
Analysis of Algorithms CS483 Lecture 01-Introduction – 1

CS483 Analysis of Algorithms
Lecture 01∗

Jyh-Ming Lien

January 23, 2008

∗this lecture note is based onAlgorithmsby S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani andIntro-
duction to the Design and Analysis of Algorithmsby Anany Levitin.

A Brief History

⊲ A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 2

� In ancient Europe, numbers are represented by Roman numerals, e.g.,
MDCCCCIIII.

� Decimal system is invented in India around AD 600, e.g., 1904.
� Al Khwarizmi (AD 840), one of the most influential mathematicians

in Baghdad, wrote a textbook in Arabic about adding, multiplying,
dividing numbers, and extracting square roots and computingπ using
decimal system.

(image of Al Khwarizmi from http://jeff560.tripod.com/)

A Brief History (Cont.)

A Brief History

⊲ A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 3

� Many centuries later, decimal system was adopted in Europe, and the
procedures in Al Khwarizmi’s book were named after him as
“Algorithms.” One of the most important mathematicians in this
process was a man named “Leonard Fibonacci.”

� Today, one of his most well known work isFibonacci
/Fee-boh-NAH-chee/number(AD 1202).

(image of Leonardo Fibonacci from http://www.math.ethz.ch/fibonacci)

Fibonacci number

A Brief History

A Brief History (Cont.)

⊲ Fibonacci number
Fibonacci’s original
question

Definition

Our First Algorithm
Analyze Our First
Algorithm
Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 4

Fibonacci’s original question

A Brief History

A Brief History (Cont.)

Fibonacci number

⊲
Fibonacci’s original
question

Definition

Our First Algorithm
Analyze Our First
Algorithm
Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 5

� Fibonacci’s original question:

– Suppose that you are given a newly-born pair of rabbits, onemale, one
female.

– Rabbits are able to mate at the age of one month so that at the end of its
second month a female can produce another pair of rabbits.

– Suppose that our rabbits never die.
– Suppose that the female always produces one new pair (one male, one

female) every month.

� Question: How many pairs will there be in one year?

1. Beginning: (1 pair)
2. End of month 1: (1 pair) Rabbits are ready to mate.
3. End of month 2: (pairs)
4. End of month 3: (pairs)
5. End of month 4: (pairs)
6. End of month 5: (pairs)
7. After 12 months, there will be rabits

Definition

A Brief History

A Brief History (Cont.)

Fibonacci number
Fibonacci’s original
question

⊲ Definition

Our First Algorithm
Analyze Our First
Algorithm
Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 6

� Fibonacci numbersfib(n):

fib(n) =

0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) if n > 1

(1)

� Example: The first 10 Fibonacci numbers are:
{0, 1, , , , , , , , }

� Fibonacci numbers have applications in Biology, Visual arts, Music,
Simulation, Algorithm analysis and design, etc.

(images fromhttp://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html)

Our First Algorithm

A Brief History

A Brief History (Cont.)

Fibonacci number
Fibonacci’s original
question

Definition

⊲ Our First Algorithm
Analyze Our First
Algorithm
Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 7

� Problem: What isfib(200)? What aboutfib(n), wheren is any
positive integer?
Algorithm 0.1: fib(n)

� Questions that we should ask ourselves.

1. Is the algorithm correct?
2. What is the running time of our algorithm?
3. Can we do better?

Analyze Our First Algorithm

A Brief History

A Brief History (Cont.)

Fibonacci number
Fibonacci’s original
question

Definition

Our First Algorithm

⊲
Analyze Our First
Algorithm

Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 8

� Is the algorithm correct?

– Yes, we simply follow the definition of Fibonacci numbers

� How fast is the algorithm?

– If we let the run time offib(n) beT (n), then we can formulate

T (n) = T (n − 1) + T (n − 2) + 3 ≈ 1.6n

– T (200) ≥ 2139

– The world fastest computer BlueGene/L, which can run248 instructions
per second, will take291 seconds to compute. (291 seconds =7.85 × 1010

billion years, Sun turns into a red giant star in 4 to 5 billionyears)
– Can Moose’s law, which predicts that CPU get 1.6 times faster each year,

solve our problem?
– No, because the time needed to computefib(n) also have the same

“growth” rate

⊲ if we can computefib(100) in exactly a year,
⊲ then in the next year, we will still spend a year to computefib(101)
⊲ if we want to computefib(200) within a year, we need to wait for 100 years.

