CS483 Analysis of Algorithms
Lecture 01"

Jyh-Ming Lien

January 23, 2008

*this lecture note is based @gorithmsby S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani &rtcb-
duction to the Design and Analysis of AlgorithbysAnany Levitin.

Analysis of Algorithms CS483 Lecture 01-Introduction — 1



A Brief History

> A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

[

[
[l

In ancient Europe, numbers are represented by Roman numerals, e.
MDCCCCIIII.

Decimal system is invented in India around AD 600, e.g., 1904.

Al Khwarizmi (AD 840), one of the most influential mathematicians

in Baghdad, wrote a textbook in Arabic about adding, multiplying,
dividing numbers, and extracting square roots and computinging
decimal system.

(image of Al Khwarizmi from http://jeff560.tripod.com/)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 2



A Brief History (Cont.)

’;B:e;:j;jtggmry comy O Many centuries later, decimal system was adopted in Europe, and th
procedures in Al Khwarizmi’s book were named after him as

Fibonacci number

“Algorithms.” One of the most important mathematicians in this

Design Algorithms

Analysis of algorithms process was a man named “Leonard Fibonacci.”
Asymptotic Notation O Today, one of his most well known work ibonacci
Syllabus /Fee-boh-NAH-cheaiumber(AD 1202).

Summary

(image of Leonardo Fibonacci from http://www.math.ethiilobnacci)

Analysis of Algorithms CS483 Lecture 01-Introduction — 3



A Brief History
A Brief History (Cont.)

> Fibonacci number

Fibonacci's original
question

Definition

Our First Algorithm

Analyze Our First
Algorithm

Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Fibonaccl number

Analysis of Algorithms

CS483 Lecture 01-Introduction — 4



Fibonacci’s original question

A Brief History D

A Brief History (Cont.)

Fibonacci number

Fibonacci's original
> question
Definition
Our First Algorithm

Analyze Our First
Algorithm

Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation D

Syllabus

Summary

Fibonacci’s original question:

Suppose that you are given a newly-born pair of rabbits hoale, one

female.

Rabbits are able to mate at the age of one month so that atdhe éa
second month a female can produce another pair of rabbits.

Suppose that our rabbits never die.

Suppose that the female always produces one new pair (deeona

female) every month.

Question How many pairs will there be in one year?

NOoOORWNE

Beginning: (1 pair)

End of month 1: (1 pair) Rabbits are ready to mate.

End of month 2: (_ pairs)
End of month 3: (_ pairs)
End of month 4: (_ pairs)
End of month 5: (_ pairs)
After 12 months, there willbe  rabits

Analysis of Algorithms

CS483 Lecture 01-Introduction — 5



Definition

A Brief History
A Brief History (Cont.)

Fibonacci number

Fibonacci's original
question

D> Definition

Our First Algorithm

Analyze Our First
Algorithm

Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Fibonacci numberfb(n)

0
fib(n) = ¢ 1

ifn=20
ifn=1 (1)

fib(n — 1) +fib(n —2) ifn>1

Example: The first 10 Fibonacci numbers are:

{07 17 Y Y Y

b}

Fibonacci numbers hav

e applicati

ons in Biology, Visual arts, Music,

Simulation, Algorithm analysis and design, etc.

13
23

(images fromhttp://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonditchitm]

Analysis of Algorithms

CS483 Lecture 01-Introduction — 6



Our First Algorithm

A Brief History
A Brief History (Cont.)

Fibonacci number

Fibonacci's original
question

Definition

D> our First Algorithm

Analyze Our First
Algorithm

Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

O Questions that we should ask ourselves.

positive integer?

O Problem: What igib(200)? What aboufib(n ), wheren is any

Algorithm 0.1: fib(n)

1. Isthe algorithm correct?

2. What is the running time of our algorithm?

3. Can we do better?

Analysis of Algorithms

CS483 Lecture 01-Introduction — 7



Analyze Our First Algorithm

A Brief History D

A Brief History (Cont.)

