CS483 Analysis of Algorithms
Lecture 03 — Divide-n-Conquer*

Jyh-Ming Lien

February 06, 2008

*this lecture note is based @sgorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani &mtco-
duction to the Design and Analysis of Algorithms by Anany Levitin.
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Today, we will learn...

> Today, we will learn... D

Introduction

Sort & Select

Multiplication

Conclusion

In this lecture we will two main topics:
— Sort and selection

> Mergesort and quicksort
> Binary search
Closest-pair and convex-hull algorithms

v

— Multiplication

> Multiplication of large integers
> Matrix multiplication
> Polynomial multiplication

O  We will approach these problems using the divide-and-conquer

technique

Analysis of Algorithms
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Today, we will learn...

> Introduction

Divide and Conquer
Divide and Conquer

Divide and Conquer
Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Introduction
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Divide and Conquer

Today, we willlearn... O Divide and conquer was a successful military strategy long before it
Igr(l)Ddi\l/Ji((:jtIeofr;nd Conquer became an algorlthm deSIQn Strategy

Divide and Conquer

Eixv;gnep?gsd Conquer — Coalition uses divide-conguer plan in Fallujah

Master Theorem By Rowan Scarborough and Bill Gertz, THE WASHINGTON TIMES
Sort & Select Coalition troops are employing a divide-and-conquer stiate Fallujah,
Multiplication Iraq, capitalizing on months of pinpointed intelligencest&al off

Conclusion terrorist-held neighborhoods and then attack enemy pscket

O Example: Your CS 483 instructor give you a 50-question assignment
today and ask you to turn it in the tomorrow. What should you do?
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Divide and Conquer

Today, we will learn... O The most-well known algorithm design strategy:

Introduction

Divide and Conquer
> Divide and Conquer

Divide and Conquer
Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Divide instance of problem into two or more smaller instances
Solve smaller instances recursively
Obtain solution to original (larger) instance by combining these

solutions

subproblem 1
of size n/2

A 4

problem

solution to
subproblem 1

i ofsizen

subproblem 2

of size n/2

A 4

solution to
subproblem 2

A 4

solution to
the original problem

Analysis of Algorithms
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Divide and Conquer Examples

Today, we will learn... 7

Inroduction O Example: Givenalisd = {2,3,6,4,12,1,7}, computez A

Divide and Conquer
Divide and Conquer 1=1

Divide and Conquer
> Examples

Master Theorem

Sort & Select

Multiplication

Conclusion
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Master Theorem

Today, we will learn... O If we have a problem of size and our algorithm divides the problems
e ane Gonne into b instances, with: of them needing to be solved. Then we can set
e A e up our running timéf(.n_) as:T'(n) = c_LT(n/b) + f(n), wheref(n) is
somols the time spent on dividing and merging.
e o 0 Master Theorem: If f(n) € ©(n?), with d > 0, then
R~ o) ita<bl

T(n) =< O(nlogn) ifa=0b?

O(n'ogra)  if @ > b?

O Examples:
1. T(n)=4T(n/2)+n=T(n) =

2. T(n)=4T(n/2)+n? = T(n) =

3. T(n)=4T(n/2)+n?=T(n)=
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Today, we will learn...

Introduction

> Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Sort & Select

Analysis of Algorithms
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Sorting: Mergesort

Today, we will learn...

Introduction

Sort & Select

> Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

O Given an array oh numbers, sort the element from small to large.

Algorithm 0.1: MERGESORT(A[1 - - - n])

Analysis of Algorithms
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Sorting: Mergesort

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
> Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

0 Merge two sorted array#;3 andC' and put the result i

Algorithm 0.2: MERGHBI1---p|,C[1---q], A[1---p+ q])

Analysis of Algorithms
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Sorting: Mergesort Example

Today, we will learn... O Example: 24, 11, 91, 10, 22, 32, 22, 3,7, 99

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
> Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

O Is Mergesort stable?
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Analysis of Merge Sort

Today, we will learn... [] Cwm"st (?’L)

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

> Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Analysis of Algorithms
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Sorting: Quicksort

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
> Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

O Given an array oh numbers, sort the element from small to large.

[

Algorithm 0.3: QUICKSORT(A[L - - - n))

A[1] in the above algorithm is callgalvot

<P |P P< |

Analysis of Algorithms
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Sorting: Quicksort Example

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

O Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 22

O Is Quicksort stable?

Analysis of Algorithms
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Analysis of Quicksort

Today, we will learn... [] Cwm"st (?’L)

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort L] Cbest (n)

Example

> Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull ] chg (n)

Multiplication

Conclusion
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Why is Quicksort quicker?

