CS483 Analysis of Algorithms Lecture 04 – Graph *

Jyh-Ming Lien

February 13, 2008

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

▷ Introduction

What can be represented as graph?

What are the problems that can be solved using graphs?

Graph Representation

Explore graphs

Topological sort

Strong connected components

Conclusion

Introduction

What can be represented as graph?

Introduction	Internet
What can be	munut
▷ represented as graph?	
What are the problems that	
can be solved using graphs?	
Graph Representation	
Explore graphs	
Topological sort	
Strong connected	
components	
Conclusion	

What are the problems that can be solved using graphs?

Introduction	_
What can be represented as	
graph?	
What are the problems	
that can be solved using \triangleright graphs?	
0 1	
Graph Representation	
Explore graphs	
Topological sort	
Strong connected	
components	
Conclusion	

Network routing

Introduction What can be represented as graph?

What are the problems that can be solved using graphs?

 \triangleright Graph Representation

Explore graphs

Topological sort

Strong connected components

Conclusion

 \Box Adjacency matrix

– Space

 \Box Adjacency list

– Space

Introduction

 \triangleright Explore graphs

Graph Search

Graph Search

Graph Search

Depth-first search

Depth-first search

DFS Application

DFS Application

DFS Application

DFS Application

Topological sort

Strong connected components

Conclusion

Explore graphs

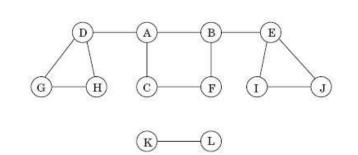
Graph Search

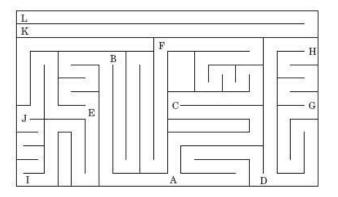
IntroductionExplore graphs▷ Graph SearchGraph SearchGraph SearchDepth-first searchDepth-first searchDFS ApplicationDFS ApplicationDFS ApplicationDFS ApplicationDFS ApplicationDFS ApplicationStrong connected

components

Conclusion

- □ What parts of the graph are reachable from a given vertex? (i.e., connected components)
- □ Many problems require processing all graph vertices (and edges) in systematic fashion
- □ Basic tools to safely explore an unknown environment





Graph Search

Introduction
Explore graphs
Graph Search
▷ Graph Search
Graph Search
Depth-first search
Depth-first search
DFS Application
DFS Application
DFS Application
DFS Application
Topological sort
Strong connected
components
Conclusion

Basic exploration algorithm

Algorithm 0.1: EXPLORE($G = \{V, E\}, v \in V$)

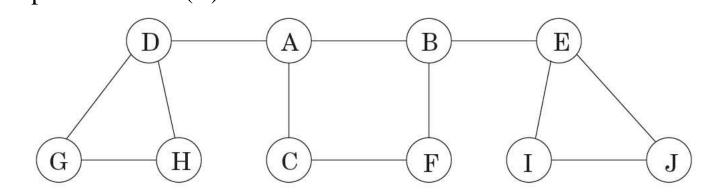
 \Box Can the algorithm always work?

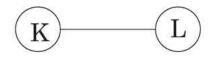
– proof

Graph Search

Introduction	Example: EXPLO
Explore graphs	1
Graph Search	(1
Graph Search	ζ1
▷ Graph Search	/ -
Depth-first search	
Depth-first search	
DFS Application	
DFS Application	
DFS Application	(G)
DFS Application)
Topological sort	
Strong connected	
components	
Conclusion	

ORE(B)





Introduction

Explore graphs

Graph Search Graph Search

Graph Search

Depth-first search

Depth-first search

DFS Application

DFS Application

DFS Application

DFS Application

Topological sort

Strong connected components

Conclusion

\Box DFS

Algorithm 0.2: DFS($G = \{V, E\}, v \in V$)

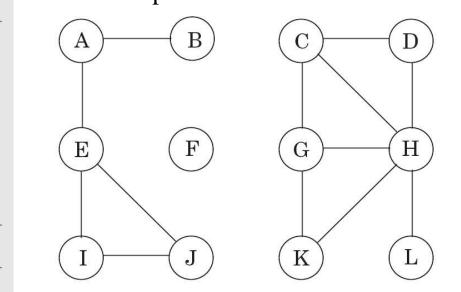
Introduction Explore graphs Graph Search Graph Search Composition Depth-first search DFS Application DFS Application DFS Application DFS Application DFS Application

Topological sort

Strong connected components

Conclusion

 \Box Example:



 \Box Time complexity:

CS483 Lecture 04 – Graph trans – 11

Introduction	
Explore graphs	
Graph Search	
Graph Search	
Graph Search	
Depth-first search	
Depth-first search	
\triangleright DFS Application	
DFS Application	
DFS Application	
DFS Application	
Topological sort	
Strong connected	
components	
Conclusion	

\Box Connect component

- Given a graph G, report the number of connect components in G.