Fibonacci number

Fibonacci's original
question

Definition D

Our First Algorithm

Analyze Our First
> Algorithm

Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Is the algorithm correct?

— Yes, we simply follow the definition of Fibonacci numbers

How fast is the algorithm?
— If we let the run time ofib(n) beT'(n), then we can formulate

Tn)=T(n—1)4+T(n—-2)+3=1.6"

—  T(200) > 2139

— The world fastest computer BlueGene/L, which can2tiinstructions
per second, will tak@”! seconds to compute2{* seconds .85 x 10*°
billion years, Sun turns into a red giant star in 4 to 5 billye@ars)

— Can Moose’s law, which predicts that CPU get 1.6 times fasten geatr,
solve our problem?

— No, because the time needed to comiiltén) also have the same
“growth” rate

>

>

if we can computéib(100) in exactly a year,
then in the next year, we will still spend a year to compiis€¢101)
if we want to computéib(200) within a year, we need to wait for 100 years.

Analysis of Algorithms

CS483 Lecture 01-Introduction — 8



Improve Our First Algorithm

A Brief History
A Brief History (Cont.)

Fibonacci number

Fibonacci's original
question

Definition
Our First Algorithm

Analyze Our First
Algorithm

Improve Our First
> Algorithm

Design Algorithms

O Can we do better?

O Yes, because many computations in the previous algorithm are

repeated.

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Algorithm 0.2: fib(n)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 9



A Brief History
A Brief History (Cont.)

Fibonacci number

> Design Algorithms

Process of Designing An
Algorithm

What is an algorithm?
Why study algorithms?
How to design algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Design Algorithms

Analysis of Algorithms

CS483 Lecture 01-Introduction — 10



Process of Designing An Algorithm

2::2:::223 cont) O Definition: “An algorithm is a procedure (a finite set of well-defined
Ebonacei number instructions) for accomplishing some task which, givenratial state, will
Decfe A e terminate in a defined end-statefrem wikipedia, the free encyclopedia
Process of Designing
> An Algorithm
What is an algorithm?
Why study algorithms?
How to design algorithms?
Analysis of algorithms
Asymptotic Notation
roblem

Syllabus p
Summary

algorithm

input ———» ‘computer” — output

Analysis of Algorithms CS483 Lecture 01-Introduction — 11



What is an algorithm?

Qg[imgggmom) Recipe, process, method, technique, procedure, routine,... with following
reguirements:

Fibonacci number

[P)reostigr;:(l)gc;ietzgr?ing An 1 ' FI n |teneSS

g‘g‘)”t“m_ | terminates after a finite number of steps
What is an algorithm? L.

Why study algorithms? 2 . Deﬂ N |te ness

How to design algorithms? - i ifi
ow to design algorithms |"|g()r0us|y and UnamblgUOUS|y SpeCIerd

Analysis of algorithms

o 3. Input
Asymptotic Notation o -
Syllabus valid inputs are clearly specified
Summary 4 Output

can be proved to produce the correct output given a validtinpu
5. Effectiveness
steps are sufficiently simple and basic

Analysis of Algorithms CS483 Lecture 01-Introduction — 12



Why study algorithms?

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Process of Designing An
Algorithm

What is an algorithm?
> Why study algorithms?
How to design algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

0 Theoretical importance

the core of computer science (or the core the entire western

civilization!)

O Practical importance

A practitioners toolkit of known algorithms (i.e., standing on the

shoulders of giants)

Framework for designing and analyzing algorithms for new
problems (i.e, so you know that your problem will terminate

before the end of the world)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 13



How to design algorithms?

A Brief History
A Brief History (Cont.)

Fibonacci number

Understand the problem

Design Algorithms

l

Process of Designing An
Algorithm

What is an algorithm?
Why study algorithms?

How to design
> algorithms?