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort
quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

0 Because quicksort allows very fast “in-place partition”

Algorithm 0.4: PARTITION(Ala - - - b])

Analysis of Algorithms
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The Selection Problem

oday, we wilearn. O Similar to partition in quicksort!

'”"°d”°“‘|’” O Find thek-th smallest element in an arraywith n unique elements
Sort & Select

Sorting: Mergesort Algorithm 0.5: SELECT(A[L - - - n], k)

Sorting: Mergesort
Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
> The Selection Problem
Binary Search

Binary Search

Closest Pair ________________________________________________________________________________________________
Closest Pair

gohcvkehx ! 0 The algorithm above will work well fod with unique elements. How
Vliplication do you change to make it work for more general cases?

Conclusion

O Time complexity:
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Binary Search

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem

> Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

Imagine that you are placed in an unknown building and you are givel
a room number, you need to find your CS 483 instructor. What will
you do?

Binary Search:

— Very efficient algorithm for searching sorted array
Example: find 70 in{3, 14, 27, 31, 39, 42, 55, 70, 74, 81, 85, 93} 98

— Efficient search in even in high dimensional unknown space
Example:

Analysis of Algorithms
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Binary Search

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

> Binary Search
Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

[0 Given a sorted arrayl of n numbers, find a keyx in A

Algorithm 0.6: BINARY SEARCH(A[L - - - n], K)

0 Binary search is in fact a bad (degenerate) example of

divide-and-conquer

Analysis of Algorithms
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Analysis of Binary Search

[ Cworst <TL>

] Cbest (n)

O Cavg(n)
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Closest Pal

I

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

> Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

O Find the closest distance between points in a given point set

Algorithm 0.7: CP(P[1---n])

comment: P is a setn points

Analysis of Algorithms
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Closest Pair

Today, we will learn... D

Introduction

Sort & Select

Sorting: Mergesort
Sorting: Mergesort

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

> Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

[

Find the closest distance between points in a given point set

Algorithm 0.8: CoMBINE(c, P, P1, P2, d)

What is the time complexity?

Analysis of Algorithms
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Convex Hull

Today, we will learn... |:|

Introduction l:l

Sort & Select

Sorting: Mergesort
Sorting: Mergesort D

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

> Convex Hull

Quickhull

Multiplication

Conclusion

Here we consider a divide-and-conquer algorithm catjedkhull
Quickhull is similar to quicksort

why?

Observations (given a point sétin 2-d):

— The leftmost and rightmost points iA must be part of the convex hull

— The furthest point away from any line must be part of the eariwill

— Points in the triangle formed by any three pointgAnvill not be part of
the convex hull

Analysis of Algorithms
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Quickhull

Today, we will learn... ] Qhu”

Introduction Algonthm 0.9: QHULL(P[I ce n])

Sort & Select

Sorting: Mergesort . .
Sorting: Mergesort comment: P IS a setn points

Sorting: Mergesort
Example

Analysis of Merge Sort
Sorting: Quicksort

Sorting: Quicksort
Example

Analysis of Quicksort
Why is Quicksort quicker?
The Selection Problem
Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

> Quickhull

Multiplication

Conclusion

O  Animation: http://www.cs.princeton.edu/~ah/alg-anim/version1/QuickHull .html
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Analysis of Quickhull

O Worst case:

[0 Bestcase:

O Avg case:
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Today, we will learn...

Introduction

Sort & Select

> Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

Multiplication

Analysis of Algorithms
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Interger multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

> Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

[0 Whatis the time complexity of multiplying two integers usitig algorithms

we learned in elementary schools?
Example: how do you compute thi$2345 x 678907

0 Isthere a better way of multiplying two intergers than tHengentary-school

method?
Carl Friedrich Gauss (1777-1855) discovered that
AB = (al02 4 b)(c102 +d) =

Example: how do you compute thi$2345 x 678907

&
y
=

Carl Friedrich Gauss

Analysis of Algorithms
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Interger multiplication

Today. wewil lear. O Divid-and-conquer interger multiplication
Introduction . .

Sort & Select Algorithm 0.10: M(A[1---n], B[1---n])
Multiplication

Interger multiplication

> Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

s s 00 What is the time complexity?

polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

Analysis of Algorithms
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Matrix multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication

D> Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

I I O A B A

Strassen’s Matrix Multiplication:

|

Cii Ciz2 | _ Ayr Ags By1 Ajps
Co1 Coag Ag1 Aoo By DBao
_ | M1+ mg —ms +my ms + ms
Mo + 1My mi + mg — mo + Mg

= (A11 + A22)(B11 + Ba2)
= (A21 + A22)B1y
= A11(B12 — Ba2)
= Agy(B21 — B11)
= (A1 + A12)Bao
= (A1 — A11)(B11 + Bi2)
= (A2 — Az2)(B21 + Ba2)

Analysis of Algorithms
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Matrix multiplication

flocaypuelatileats O What is the time complexity?