Given a graph G, can you preprocess G so that you can check if two nodes u and v from G are from the same connect component?

Introduction Explore graphs Graph Search Graph Search Graph Search Depth-first search

Depth-first search

DFS Application

 \triangleright DFS Application

DFS Application

DFS Application

Topological sort

Strong connected components

Conclusion

□ Ancestor/Descendant relationship of tree

- Given a tree T, can you preprocess T so that you can answer if u is the ancestor of v in *constant time*, where u and v are two nodes from T.

Explore graphs	
Graph Search	
Graph Search	
Graph Search	
Depth-first search	
Depth-first search	
DFS Application	
DFS Application	
▷ DFS Application	
DFS Application	
Topological sort	
Strong connected	
components	
Conclusion	

Given a *directed* graph G, convert G to a tree whose nodes and edge are the vertices and edges of G

Introduction

Explore graphs Graph Search Graph Search Graph Search

Depth-first search

Depth-first search

DFS Application

DFS Application

DFS Application

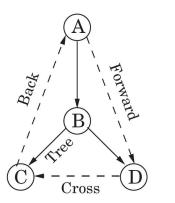
 \triangleright DFS Application

Topological sort

Strong connected components

Conclusion

□ Types of edges DFS tree



□ To identify the type of an edge: pre/post ordering

Explore graphs

▷ Topological sort

Directed acyclic graphs

DAG and Topological Sort

Topological Sort: Using

DSF

Topological Sort: Using Source Removal

Source Kenio

Example

Strong connected components

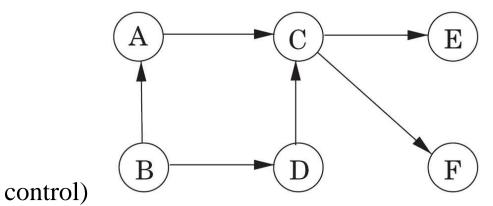
Conclusion

Topological sort

IntroductionExplore graphsTopological sort▷ Directed acyclic graphsDAG and Topological SortTopological Sort: UsingDSFTopological Sort: UsingSource RemovalExampleStrong connectedcomponents

Conclusion

A graph G without (directed) cycle is a *directed acyclic graphs* (DAG)
 DAG can be found in modeling many problems that involve prerequisite constraints (construction projects, document version



 \Box Given a *directed* graph G, identify cycles in G

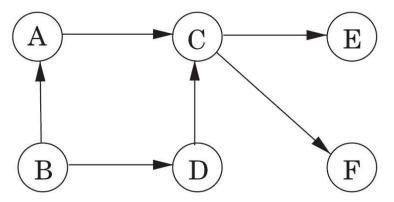
– proof

Introduction Explore graphs Topological sort Directed acyclic graphs DAG and Topological ▷ Sort Topological Sort: Using DSF Topological Sort: Using Source Removal Example Strong connected components Conclusion

Topological sorting or **Linearization**: Vertices of a DAG can be linearly ordered so that:

- Every edge its starting vertex is listed before its ending vertex
- Being a DAG is also a necessary condition for topological sorting be possible

 \Box Example:



Introduction
Explore graphs
Topological sort
Directed acyclic graphs
DAG and Topological Sort
Topological Sort: ▷ Using DSF
Topological Sort: Using
Source Removal
Example
Strong connected
components
Conclusion

Compute DSF and reverse the visit order

Algorithm 0.3: $TS(G = \{V, E\})$

 \Box Why does it work?

 \Box Time complexity?

Introduction Explore graphs Topological sort	 Identify and remove sources iteratively. A source is a vertex without incoming edges.
Directed acyclic graphs DAG and Topological Sort Topological Sort: Using DSF Topological Sort: ▷ Using Source Removal Example	Algorithm 0.4: $TS(G = \{V, E\})$
Strong connected components Conclusion	
	□ Why does it work?
	□ Time complexity?