Analysis of algorithms

Decide on:

computational means,
exact vs. approximate solving,

data structure(s),

algorithm design technique

Asymptotic Notation

Syllabus

l

Summary

Design an algorithm

l

Prove correctness

Y

Analyze the algorithm

v

Code the algorithm

Analysis of Algorithms

CS483 Lecture 01-Introduction — 14



A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

> Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of algorithms

Analysis of Algorithms

CS483 Lecture 01-Introduction — 15



Analysis of algorithms

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

> Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

O When we design an algorithm, we should ask ourselves:

1.
2. How efficient is the algorithm?

3.

Is the algorithm correct?

— Time efficiency
— Space efficiency

Can we do better?

0 Approaches

1.
2.

theoretical analysis
empirical analysis

Analysis of Algorithms

CS483 Lecture 01-Introduction — 16



Empirical analysis of time efficiency

A Brief History D

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of
time efficiency

Theoretical analysis of time

efficiency

Theoretical analysis of time

efficiency

Theoretical analysis of time

efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

A typical way to estimate the running time

— Select a specific (typical) sample of inputs
— Use wall-clock time (e.g., milliseconds)

or

Count actual number of basic operation’s executions
— Analyze the collected data (e.g., plot the data)

Problems with empirical analysis

— difficult to decide on how many samples/tests are needed
— computation time is hardware/environmental dependent
— Implementation dependent

Analysis of Algorithms

CS483 Lecture 01-Introduction — 17



Theoretical analysis of time efficiency

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of
> time efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Orders of Growth
Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

] O

Providemachine independenteasurements

Estimate the bottleneck of the algorithm

The size of the input increases algorithms run longes-. Typically
we are interested in how efficiency scales w.r.t. input size

To measure the running time, we could

1. count all operations executed.
2. or determine the number of thasic operationas a function ofnput size

Basic operation the operation that contributes most towards the runnimeg ti

Analysis of Algorithms

CS483 Lecture 01-Introduction — 18



Theoretical analysis of time efficiency

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency

Theoretical analysis of
D> time efficiency
Theoretical analysis of time
efficiency
Orders of Growth
Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

0 Examples:

1. sortalist of integergas, az, - - -

[ a1
2.
| an1
3. prime(n)

A1m

a”er

4. Graph 3-coloring

[ b1

Input Size:
1.

2.

3.

4.

Basic operations:
1.

Analysis of Algorithms

CS483 Lecture 01-Introduction — 19



Theoretical analysis of time efficiency

A Brief History D
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of
D> time efficiency ’ D

Orders of Growth
Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest l:l
Common Divisor

Asymptotic Notation

Syllabus

Summary

We can approximate the run time using the following formula:

T(n) = c,pC(n)

wheren is the input size(”(n) is the number of the basic operation
for n, andc,, is the time needed to execute one single basic operatior

1

Examples Given thatC(n) = 3n(n — 1), How much time an

algorithm will take if the input sizes doubled?

Theoretical analysis focuses on “order of growth” of an algorithm.
(Given the input size)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 20



Orders of Growth

P O Some of the commonly seen functions representing the number of th
A Brief History (Cont.) . .
basic operatiod'(n) =

Fibonacci number

Design Algorithms

1. n
Analysis of algorithms 2 n2
Analysis of algorithms '
Empirical analysis of time 3 n3
efficiency '
Theoretical analysis of time
efficiency ’ 4. loglo (n)
Theoretical analysis of time 5 .n loglo (n)
efficiency 2
Theoretical analysis of time 6 . loglO (n)
efficiency
> orders of Growth 7 . \/ﬁ
Orders of Growth 8 2n
Orders of Growth :

9.

Best-, average-,
worst-cases

Example 1: Sequential .
et | 0 Can you order them by their growth rate?
Example 1: Sequential

Search

Example 2: Greatest

Common Divisor

Example 2: Greatest

Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction — 21



Orders of Growth

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

D> Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

[0 Test functions using some values

n n? n° 2" n!