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication

> Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Nt O Do you still remember what the time complexity of the brute-force
polynomial evaluation . P
n-th roots of unity a|90r|thm IS :

n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion
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Polynomial multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial
> multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation
Horner’s Rule
A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

]

two degreer polynomials:
Alx) = anz™ + an 12"+ 4 ax + ag

B(x) = bpx™ +byp_12" P+ -+ bz + b

Multiplication of two degrees: polynomial
C(z) = A(z) B(x) = conz™ + con 12" + -+ 12+ ¢o

The coefficienty, is:

A brute force method for computing(x) will have time complexity=

Can we do better?

Analysis of Algorithms
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Representing polynomial

roday, we il learn.. O Fact: A degreer polynomial is uniquely defined by any—+ 1
'““"d”c“‘l)” distinct points

Sort & Selec .

Mul;pncaﬂo: O A degreer polynomial A(x) can be represented by:

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication

Representing
polynomial

Polynomial multiplication

Felymnitel el UeitoT 0 We can convert between these two representations: 1.5cm

Horner's Rule
A n log n time

polynomial evaluation 0 The value representation allows us to develop faster algorithm!
n-th roots of unity
ru-th foots of uniy —  We only need®n + 1 points forC'(x)

A n log n time
polynomial evaluation

e e — It's easy and efficient to generate these+ 1 points fromA(x)
polynomial evaluation an d B (ZU)

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion
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Polynomial multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial
> multiplication
Polynomial evaluation
Horner's Rule
A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

0 General idea:

1. Convertd andB to value representation (Evaluation)
2. Perform multiplication to obtai@’ in value representation
3. ConvertC' back to coefficient representation (Interpolation)

Coefficient representation

Multiplication O(n?)

A(.’E) = a,x" + an_lx”_l +...+a1x+ ag = C(:p) = 62711‘2” + 6271_1:1:,271—}-1 4+ ...+ cax+ ¢

B(:L‘) = bpx" + bnflxn_l + ...+ bix+ by

\l; Evaluation O(nlogn) Interpolation O(nlogn)

A(l’o), A(l’l), e ,A(J?Qn)
B(I'()), B(.Il), ey B(l‘gn)

= C('TO)7 C(xl)a ey C(xQTI,)
Multiplication O(n)

Value representation C(z;) = A(z;)B(x;)

Analysis of Algorithms
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Polynomial evaluation

Today, we will learn... —1
f(z) = anz™ + an—12"" " +---+ a1z + ao

Introduction

Polynomial evaluation: Givem, computef (x)
Sort & Select

O Od

Brute force algorithm

Multiplication

Interger multiplication
Interger multiplication . ;

Matrix multiplication Algorlth m O 1 1 ! F(Qf)
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
> Polynomial evaluation

Horner’s Rule
A n log n time
polynomial evaluation

n-th roots of unity
n-th roots of unity .

A n log n time

SN [0 Time complexity of this brute force algorithm?

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time

polynomial interpolation |:| Can we dO betterr)

A closer look

Conclusion
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Horner’'s Rule

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

> Horner's Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

Horner’s rule

f(x) =anz" +an_12" '+ 4+ a1z + ao
= (anx" '+ an_12" 7+ +a1)r +ao

(- (@nT + an—1)z + -+ )T+ ao

Polynomial evaluation using Horner’s rule

Algorithm 0.12: F(x)

Time complexity:
Example:f(z) = 22" —2° +32° +z — S atz =4

Analysis of Algorithms
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A nlogn time polynomial evaluation

Today, we willlearn... 0 Basicidea: How we seleat; affects the run time.

Isct,tis;ect O Example: If we picktx, £a1, ..., £2, /2 1, thenA(x;) and
P A(—=z;) have many overlap

T — 254224 + 323 + 422 4 5x 4+ 6 =

e - Alr) =

Polynomial multiplication — When evaluate;, A(z;) =

e - When evaluate-z;, A(—x;) =

Polynomial evaluation .
Homer's Rule O What we need is; such that

A n log n time
> polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion
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n-th roots of unity

Today, we will learn... D
Introduction |:|
Sort & Select
Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
> n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

ldea: Usen-th roots of unity:z™ = 1 as ourr;
Background:

— Complex numbet = r(cos(#) + i sin(6))

> Usually denoted ase®® or (r, 0)
> (7“1,@1) X (7’2,92) = (7’17“2,91 -+ 92)

— Letw, = cos(3%) + isin(2Z) = €2™/" be a complex-th root of

unity
: -2 3 —1
— Other roots includew? ,w>, ... wi = w’
— Properties:

] +n /2
> w%: —w:,zb /

> Therefore(w?)? = (—w?/?)?