Improve Our First Algorithm

A Brief History

A Brief History (Cont.)

Fibonacci number
Fibonacci’s original
question

Definition

Our First Algorithm
Analyze Our First
Algorithm

⊲
Improve Our First
Algorithm

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 9

� Can we do better?
� Yes, because many computations in the previous algorithm are

repeated.

Algorithm 0.2: fib(n)

Design Algorithms

A Brief History

A Brief History (Cont.)

Fibonacci number

⊲ Design Algorithms
Process of Designing An
Algorithm

What is an algorithm?

Why study algorithms?

How to design algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 10

Process of Designing An Algorithm

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

⊲
Process of Designing
An Algorithm

What is an algorithm?

Why study algorithms?

How to design algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 11

� Definition: “An algorithm is a procedure (a finite set of well-defined
instructions) for accomplishing some task which, given an initial state, will
terminate in a defined end-state” -from wikipedia, the free encyclopedia

What is an algorithm?

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms
Process of Designing An
Algorithm

⊲ What is an algorithm?

Why study algorithms?

How to design algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 12

Recipe, process, method, technique, procedure, routine,... with following
requirements:

1. Finiteness
terminates after a finite number of steps

2. Definiteness
rigorously and unambiguously specified

3. Input
valid inputs are clearly specified

4. Output
can be proved to produce the correct output given a valid input

5. Effectiveness
steps are sufficiently simple and basic

Why study algorithms?

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms
Process of Designing An
Algorithm

What is an algorithm?

⊲ Why study algorithms?

How to design algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 13

� Theoretical importance

– the core of computer science (or the core the entire western
civilization!)

� Practical importance

– A practitioners toolkit of known algorithms (i.e., standing on the
shoulders of giants)

– Framework for designing and analyzing algorithms for new
problems (i.e, so you know that your problem will terminate
before the end of the world)

How to design algorithms?

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms
Process of Designing An
Algorithm

What is an algorithm?

Why study algorithms?

⊲
How to design
algorithms?

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 14

Analysis of algorithms

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

⊲ Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 15

Analysis of algorithms

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

⊲ Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 16

� When we design an algorithm, we should ask ourselves:

1. Is the algorithm correct?
2. How efficient is the algorithm?

– Time efficiency
– Space efficiency

3. Can we do better?

� Approaches

1. theoretical analysis
2. empirical analysis

Empirical analysis of time efficiency

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms

⊲
Empirical analysis of
time efficiency

Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 17

� A typical way to estimate the running time

– Select a specific (typical) sample of inputs
– Use wall-clock time (e.g., milliseconds)

or
Count actual number of basic operation’s executions

– Analyze the collected data (e.g., plot the data)

� Problems with empirical analysis

– difficult to decide on how many samples/tests are needed
– computation time is hardware/environmental dependent
– implementation dependent

Theoretical analysis of time efficiency

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency

⊲
Theoretical analysis of
time efficiency

Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 18

� Providemachine independentmeasurements
� Estimate the bottleneck of the algorithm
� The size of the input increases→ algorithms run longer⇒. Typically

we are interested in how efficiency scales w.r.t. input size
� To measure the running time, we could

1. count all operations executed.
2. or determine the number of thebasic operationas a function ofinput size

� Basic operation: the operation that contributes most towards the running time

Theoretical analysis of time efficiency

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency

⊲
Theoretical analysis of
time efficiency

Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 19

� Examples:

1. sort a list of integers{a1, a2, · · · , an}

2.

2

6

4

a11 · · · a1m

...
. . .

...
an1 · · · anm

3

7

5

2

6

4

b11 · · · b1k

...
. . .

...
bm1 · · · bmk

3

7

5

3. prime(n)

4. Graph 3-coloring

Input Size:

1.

2.

3.

4.

Basic operations:

1.

2.

3.

4.

Theoretical analysis of time efficiency

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

⊲
Theoretical analysis of
time efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 20

� We can approximate the run time using the following formula:

T (n) ≈ copC(n) ,

wheren is the input size,C(n) is the number of the basic operation
for n, andcop is the time needed to execute one single basic operation.

� Examples: Given thatC(n) = 1

2
n(n− 1), How much time an

algorithm will take if the input sizen doubled?