Example

Introduction

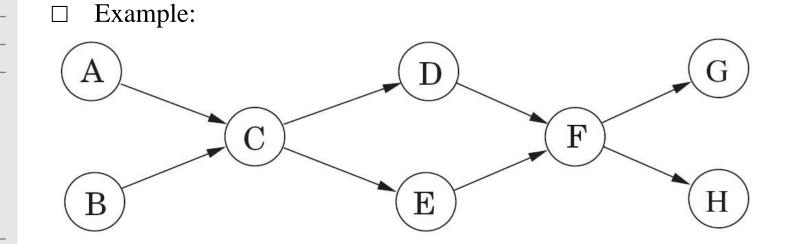
Explore graphs

Topological sort Directed acyclic graphs DAG and Topological Sort Topological Sort: Using DSF Topological Sort: Using Source Removal

 \triangleright Example

Strong connected components

Conclusion



Explore graphs

Topological sort

Strong connected

 \triangleright components

Strongly connected components

Strongly connected components

Strongly connected components and DAG Strongly connected

components and DAG

Strongly connected

components and DAG

Conclusion

Strong connected components

Explore graphs Topological sort

Introduction

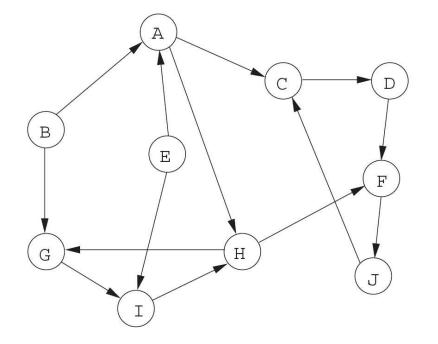
Strong connected components

Strongly connected components Strongly connected components and DAG Strongly connected components and DAG Strongly connected components and DAG

Conclusion

Definition: Two nodes u and v are from the connected if and only if there is a path from u to v and a path from v to u.

□ **Definition**: A set of vertices form a strongly connected component (SCC) iff any pairs of vertices are connected.



 \Box

Α

Introduction

Explore graphs

Topological sort

Strong connected components Strongly connected

components

Strongly connected components Strongly connected components and DAG Strongly connected components and DAG Strongly connected components and DAG

Conclusion

Connected components in directed graph is less intuitive than that of undirected graph.

– How many connected components are there in the graph below?

В

 \Box How to compute SCCs from a directed graph?

Strongly connected components and DAG

Introduction	

Explore graphs

Topological sort

Strong connected

components

Strongly connected

components

Strongly connected components

Strongly connected \triangleright components and DAG Strongly connected components and DAG Strongly connected components and DAG

Conclusion

Observation 1: **Observation 2**: \Box

 \square

Our strategy to find all SCC:

Strongly connected components and DAG

n DAG sink node a source node.
a source node.
in DAG sink node?

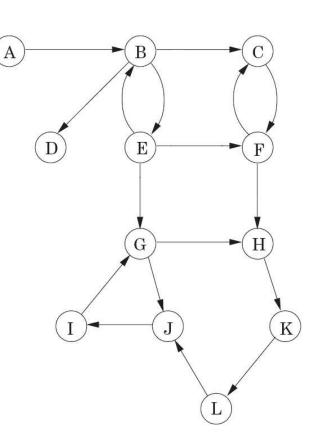
Analysis of Algorithms

Strongly connected components and DAG

Introduction	T
Explore graphs	si
Topological sort	
Strong connected components	_
Strongly connected components	E
Strongly connected	
components Strongly connected components and DAG	
Strongly connected components and DAG	
Strongly connected components and DAG	
Conclusion	

Task: Remove all nodes from the previous SCC and identify a new sink node

Example:



Introduction

Explore graphs

Topological sort

Strong connected components

 \triangleright Conclusion

Summary

More graph algorithms

Conclusion

Summary

 \square

Introduction Explore graphs Topological sort Strong connected components Conclusion ▷ Summary

More graph algorithms

Graphs can be very useful for many problems. DFS can be used for

- Explore the graph
- Reveal relationship between the graph nodes and types of edges
- Linearization for DAG
- Identify cycles, connected components, strongly connected components
- □ Assignment

More graph algorithms

Introduction

Explore graphs

Topological sort

Strong connected components

Conclusion

Summary

 \triangleright More graph algorithms

Next week we will discuss problems related to paths in graph

- shortest path in undirected and directed graphs
- shortest path in weighted graphs
- shortest path in graphs with negative edges
- shortest path in DAG