworst(n)
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� Given an array ofn numbers, sort the element from small to large.
Algorithm 0.3: QUICKSORT(A[1 · · ·n])

� A[1] in the above algorithm is calledpivot
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� Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 22

� Is Quicksort stable?
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� Cworst(n)

� Cbest(n)

� Cavg(n)
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� Because quicksort allows very fast “in-place partition”
Algorithm 0.4: PARTITION(A[a · · · b])
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� Similar to partition in quicksort!
� Find thek-th smallest element in an arrayA with n unique elements

Algorithm 0.5: SELECT(A[1 · · ·n], k)

� The algorithm above will work well forA with unique elements. How
do you change to make it work for more general cases?

� Time complexity:
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� Imagine that you are placed in an unknown building and you are given
a room number, you need to find your CS 483 instructor. What will
you do?

� Binary Search:

– Very efficient algorithm for searching insorted array
Example: find 70 in{3, 14, 27, 31, 39, 42, 55, 70, 74, 81, 85, 93, 98}

– Efficient search in even in high dimensional unknown space
Example:
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� Given a sorted arrayA of n numbers, find a keyK in A

Algorithm 0.6: BINARY SEARCH(A[1 · · ·n], K)

� Binary search is in fact a bad (degenerate) example of
divide-and-conquer
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� Cworst(n)

� Cbest(n)

� Cavg(n)
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� Find the closest distance between points in a given point set
Algorithm 0.7: CP(P [1 · · ·n])

comment:P is a setn points
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� Find the closest distance between points in a given point set
Algorithm 0.8: COMBINE(c, P, P1, P2, d)

� What is the time complexity?
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� Here we consider a divide-and-conquer algorithm calledquickhull
� Quickhull is similar to quicksort

why?
� Observations (given a point setP in 2-d):

– The leftmost and rightmost points inP must be part of the convex hull
– The furthest point away from any line must be part of the convex hull
– Points in the triangle formed by any three points inP will not be part of

the convex hull
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� Qhull
Algorithm 0.9: QHULL(P [1 · · ·n])

comment:P is a setn points

� Animation: http://www.cs.princeton.edu/∼ah/alg anim/version1/QuickHull.html
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� Worst case:

� Best case:

� Avg case:
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� What is the time complexity of multiplying two integers usingthe algorithms
we learned in elementary schools?
Example: how do you compute this:12345 × 67890?

� Is there a better way of multiplying two intergers than this elementary-school
method?
Carl Friedrich Gauss (1777-1855) discovered that
AB = (a10

n

2 + b)(c10
n

2 + d) =

Example: how do you compute this:12345 × 67890?

Carl Friedrich Gauss
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� Divid-and-conquer interger multiplication
Algorithm 0.10: M(A[1 · · ·n], B[1 · · ·n])

� What is the time complexity?
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Strassen’s Matrix Multiplication:

[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 A12

B21 B22

]

=

[

m1 + m4 − m5 + m7 m3 + m5

m2 + m4 m1 + m3 − m2 + m6

]

� m1 = (A11 + A22)(B11 + B22)
� m2 = (A21 + A22)B11

� m3 = A11(B12 − B22)
� m4 = A22(B21 − B11)
� m5 = (A11 + A12)B22

� m6 = (A21 − A11)(B11 + B12)
� m7 = (A12 − A22)(B21 + B22)
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� What is the time complexity?

� Do you still remember what the time complexity of the brute-force
algorithm is?
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� two degree-n polynomials:

A(x) = anxn + an−1x
n−1 + · · · + a1x + a0

B(x) = bnxn + bn−1x
n−1 + · · · + b1x + b0

� Multiplication of two degree-n polynomial

C(x) = A(x)B(x) = c2nx2n + c2n−1x
2n−1 + · · · + c1x + c0

� The coefficientck is:

� A brute force method for computingC(x) will have time complexity=

� Can we do better?
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� Fact: A degree-n polynomial is uniquely defined by anyn + 1
distinct points

� A degree-n polynomialA(x) can be represented by:

–
–

� We can convert between these two representations: 1.5cm

� The value representation allows us to develop faster algorithm!