� Theoretical analysis focuses on “order of growth” of an algorithm.
(Given the input sizen)

Orders of Growth

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

⊲ Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 21

� Some of the commonly seen functions representing the number of the
basic operationC(n) =

1. n
2. n2

3. n3

4. log
10

(n)
5. n log

10
(n)

6. log2

10
(n)

7.
√

n
8. 2n

9. n!

� Can you order them by their growth rate?

Orders of Growth

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

⊲ Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 22

� Test functions using some values

n n2 n3 2n n!

10 102 103 1024 3.6 × 106

100 104 106 1.3 × 1030 9.3 × 10157

1000 106 109 1.1 × 10301

10000 108 1012

n log
10

(n) n log
10

(n) log2

10
(n)

√
n

10 1 10 1 3.16
100 2 200 4 10
1000 3 3000 9 31.6
10000 4 40000 16 100

� Now, we can order the functions by their growth rate

Orders of Growth

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

⊲ Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 23

� plot the functions (e.g., use matlab or gnuplot)

� Basic efficiency classes

n n2 n3 2n n!

linear quadratic cubic exponential factorial

c log
10

(n) n log
10

(n)
√

n

constant logarithmic n-log-n square root

Best-, average-, worst-cases

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth

⊲
Best-, average-,
worst-cases

Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 24

For some algorithms efficiency depends on form of input:

� Worst case:Cworst(n)→maximum over inputs of size n
� Best case:Cbest(n)→ minimum over inputs of size n
� Average case:Cavg(n)→ “average” over inputs of size n

1. Number of times the basic operation will be executed on typical
input

2. NOT the average of worst and best case
3. Expected number of basic operations considered as a random

variable under some assumption about the probability distribution
of all possible inputs

Example 1: Sequential Search

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases

⊲
Example 1: Sequential
Search

Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 25

� Find the valueK in a given arrayA[1 · · ·n]

Algorithm 0.3: SEARCH(A[1..n], K)

for i← [1 · · ·n]

do
{

if A[i] = K
then return (i)

return (−1)

� Input size
� Worst case (worst case analysis provides an upper bound):

1. When does the worst case happen?

2. What isCworst(n)?

Example 1: Sequential Search

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search

⊲
Example 1: Sequential
Search

Example 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 26

� Best case:

1. When does the best case happen?

2. What isCbest(n)?

� Average case:

1. Average case asks a useful question: what kind of running time to we
expect to get when we don’t know or know only little about the data?

– suppose that the probability ofK ∈ A is p

– suppose that the probability ofK = A[i] equals that ofK = A[j]

2. When does the best case happen?

3. What isCbest(n)?

Example 2: Greatest Common Divisor

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search

⊲
Example 2: Greatest
Common Divisor

Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 27

Algorithm 0.4: gcd(a, b)

for i = {min(a, b), · · · , 1}
do

{

if a%i = 0 and b%i = 0
then return (i)

� Input size=
� Worst case (worst case analysis provides an upper bound):

Example 2: Greatest Common Divisor

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Analysis of algorithms
Empirical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency
Theoretical analysis of time
efficiency

Orders of Growth

Orders of Growth

Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor

⊲
Example 2: Greatest
Common Divisor

Asymptotic Notation

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 28

� Best case:

1. When does the best case happen?

2. What isCbest(n)?

� Average case:

1. Assumptions:

– Assume thata andb are two randomly chosen integers
– Assume that all integers have the same probability of being chosen
– hint : The probability that an integerd is a andb’s greatest common divisor is

Pa,b(d) = 6

π2d2

2. When does the best case happen?

3. What isCbest(n)?

Asymptotic Notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

⊲ Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 29

Asymptotic Notation and Basic Efficiency Classes

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

⊲
Asymptotic Notation
and Basic Efficiency
Classes

O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 30

� The main goal of algorithm analysis is to estimatedominate
computation stepsC(n) when theinput sizen is large

� Computer scientists classifyC(n) into a set of functions to help them
concentrate on trend (i.e., order of growth).

