CS483 Analysis of Algorithms Lecture 01*

Jyh-Ming Lien

January 23, 2008

[^0]
A Brief History

- A Brief History A Brief History (Cont.)
\square In ancient Europe, numbers are represented by Roman numerals, e.g., MDCCCCIIII.
\square Decimal system is invented in India around AD 600, e.g., 1904.
\square Al Khwarizmi (AD 840), one of the most influential mathematicians in Baghdad, wrote a textbook in Arabic about adding, multiplying, dividing numbers, and extracting square roots and computing π using decimal system.

(image of Al Khwarizmi from http://jeff560.tripod.com/)

A Brief History (Cont.)

A Brief History

D A Brief History (Cont.)
Fibonacci number
Design Algorithms
\square Many centuries later, decimal system was adopted in Europe, and the procedures in Al Khwarizmi's book were named after him as "Algorithms." One of the most important mathematicians in this process was a man named "Leonard Fibonacci."
\square Today, one of his most well known work is Fibonacci /Fee-boh-NAH-chee/ number (AD 1202).

(image of Leonardo Fibonacci from http://www.math.ethz.ch/fibonacci)

A Brief History
A Brief History (Cont.)
\triangle Fibonacci number Fibonacci's original question
Definition
Our First Algorithm
Analyze Our First
Algorithm
Improve Our First
Algorithm
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary

Fibonacci number

Fibonacci's original question

A Brief History

A Brief History (Cont.)
Fibonacci number
Fibonacci's original
\triangleright question
Definition
Our First Algorithm
Analyze Our First Algorithm
Improve Our First Algorithm
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
\square Fibonacci's original question:

- Suppose that you are given a newly-born pair of rabbits, one male, one female.
- Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits.
- Suppose that our rabbits never die.
- Suppose that the female always produces one new pair (one male, one female) every month.
$\square \quad$ Question: How many pairs will there be in one year?

1. Beginning: (1 pair)
2. End of month 1: (1 pair) Rabbits are ready to mate.
3. End of month 2:pairs)
4. End of month 3: (__ pairs)
5. End of month 4: (___ pairs)
6. End of month 5: (___ pairs)
7. After 12 months, there will be \qquad rabits

Definition

A Brief History

A Brief History (Cont.)
Fibonacci number
Fibonacci's original
question
\triangleright Definition
Our First Algorithm
Analyze Our First Algorithm
Improve Our First Algorithm

Design Algorithms
Analysis of algorithms
Asymptotic Notation
\square Fibonacci numbers fib (n) :

$$
\operatorname{fib}(n)= \begin{cases}0 & \text { if } n=0 \tag{1}\\ 1 & \text { if } n=1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { if } n>1\end{cases}
$$

\square Example: The first 10 Fibonacci numbers are: $\{0,1$, \qquad , , _ , \qquad , \qquad , \qquad , \qquad , \qquad _\}
\square Fibonacci numbers have applications in Biology, Visual arts, Music, Simulation, Algorithm analysis and design, etc.

(images from http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html)

Our First Algorithm

A Brief History
A Brief History (Cont.)
Fibonacci number Fibonacci's original question
Definition
D Our First Algorithm
Analyze Our First Algorithm
Improve Our First Algorithm

Design Algorithms
Analysis of algorithms
Asymptotic Notation Syllabus

Summary
\square Problem: What is $\operatorname{fib}(200)$? What about $\operatorname{fib}(n)$, where n is any positive integer?

Algorithm 0.1: fib(n)

$\square \quad$ Questions that we should ask ourselves.

1. Is the algorithm correct?
2. What is the running time of our algorithm?
3. Can we do better?

Analyze Our First Algorithm

A Brief History

A Brief History (Cont.)
Fibonacci number Fibonacci's original question
Definition
Our First Algorithm
Analyze Our First
\triangleright Algorithm
Improve Our First Algorithm

Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
\square Is the algorithm correct?

- Yes, we simply follow the definition of Fibonacci numbers
\square How fast is the algorithm?
- If we let the run time of fib (n) be $T(n)$, then we can formulate

$$
T(n)=T(n-1)+T(n-2)+3 \approx 1.6^{n}
$$

- $\quad T(200) \geq 2^{139}$
- The world fastest computer BlueGene/L, which can run 2^{48} instructions per second, will take 2^{91} seconds to compute. $\left(2^{91}\right.$ seconds $=7.85 \times 10^{10}$ billion years, Sun turns into a red giant star in 4 to 5 billion years)
- Can Moose's law, which predicts that CPU get 1.6 times faster each year, solve our problem?
- No, because the time needed to compute $\operatorname{fib}(n)$ also have the same "growth" rate
\triangleright if we can compute $\mathrm{fib}(100)$ in exactly a year,
\triangleright then in the next year, we will still spend a year to compute fib(101)
\triangleright if we want to compute fib(200) within a year, we need to wait for 100 years.