72 — I
> Moreover,(w;,)” = w, ,

> D i Wn = T—wn

o

Analysis of Algorithms
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n-th roots of unity

O Examples: = 8:

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity

> n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

Evaluate A(z)
at nth roots
of unity

Divide and
conquer

Paired

(n is a power of 2)

2 (N2

N :e’iﬂ:g_-'m:—]_

. miN—1 , ,
1 — e;mw—lT — e-’—H[N b — F“% — e—}%

Evaluate
Au(z), Ao(x)
at (n/2)nd
roots

Analysis of Algorithms
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A nlogn time polynomial evaluation

Today, we will learn... ] F FT

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Algorithm 0.13: FFT((ag, a1, as, - .

Gl O Time complexity?

1), W)
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A nlogn time polynomial evaluation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
> polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

A closer look

Conclusion

0 Hardware implementation

FFT,, (input: ag,...,a,_1, output: ro,...,7,_1)

ap — —
o9 — —

N FFTTI/Q [ T

Up—2—] —

a1 —] —
as — —

O FFT. e [T

Up—1—] —

r J4ni2

> .

s

5
e
o)
-1
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A nlogn time polynomial interpolation

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial
interpolation
A n log n time
polynomial interpolation

A closer look

Conclusion

O Convert the value€’(x;) back to coefficients{c; } =FFT(C(z;),w™1)

0 Hereis why

Alx)) 1 [1
Alx1) 1
_A(xn—l)_ _1
O M,(w)=
1 1 1
1 w w?
1 w? w?
1 w’ a).zj
1 w(n—l) w2(;1—1)

O Entry(j, k) of M, is w/*

2 n-17 [ . -
X0 X5 ce X dp
X x2 e x! a
2 n—1
Xn—1 Xn—1 Xpn—1] [Gn-1_
1 1 «— rowfore® =1
w1 «— W
2 (n=1) 5 w?
w(n—])(n—l) : wn—]
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A nlogn time polynomial interpolation

Today, we wil learn... 0 M, (w) is invertible, i.e., columrn and columnr¥ are orthogonal
Introduction

Sort & Select — prOOf:

Multiplication

Interger multiplication
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial
Polynomial multiplication
Polynomial evaluation

Horner's Rule
A n log n time

polynomial evaluation O Inversion formulaM,, (w)~! = + M, (w™!)

n-th roots of unity n

n-th roots of unity

A n log n time

polynomial evaluation

A n log n time

polynomial evaluation

A n log n time

polynomial interpolation
A n log n time
polynomial

> interpolation

A closer look

—  proof:

Conclusion
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A closer look

k
I
Today, we will learn... | a0
Introduction ai
Sort & Select a2
S a
Multiplication i J 3
T . w’ a4
Interger multiplication J
Interger multiplication
Matrix multiplication
Matrix multiplication
Polynomial multiplication
Representing polynomial n—1
Polynomial multiplication
y R My (w) a

Polynomial evaluation
Horner’s Rule

A n log n time
polynomial evaluation
n-th roots of unity
n-th roots of unity

A n log n time
polynomial evaluation

A n log n time
polynomial evaluation

A n log n time
polynomial interpolation

A n log n time
polynomial interpolation

> A closer look

Conclusion

Analysis of Algorithms

CS483 Lecture 03-Divide-n-Conquer — 41



Today, we will learn...

Introduction

Sort & Select

Multiplication

> conclusion

Summary

Conclusion
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Summary

Today, we will learn... D S u mm ary
Introduction

Sort & Select — Sort and select

MuRpleaton -~ Mergesort and quicksott

Conclusion

~ Binary search

[>Summary
» Closest-pair and convex-hull algorithms
— Multiplication

> Multiplication of large integers - from Gauss
> Matrix multiplication
> Polynomial multiplication - FFT (Also from Gauss)

O Divide-n-conquer strategy
— Advantages of

> Make problems easier
~ [Easy parallelization

— Disadvantages of Divide-n-conquer strategy

> Recursion can be slow
> Subproblems may overlap

INamed one of 10 best algorithms in last century 5483 Lecture 03-Divide-n-Conguer —
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