� Asymptotic notation has been developed to provide a tool for studying
order of growth

– O(g(n)): a set of functions with the same or smaller order of growth asg(n)

⊲ 2n2 − 5n + 1 ∈ O(n2)
⊲ 2n + n100 − 2 ∈ O(n!)
⊲ 2n + 6 6∈ O(log n)

– Ω(g(n)): a set of functions with the same or larger order of growth asg(n)

⊲ 2n2 − 5n + 1 ∈ Ω(n2)
⊲ 2n + n100 − 2 6∈ Ω(n!)
⊲ 2n + 6 ∈ Ω(log n)

– Θ(g(n)): a set of functions with the same order of growth asg(n)

⊲ 2n2 − 5n + 1 ∈ Θ(n2)
⊲ 2n + n100 − 2 6∈ Θ(n!)
⊲ 2n + 6 6∈ Θ(log n)

O-notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

⊲ O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 31

� Definition: f(n) is in O(g(n)) if “order of growth off(n)” ≤ “order
of growth ofg(n)” (within constant multiple)

– there exist positive constantc and non-negative integern0 such
thatf(n) ≤ cg(n) for everyn ≥ n0

� Examples:

– 10n ∈ O(n2)

⊲ why?

– 5n + 20 ∈ O(n)

⊲ why?

– 2n + 6 6∈ O(log n)

⊲ why?

O-notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

⊲ O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 32

� We denoteO as an asymptoticupper bound

� Try the following commands ingnuplot

– plot [0 : 20] 10 ∗ x, x ∗ x
– plot [0 : 5] 5 ∗ x + 20, 10 ∗ x
– plot [0 : 400] 2 ∗ x + 6, 100 ∗ log(x)

Ω-notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

⊲ Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 33

� Definition: f(n) is in Ω(g(n)) if “order of growth off(n)” ≥ “order
of growth ofg(n)” (within constant multiple)

– there exist positive constantc and non-negative integern0 such
thatf(n) ≥ cg(n) for everyn ≥ n0

� Examples:

– n3

5
∈ Ω(n2)

⊲ why?

– 2n− 51 ∈ Ω(n)

⊲ why?

Ω-notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

⊲ Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 34

� We denoteΩ as an asymptoticlower bound

� Try the following commands ingnuplot

– plot [0 : 10] (x ∗ x ∗ x)/5, x ∗ x
– plot [0 : 100] 2 ∗ x− 51, x

Θ-notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

Ω-notation

⊲ Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 35

� Definition: f(n) is in Θ(g(n)) if f(n) is bounded above and below
by g(n) (within constant multiple)

– there exist positive constantc1 andc2 and non-negative integern0

such thatc1g(n) ≤ f(n) ≤ c2g(n) for everyn ≥ n0

� Examples:

– 1

2
n(n− 1) ∈ Θ(n2)

⊲ why?

– 2n− 51 ∈ Θ(n)

⊲ why?

Θ-notation

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

⊲ Θ-notation

Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 36

� We denoteΘ as an asymptotictight bound

� Try the following commands ingnuplot

– plot [0 : 10] (x ∗ x− x)/2, (x ∗ x)/4, x ∗ x
– plot [0 : 200] 2 ∗ x− 51, x, 2 ∗ x

Useful Property

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

⊲ Useful Property
Comparing Orders of
Growth
Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 37

1. f(n) ∈ O(f(n))

Proof.

2. f(n) ∈ O(g(n)) if and only if g(n) ∈ Ω(f(n))

Proof.

3. f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), thenf(n) ∈ O(h(n))

Proof.

4. f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then
f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

Proof.

Comparing Orders of Growth

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property

⊲
Comparing Orders of
Growth

Orders of growth of some
important functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 38

1. Comparing Orders of Growth

lim
n→∞

f(n)

g(n)
=

0 t(n) has a smaller order of growth than g(n)
c > 0 t(n) has the same order of growth as g(n)
∞ t(n) has a larger order of growth than g(n)

2. Example: Compare the orders of growth of1

2
n(n− 1) andn2

3. Example: Compare the orders of growth oflog n and
√

n

4. Example: Compare the orders of growth ofn! and2n

Some tools for computing limits

Analysis of Algorithms CS483 Lecture 01-Introduction – note 1 of slide 38

� L’H ôpital’s rule

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)

� Stirling’s formula

n! ≈
√

2πn
(n

e

)n

Orders of growth of some important functions

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes

O-notation

O-notation

Ω-notation

Ω-notation

Θ-notation

Θ-notation

Useful Property
Comparing Orders of
Growth

⊲
Orders of growth of
some important
functions

Syllabus

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 39

1. All logarithmic functionsloga n belong to the same classΘ(log n) no matter what the
logarithms basea > 1 is

Proof.