10 10° | 10° | 1024 3.6 x 10°
100 10* | 10° [ 1.3 x10%° | 9.3 x 107
1000 | 10° | 10”7 | 1.1 x 10°%

10000 | 10° | 10'2

n logiy(n) | nlogiy(n) | logig(n) | v/n
10 1 10 1 3.16
100 2 200 4 10
1000 | 3 3000 9 31.6
10000 | 4 40000 16 100

O Now, we can order the functions by their growth rate

Analysis of Algorithms

CS483 Lecture 01-Introduction — 22



Orders of Growth

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

> oOrders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
Search

Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

O plot the functions (e.g., use matlab or gnuplot)

0 Basic efficiency classes

n n’ n° 2" n!

linear | quadratic| cubic | exponential| factorial
¢ log,o(n) nlog,z(n) | vVn
constant| logarithmic | n-log-n square root

Analysis of Algorithms

CS483 Lecture 01-Introduction — 23



Best-, average-, worst-cases

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential

Search

Example 1: Sequential

Search

Example 2: Greatest

Common Divisor

Example 2: Greatest

Common Divisor

Asymptotic Notation

Syllabus

Summary

For some algorithms efficiency depends on form of input:

O Worst casel,,-s¢(n) — maximum over inputs of size n
O BestcaseCy.s:(n) — minimum over inputs of size n
O Average caseC,,,(n) — “average” over inputs of size n

1. Number of times the basic operation will be executed on typical
Input

2. NOT the average of worst and best case

3. Expected number of basic operations considered as a random
variable under some assumption about the probability distributior
of all possible inputs

Analysis of Algorithms

CS483 Lecture 01-Introduction — 24



Example 1. Sequential Search

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

Example 1: Sequential
> Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

O Find the value in a given arrayA|[l - - - n]

OO

Algorithm 0.3: SEARCH(A[1..n], K)

for ¢ « [1---n]

do if Ali] = K
then return (7)
return (—1)
Input size

1. When does the worst case happen?

2. WhatisCuorst (1)?

Worst case (worst case analysis provides an upper bound):

Analysis of Algorithms

CS483 Lecture 01-Introduction — 25



Example 1. Sequential Search

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search

Example 1: Sequential
> Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

[0 Bestcase:

1. When does the best case happen?

2. What isChpest(n)?

[0 Average case:

1. Average case asks a useful question: what kind of runmmgto we
expect to get when we don’t know or know only little about tlada®

— suppose that the probability &f € Aisp

— suppose that the probability 6f = A[i] equals that ol = A[j]

2. When does the best case happen?

3. What iSCbest (’I’L)r)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 26



Example 2: Greatest Common Divisor

A Brief History
A Brief History (Cont.)

Fibonacci number Algorithm 0.4: ng(CL, b)

Design Algorithms

Analysis of algorithms fOt‘ 1= {min(a, b), Ctt 1}
Analysis of algorithms . . .
Empirical analysis of time d If CI,%’L — O and b%’l, — O
Shoen®y then return (7)

Theoretical analysis of time
efficiency n__________________________________________________________________________________
Theoretical analysis of time

efficiency

Theoretical analysis of time

efficiency

Orders of Growth |:| Input S|Ze:

Orders of Growth . ; ]
Ordere of Growth [ Worst case (worst case analysis provides an upper bound):

Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction — 27



Example 2: Greatest Common Divisor

A\ Briet History O Bestcase:

A Brief History (Cont.)

Fibonacci number 1. When does the best case happen?

Design Algorithms

Analysis of algorithms 2. What iSCbest (’I’L) ?

Analysis of algorithms

Empirical analysis of time .

efficiency [0 Average case:

Th.egretical analysis of time

efficiency o 1. Assumptions:

Theoretical analysis of time

ffici .