Improve Our First Algorithm

A Brief History
A Brief History (Cont.)
Fibonacci number Fibonacci's original question
Definition
Our First Algorithm
Analyze Our First Algorithm

Improve Our First
\triangleright Algorithm
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
$\square \quad$ Can we do better?
\square Yes, because many computations in the previous algorithm are repeated.

Algorithm 0.2: fib(n)

A Brief History
A Brief History (Cont.)
Fibonacci number
D Design Algorithms
Process of Designing An
Algorithm
What is an algorithm?
Why study algorithms?
How to design algorithms?
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary

Design Algorithms

Process of Designing An Algorithm

A Brief History

A Brief History (Cont.)

Fibonacci number

Design Algorithms
Process of Designing
D An Algorithm
What is an algorithm?
Why study algorithms?
How to design algorithms?
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
\square Definition: "An algorithm is a procedure (a finite set of well-defined instructions) for accomplishing some task which, given an initial state, will terminate in a defined end-state" - from wikipedia, the free encyclopedia

What is an algorithm?

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Process of Designing An Algorithm
D What is an algorithm?
Why study algorithms?
How to design algorithms?
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary

Recipe, process, method, technique, procedure, routine,... with following requirements:

1. Finiteness
terminates after a finite number of steps
2. Definiteness
rigorously and unambiguously specified
3. Input
valid inputs are clearly specified
4. Output
can be proved to produce the correct output given a valid input
5. Effectiveness
steps are sufficiently simple and basic

Why study algorithms?

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Process of Designing An Algorithm
What is an algorithm?
\triangleright Why study algorithms?
How to design algorithms?
Analysis of algorithms
Asymptotic Notation Syllabus

Summary
\square Theoretical importance

- the core of computer science (or the core the entire western civilization!)
\square Practical importance
- A practitioners toolkit of known algorithms (i.e., standing on the shoulders of giants)
- Framework for designing and analyzing algorithms for new problems (i.e, so you know that your problem will terminate before the end of the world)

How to design algorithms?

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Process of Designing An Algorithm What is an algorithm? Why study algorithms? \quad How to design algorithms? Analysis of algorithms Asymptotic Notation Syllabus Summary

A Brief HistoryA Brief History (Cont.)
Fibonacci number
Design Algorithms
D Analysis of algorithms
Analysis of algorithms
Empirical analysis of timeefficiency
Theoretical analysis of timeefficiencyTheoretical analysis of timeefficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-
worst-cases
Example 1: Sequential
Search
Example 1: SequentialSearchExample 2: Greatest
Common Divisor
Example 2: Greatest
Common Divisor
Asymptotic NotationSyllabus
Summary
Analysis of algorithmsCS483 Lecture 01-Introduction - 15

Analysis of algorithms

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
A Analysis of algorithms
Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
$\square \quad$ When we design an algorithm, we should ask ourselves:

1. Is the algorithm correct?
2. How efficient is the algorithm?

- Time efficiency
- Space efficiency

3. Can we do better?
\square Approaches
4. theoretical analysis
5. empirical analysis

Empirical analysis of time efficiency

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms Analysis of algorithms

Empirical analysis of
Δ time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
$\square \quad$ A typical way to estimate the running time

- Select a specific (typical) sample of inputs
- Use wall-clock time (e.g., milliseconds) or
Count actual number of basic operation's executions
- Analyze the collected data (e.g., plot the data)
\square Problems with empirical analysis
- difficult to decide on how many samples/tests are needed
- computation time is hardware/environmental dependent
- implementation dependent

Theoretical analysis of time efficiency

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency

Theoretical analysis of D time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
$\square \quad$ Provide machine independent measurements
$\square \quad$ Estimate the bottleneck of the algorithm
$\square \quad$ The size of the input increases \rightarrow algorithms run longer \Rightarrow. Typically we are interested in how efficiency scales w.r.t. input size
$\square \quad$ To measure the running time, we could

1. count all operations executed.
2. or determine the number of the basic operation as a function of input size
$\square \quad$ Basic operation: the operation that contributes most towards the running time

Theoretical analysis of time efficiency

A Brief History
 A Brief History (Cont.)

Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency

Theoretical analysis of
Δ time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
\square Examples:

1. sort a list of integers $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$
2. $\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 m} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n m}\end{array}\right]\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 k} \\ \vdots & \ddots & \vdots \\ b_{m 1} & \cdots & b_{m k}\end{array}\right]$
3. \quad prime (n)
4. Graph 3-coloring

Input Size:

1. \qquad
2. \qquad
3. \qquad
4. \qquad
Basic operations:
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Theoretical analysis of time efficiency

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency

Theoretical analysis of ∇ time efficiency
Orders of Growth
Orders of Growth
Orders of Growth Best-, average-, worst-cases
Example 1: Sequential Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation Syllabus
\square We can approximate the run time using the following formula:

$$
T(n) \approx c_{o p} C(n)
$$

where n is the input size, $C(n)$ is the number of the basic operation for n, and $c_{o p}$ is the time needed to execute one single basic operation.
\square Examples: Given that $C(n)=\frac{1}{2} n(n-1)$, How much time an algorithm will take if the input size n doubled?
\square Theoretical analysis focuses on "order of growth" of an algorithm. (Given the input size n)

Orders of Growth

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
D Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-
worst-cases
Example 1: Sequential Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
\square Some of the commonly seen functions representing the number of the basic operation $C(n)=$

1. n
2. n^{2}
3. n^{3}
4. $\quad \log _{10}(n)$
5. $n \log _{10}(n)$
6. $\quad \log _{10}^{2}(n)$
7. \sqrt{n}
8. 2^{n}
9. n !
$\square \quad$ Can you order them by their growth rate?

Orders of Growth

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
D Orders of Growth
Orders of Growth Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
$\square \quad$ Test functions using some values

n	n^{2}	n^{3}	2^{n}	$n!$
10	10^{2}	10^{3}	1024	3.6×10^{6}
100	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
1000	10^{6}	10^{9}	1.1×10^{301}	
10000	10^{8}	$10^{1} 2$		

n	$\log _{10}(n)$	$n \log _{10}(n)$	$\log _{10}^{2}(n)$	\sqrt{n}
10	1	10	1	3.16
100	2	200	4	10
1000	3	3000	9	31.6
10000	4	40000	16	100

\square Now, we can order the functions by their growth rate

Orders of Growth

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms
Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
\triangleright Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
\square plot the functions (e.g., use matlab or gnuplot)
$\square \quad$ Basic efficiency classes

n	n^{2}	n^{3}	2^{n}	$n!$
linear	quadratic	cubic	exponential	factorial

c	$\log _{10}(n)$	$n \log _{10}(n)$	\sqrt{n}
constant	logarithmic	n-log-n	square root

Best-, average-, worst-cases

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
D worst-cases
Example 1: Sequential Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus

For some algorithms efficiency depends on form of input:
$\square \quad$ Worst case: $C_{\text {worst }}(n) \rightarrow$ maximum over inputs of size n
$\square \quad$ Best case: $C_{\text {best }}(n) \rightarrow$ minimum over inputs of size n
$\square \quad$ Average case: $C_{\text {avg }}(n) \rightarrow$ "average" over inputs of size n

1. Number of times the basic operation will be executed on typical input
2. NOT the average of worst and best case
3. Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example 1: Sequential Search

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
\triangleright Search
Example 1: Sequential Search
Example 2: Greatest Common Divisor Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary
$\square \quad$ Find the value K in a given array $A[1 \cdots n]$

```
Algorithm 0.3: \(\operatorname{SEARCH}(A[1 . . n], K)\)
for \(i \leftarrow[1 \cdots n]\)
    do \(\left\{\begin{array}{l}\text { if } A[i]=K \\ \text { then return }(i)\end{array}\right.\)
return ( -1 )
```

$\square \quad$ Input size
\square Worst case (worst case analysis provides an upper bound):

1. When does the worst case happen?
2. What is $C_{\text {worst }}(n)$?

Example 1: Sequential Search

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
\triangleright Search
Example 2: Greatest
Common Divisor
Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
$\square \quad$ Best case:

1. When does the best case happen?
2. What is $C_{b e s t}(n)$?
\square Average case:
3. Average case asks a useful question: what kind of running time to we expect to get when we don't know or know only little about the data?