2. All polynomials of the same degree k belong to the same class:
aknk + ak−1nk−1 + · · · + a0 ∈ Θ(nk)

Proof.

3. Exponential functionsan have different orders of growth for differenta’s, i.e.,
2n 6∈ Θ(3n)

Proof.

4. orderlog n < orderna>0 < orderan < ordern! < ordernn

Syllabus

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

⊲ Syllabus
Grading and Important
Dates

Policies

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 40

Grading and Important Dates

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

⊲
Grading and Important
Dates

Policies

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 41

� Webpage: http://cs.gmu.edu/∼jmlien/teaching/08springcs483/
� TA : TBA
� Required Textbook: Algorithms, by Sanjoy Dasgupta, Christos

Papadimitriou, and Umesh Vazirani, McGraw-Hill, 2006, ISBN0073523402.

� Grading

1. Quizzes and CS Culture as-
signments 15%

2. Assignments 25%
3. Midterm Exam 25%
4. Final Exam 35%

� Final grade:

– A (≥ 90)
– B (≥ 80)
– C (≥ 70)
– D (≥ 60)
– F (< 60)

� Important Dates.

– Spring Break (March 10 – 16)
– Midterm Exam (March 19)
– Final Exam (May 07)

http://cs.gmu.edu/~jmlien/teaching/08_spring_cs483/

Policies

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus
Grading and Important
Dates

⊲ Policies

Summary

Analysis of Algorithms CS483 Lecture 01-Introduction – 42

� Quizzesare mainly for keeping you coming to the class. The quiz will be a
closed book exam. You can also have up totwo opportunities of making up
your missed/failed quizzes by turning in two CS culture assignments.

� CS culture assignmentis a one-page written summary (form available
online) of a talk from a CS seminar (see http://cs.gmu.edu/events/) that you
attend during the Spring’08 semester.

� Assignmentsmust be completed by the stated due date and time. Your
assignment score will be halved every extra day after the duedate.

� Exams. You will be allowed to have one page (letter size) of notes for the
midterm and two pages (one sheet) for the final. No copying of anything from
the textbook or another person is allowed. You can write somethings
verbatim. You can also write your notes on the computer and print them. The
notes sheet will be handed in with the exam.

Summary

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

⊲ Summary

Summary

Assignment

Analysis of Algorithms CS483 Lecture 01-Introduction – 43

Summary

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

⊲ Summary

Assignment

Analysis of Algorithms CS483 Lecture 01-Introduction – 44

� Two important men in algorithms: Al Khwarizmi & Leo Fibonacci
� Fibonacci number
� General ideas of design of algorithms
� Analysis of algorithms: experimental and theoretical
� Asymptotic notations:O (upper bound),Θ (lower bound),Ω (tight bound)

Please read Chapter 0 Prologue in the textbook.

Assignment

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms

Analysis of algorithms

Asymptotic Notation

Syllabus

Summary

Summary

⊲ Assignment

Analysis of Algorithms CS483 Lecture 01-Introduction – 45

� Chapter 0, Exercise 1
� Chapter 0, Exercise 2
� Due Jan 30 2008, before the class.

	A Brief History
	A Brief History (Cont.)
	Fibonacci number
	Fibonacci's original question
	Definition
	Our First Algorithm
	Analyze Our First Algorithm
	Improve Our First Algorithm

	Design Algorithms
	Process of Designing An Algorithm
	What is an algorithm?
	Why study algorithms?
	How to design algorithms?

	Analysis of algorithms
	Analysis of algorithms
	Empirical analysis of time efficiency
	Theoretical analysis of time efficiency
	Theoretical analysis of time efficiency
	Theoretical analysis of time efficiency
	Orders of Growth
	Orders of Growth
	Orders of Growth
	Best-, average-, worst-cases
	Example 1: Sequential Search
	Example 1: Sequential Search
	Example 2: Greatest Common Divisor
	Example 2: Greatest Common Divisor

	Asymptotic Notation
	Asymptotic Notation and Basic Efficiency Classes
	O-notation
	O-notation
	-notation
	-notation
	-notation
	-notation
	Useful Property
	Comparing Orders of Growth
	Orders of growth of some important functions

	Syllabus
	Grading and Important Dates
	Policies

	Summary
	Summary
	Assignment