– We only need2n + 1 points forC(x)
– It’s easy and efficient to generate these2n + 1 points fromA(x)

andB(x)



Polynomial multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication

Interger multiplication

Matrix multiplication

Matrix multiplication

Polynomial multiplication

Representing polynomial

⊲
Polynomial
multiplication

Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity

n-th roots of unity
A n log n time
polynomial evaluation
A n log n time
polynomial evaluation
A n log n time
polynomial interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms CS483 Lecture 03-Divide-n-Conquer – 31

� General idea:

1. ConvertA andB to value representation (Evaluation)
2. Perform multiplication to obtainC in value representation
3. ConvertC back to coefficient representation (Interpolation)

Evaluation O(n log n)

Coefficient representation

B(x0), B(x1), . . . , B(x2n)

A(x0), A(x1), . . . , A(x2n)
C(x0), C(x1), . . . , C(x2n)

Multiplication O(n)

Value representation

A(x) = anx
n + an−1x

n−1 + . . . + a1x + a0

B(x) = bnx
n + bn−1x

n−1 + . . . + b1x + b0

C(xi) = A(xi)B(xi)

C(x) = c2nx
2n + c2n−1x

2n+1 + . . . + c1x + c0

Multiplication O(n2)

Interpolation O(n log n)
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� f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

� Polynomial evaluation: Givenx, computef(x)
� Brute force algorithm

Algorithm 0.11: F(x)

� Time complexity of this brute force algorithm?

� Can we do better?
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� Horner’s rule

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0

= (anxn−1 + an−1x
n−2 + · · · + a1)x + a0

= (· · · (anx + an−1)x + · · · )x + a0

� Polynomial evaluation using Horner’s rule
Algorithm 0.12: F(x)

� Time complexity:
� Example:f(x) = 2x4 − x3 + 3x2 + x − 5 atx = 4
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� Basic idea: How we selectxi affects the run time.
� Example: If we pick±x0,±x1, . . . ,±xn/2−1, thenA(xi) and

A(−xi) have many overlap

– x5 + 2x4 + 3x3 + 4x2 + 5x + 6 =
– A(x) =
– When evaluatexi, A(xi) =
– When evaluate−xi, A(−xi) =

� What we need isxi such that
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� Idea: Usen-th roots of unity:zn = 1 as ourxi

� Background:

– Complex numberz = r(cos(θ) + i sin(θ))

⊲ Usually denoted asreiθ or (r, θ)
⊲ (r1, θ1) × (r2, θ2) = (r1r2, θ1 + θ2)

– Let ωn = cos( 2π
n ) + i sin( 2π

n ) = e2πi/n be a complexn-th root of
unity

– Other roots include:ω2
n, ω3

n, . . . , ωn−1
n , ωn

n

– Properties:

⊲ ωj
n = −ω

j+n/2
n

⊲ Therefore,(ωj
n)2 = (−ω

j+n/2
n )2

⊲ Moreover,(ωj
n)2 = ω

j
n/2

⊲

Pn
i=1

ωi
n =

1−ωn
n

1−ωn
= 0
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� Examplesn = 8:
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� FFT
Algorithm 0.13: FFT((a0, a1, a2, . . . , an−1), ω)

� Time complexity?
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� Hardware implementation
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� Convert the valuesC(xi) back to coefficients:{ci}=FFT(C(xi), ω
−1)

� Here is why

� Mn(ω) =

� Entry (j, k) of Mn is ωjk
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� Mn(ω) is invertible, i.e., columnj and columnk are orthogonal

– proof:

� Inversion formulaMn(ω)−1 = 1
nMn(ω−1)

– proof:
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� Summary

– Sort and select

⊲ Mergesort and quicksort1

⊲ Binary search
⊲ Closest-pair and convex-hull algorithms

– Multiplication

⊲ Multiplication of large integers - from Gauss
⊲ Matrix multiplication
⊲ Polynomial multiplication - FFT1 (Also from Gauss)

� Divide-n-conquer strategy

– Advantages of

⊲ Make problems easier
⊲ Easy parallelization

– Disadvantages of Divide-n-conquer strategy

⊲ Recursion can be slow
⊲ Subproblems may overlap

1Named one of 10 best algorithms in last century
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