S — Assume that: andb are two randomly chosen integers

efficiency — Assume that all integers have the same probability of being chosen

gggz zigzxﬁ — hint: The probability that an integetis a andb’s greatest common divisor is
6

Orders of Growth Pa,b(d) — 242

Best-, average-,

worst-cases 2. When does the best case happen?

Example 1: Sequential

Search

Example 1: Sequential )

Search 3. WhatisCpest(n)?

Example 2: Greatest

Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms

CS483 Lecture 01-Introduction — 28



A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

> Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
O-notation
2-notation
2-notation
©-notation
©-notation
Useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

Asymptotic Notation

Analysis of Algorithms

CS483 Lecture 01-Introduction — 29



Asymptotic Notation and Basic Efficiency Classes

A Brief History |:|

A Brief History (Cont.)

Fibonacci number

Design Algorithms D

Analysis of algorithms

Asymptotic Notation |:|

Asymptotic Notation
and Basic Efficiency
> Classes

O-notation
O-notation
2-notation
2-notation
©-notation
©-notation

Useful Property
Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

The main goal of algorithm analysis is to estimdtminate
computation stepsC'(n) when theinput sizen is large
Computer scientists classify(n) into a set of functions to help them

concentrate on trend (i.e., order of growth). _ _
Asymptotic notation has been developed to provide a tool for studyin

order of growth

— O(g(n)): a set of functions with the same or smaller order of growth(as

> 2n?2 —bn+1¢€ O(n?)
> 27 +nl00 —2 € O(n!)
> 2n+6 & O(logn)

— Q(g(n)): a set of functions with the same or larger order of growth @s)

> 2n2 —5n+1¢€ Q(n?)
2 + nl00 2 & Q(n!)
> 2n+ 6 € Q(logn)

— ©O(g(n)): a set of functions with the same order of growtlyés)

> 2n?2 —bn+1¢€ 60(n?)
2" 4 nl00 2 & O(n!)
2n 4+ 6 ¢ O(logn)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 30



(O-notation

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

> O-notation
O-notation
2-notation
2-notation
©-notation
©-notation
Useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

[

Definition: f(n)isin O(g(n)) if “order of growth of f(n)” < “order

of growth ofg(n)” (within constant multiple)

— there exist positive constantand non-negative integef such

that f(n) < cg(n) for everyn > ng

Examples

— 10n € O(n?)

>

- 51+ 20 € O(n)

>

- 2n+6 ¢ O(logn)

>

why?

why?

why?

Analysis of Algorithms

CS483 Lecture 01-Introduction — 31



(O-notation

A Brief History O We denote&) as an asymptotiapper bound

A Brief History (Cont.)

Fibonacci number

Design Algorithms

600
|

Analysis of algorithms

500
|

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
> O-notation
2-notation
2-notation
©-notation
©-notation
Useful Property S -

Comparing Orders of
Growth

Orders of growth of some
important functions 0 20 40 60 80 100

400
|

200
|

Syllabus

Summan O Try the following commands ignuplot

— plot[0:20] 10 *x x,x * x
— plot[0:5] 5%z 420,10 %z
— plot[0: 400] 2 * = + 6,100 * log(x)

Analysis of Algorithms CS483 Lecture 01-Introduction — 32



()-notation

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
O-notation

> Q-notation
2-notation
©-notation
©-notation
Useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

[

Definition: f(n) isinQ(g(n)) if “order of growth of f(n)” > “order

of growth ofg(n)” (within constant multiple)

there exist positive constantand non-negative integef such

that f(n) > cg(n) for everyn > ng

Examples

%3 e Q(n?)
> why?
2n — 51 € Q(n)

> Why’)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 33



()-notation

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
O-notation
2-notation

> Q-notation
©-notation
©-notation
Useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

O We denot«? as an asymptotilower bound

0 20 40 60 &0 100

0 Try the following commands ignuplot

plot[0: 10] (z xz * x) /5, x * x
plot [0: 100] 2 % = — 51,z

Analysis of Algorithms

CS483 Lecture 01-Introduction — 34



O-notation

A Brief History |:|

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and

Basic Efficiency Classes l:l

O-notation
O-notation
2-notation
2-notation

> ©-notation
©-notation
Useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

Definition: f(n)isin©®(g(n))if f(n) is bounded above and below

by g(n) (within constant multiple)

there exist positive constant andc, and non-negative integer,
such that,g(n) < f(n) < cog(n) for everyn > ng

Examples

1
277,

2n

>

(n—1) € ©(n?)
why?

— 51 € O(n)
why?

Analysis of Algorithms

CS483 Lecture 01-Introduction — 35



O-notation

A Brief History (Cont.)

A Brief History O We denot& as an asymptotitight bound

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
O-notation
2-notation
2-notation
©-notation

> ©-notation
Useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

¢z g(n)

Syllabus O  Try the following commands ignuplot

Summary

plot[0:10] (xxz —x)/2, (xxx)/4,z *xx

plot [0 :200] 2% x — 51, 2,2 *xx

Analysis of Algorithms

CS483 Lecture 01-Introduction — 36



Useful Property

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
O-notation
2-notation
2-notation
©-notation
©-notation
D> useful Property

Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

f(n) € O(f(n))

Proof.

f(n) € O(g(n)) if and only if g(n) € Q(f(n))

Proof.

f(n) € O(g(n)) and g(n) € O(h(n)), thenf(n) € O(h(n))

Proof.

f1(n) € O(g1(n)) and f2(n) € O(g2(n)), then
fi(n) + f2(n) € O(max{g1(n),g2(n)})

Proof.

Analysis of Algorithms

CS483 Lecture 01-Introduction — 37



Comparing Orders of Growth

A Brief History 1. Comparing Orders of Growth

A Brief History (Cont.)

Fibonacci number

besign Algorithms f(n) 0 t(n) has a smaller order of growth than g(n)

Analysis of algorithms lim ——= =< ¢>0 t(n)hasthe same order of growth as g(n)

Asymptotic Notation n—ce g(n) 00 t(n) has a larger order of growth than g(n)

Asymptotic Notation and
Basic Efficiency Classes

O-notaton 2. Example: Compare the orders of growth%m‘(n — 1) andn?
-notation

Q-notation
Q-notation
©-notation
©-notation
Useful Property

Comparing Orders of
> Growth
Orders of growth of some
important functions

3. Example: Compare the orders of growth@f n and/n

Syllabus

Summary

4. Example: Compare the orders of growtmbfand2”

Analysis of Algorithms CS483 Lecture 01-Introduction — 38



Some tools for computing limits

O L'Hopital's rule
lim _f(n) = lim —f (")

n— 00 g(n) Nn— 00 g’(n)

O Stirling’s formula
n! ~vV2mn (B)

Analysis of Algorithms CS483 Lecture 01-Introduction — note 1 of slide 38



Orders of growth of some important functions

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Asymptotic Notation and
Basic Efficiency Classes

O-notation
O-notation
2-notation
2-notation
©-notation
©-notation
Useful Property

Comparing Orders of
Growth
Orders of growth of
some important
D> functions

Syllabus

Summary

All logarithmic functiondog, n belong to the same clag¥(log n) no matter what the
logarithms base > 1is

Proof. ]

All polynomials of the same degree k belong to the same class:
apn® +ap_1nF1 4.+ ag € O(nF)

Proof. ]

Exponential functiong™ have different orders of growth for differeats, i.e.,
2" & O(3™)

Proof. ]

orderlog n < ordern®>9 < ordera™ < ordern! < ordern™
g

Analysis of Algorithms

CS483 Lecture 01-Introduction — 39



A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

> syllabus

Grading and Important
Dates

Policies

Summary

Syllabus

Analysis of Algorithms

CS483 Lecture 01-Introduction — 40



Grading and Important Dates

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Grading and Important
> Dates

Policies

Summary

O 0od

Webpage http://cs.gmu.edu/jmlien/teaching/08pring.cs483/

TA: TBA

Required Textbook Algorithms, by Sanjoy Dasgupta, Christos
Papadimitriou, and Umesh Vazirani, McGraw-Hill, 2006, ISB0OI73523402.

Grading O

1. Quizzes and CS Culture as-
signments 15%

2. Assignments 25%
3. Midterm Exam 25%
4. Final Exam 35%

Final grade:

- A (=90)
— B (> 30)
- C(=70)
— D (= 60)
— F (< 60)

Important Dates.

— Spring Break (March 10 — 16)
— Midterm Exam (March 19)
— Final Exam (May 07)

Analysis of Algorithms

CS483 Lecture 01-Introduction — 41


http://cs.gmu.edu/~jmlien/teaching/08_spring_cs483/

Policies

A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Grading and Important
Dates

> Policies

Summary

Quizzesare mainly for keeping you coming to the class. The quiz valiBb
closed book exam. You can also have upwto opportunities of making up
your missed/failed quizzes by turning in two CS culture assignts.

CS culture assignments a one-page written summary (form available
online) of a talk from a CS seminar (see http://cs.gmu.ecunty) that you

attend during the Spring’08 semester.

Assignmentsmust be completed by the stated due date and time. Your
assignment score will be halved every extra day after theddte

Exams You will be allowed to have one page (letter size) of noteghe
midterm and two pages (one sheet) for the final. No copyingngfiang from
the textbook or another person is allowed. You can write stimmngs
verbatim. You can also write your notes on the computer aimd fmem. The

notes sheet will be handed in with the exam.

Analysis of Algorithms

CS483 Lecture 01-Introduction — 42



A Brief History
A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

> Summary

Summary

Assignment S u m m ary

Analysis of Algorithms CS483 Lecture 01-Introduction — 43



Summary

A cont 0 Two important men in algorithms: Al Khwarizmi & Leo Fibonacc
B nu:mer | [0 Fibonacci number
Design Algorthms [0 General ideas of design of algorithms
JN—— [0 Analysis of algorithms: experimental and theoretical
P — [0  Asymptotic notationsO (upper bound)® (lower bound) {2 (tight bound)
zy”abus Please read Chapter O Prologue in the textbook.
ummary
> Summary
Assignment

Analysis of Algorithms CS483 Lecture 01-Introduction — 44



Assignment

A Brief History O Chapter 0, Exercise 1

A Brief History (Cont.) .

Fibonacel number O Chapter O, Exercise 2

Design Algorithms O Due Jan 30 2008, before the class.

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Summary
> Assignment

Analysis of Algorithms CS483 Lecture 01-Introduction — 45



	A Brief History
	A Brief History (Cont.)
	Fibonacci number
	Fibonacci's original question
	Definition
	Our First Algorithm
	Analyze Our First Algorithm
	Improve Our First Algorithm

	Design Algorithms
	Process of Designing An Algorithm
	What is an algorithm?
	Why study algorithms?
	How to design algorithms?

	Analysis of algorithms
	Analysis of algorithms
	Empirical analysis of time efficiency
	Theoretical analysis of time efficiency
	Theoretical analysis of time efficiency
	Theoretical analysis of time efficiency
	Orders of Growth
	Orders of Growth
	Orders of Growth
	Best-, average-, worst-cases
	Example 1: Sequential Search
	Example 1: Sequential Search
	Example 2: Greatest Common Divisor
	Example 2: Greatest Common Divisor

	Asymptotic Notation
	Asymptotic Notation and Basic Efficiency Classes
	O-notation
	O-notation
	-notation
	-notation
	-notation
	-notation
	Useful Property
	Comparing Orders of Growth
	Orders of growth of some important functions

	Syllabus
	Grading and Important Dates
	Policies

	Summary
	Summary
	Assignment