- suppose that the probability of $K \in A$ is p
- suppose that the probability of $K=A[i]$ equals that of $K=A[j]$

2. When does the best case happen?
3. What is $C_{\text {best }}(n)$?

Example 2: Greatest Common Divisor

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms
Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential
Search
Example 1: Sequential
Search
Example 2: Greatest
\triangle Common Divisor
Example 2: Greatest Common Divisor

Asymptotic Notation
Syllabus
Summary

Algorithm 0.4: $\operatorname{gcd}(a, b)$
for $i=\{\min (a, b), \cdots, 1\}$ do $\left\{\begin{array}{c}\text { if } a \% i=0 \text { and } b \% i=0 \\ \text { then return }(i)\end{array}\right.$
$\square \quad$ Input size=
\square Worst case (worst case analysis provides an upper bound):

Example 2: Greatest Common Divisor

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Analysis of algorithms Empirical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Theoretical analysis of time efficiency
Orders of Growth
Orders of Growth
Orders of Growth
Best-, average-,
worst-cases
Example 1: Sequential Search
Example 1: Sequential
Search
Example 2: Greatest
Common Divisor
Example 2: Greatest
\checkmark Common Divisor
Asymptotic Notation
Syllabus
Summary
$\square \quad$ Best case:

1. When does the best case happen?
2. What is $C_{\text {best }}(n)$?
\square Average case:
3. Assumptions:

- Assume that a and b are two randomly chosen integers
- Assume that all integers have the same probability of being chosen
- hint: The probability that an integer d is a and b 's greatest common divisor is $P_{a, b}(d)=\frac{6}{\pi^{2} d^{2}}$

2. When does the best case happen?
3. What is $C_{b e s t}(n)$?
A Brief HistoryA Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
D Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes
O-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of
GrowthOrders of growth of someimportant functions
Syllabus
Summary
Asymptotic Notation

Asymptotic Notation and Basic Efficiency Classes

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation
and Basic Efficiency
\triangle Classes
O-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus

Summary

$\square \quad$ The main goal of algorithm analysis is to estimate dominate computation steps $C(n)$ when the input size n is large
\square Computer scientists classify $C(n)$ into a set of functions to help them concentrate on trend (i.e., order of growth).
\square Asymptotic notation has been developed to provide a tool for studying order of growth

- $O(g(n)):$ a set of functions with the same or smaller order of growth as $g(n)$

■ $2 n^{2}-5 n+1 \in O\left(n^{2}\right)$
$\triangleright 2^{n}+n^{100}-2 \in O(n!)$

- $2 n+6 \notin O(\log n)$
- $\Omega(g(n))$: a set of functions with the same or larger order of growth as $g(n)$
$\triangleright 2 n^{2}-5 n+1 \in \Omega\left(n^{2}\right)$
$\triangleright 2^{n}+n^{100}-2 \notin \Omega(n!)$
$\triangleright \quad 2 n+6 \in \Omega(\log n)$
- $\Theta(g(n)):$ a set of functions with the same order of growth as $g(n)$
$\triangleright 2 n^{2}-5 n+1 \in \Theta\left(n^{2}\right)$
$\triangleright 2^{n}+n^{100}-2 \notin \Theta(n!)$
$\triangleright \quad 2 n+6 \notin \Theta(\log n)$

O-notation

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes
$D O$-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus
Summary
\square Definition: $f(n)$ is in $O(g(n))$ if "order of growth of $f(n)$ " \leq "order of growth of $g(n)$ " (within constant multiple)

- there exist positive constant c and non-negative integer n_{0} such that $f(n) \leq c g(n)$ for every $n \geq n_{0}$
\square Examples:
- $\quad 10 n \in O\left(n^{2}\right)$
- why?
- $\quad 5 n+20 \in O(n)$
\triangleright why?
- $2 n+6 \notin O(\log n)$
- why?

O-notation

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation Asymptotic Notation and Basic Efficiency Classes
O-notation
$D O$-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus

Summary
$\square \quad$ We denote O as an asymptotic upper bound

$\square \quad$ Try the following commands in gnuplot

- $\quad \operatorname{plot}[0: 20] 10 * x, x * x$
$-\operatorname{plot}[0: 5] 5 * x+20,10 * x$
$-\operatorname{plot}[0: 400] 2 * x+6,100 * \log (x)$

Ω-notation

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes
O-notation
O-notation
$\triangleright \Omega$-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus
Summary
\square Definition: $f(n)$ is in $\Omega(g(n))$ if "order of growth of $f(n)$ " \geq "order of growth of $g(n)$ " (within constant multiple)

- there exist positive constant c and non-negative integer n_{0} such that $f(n) \geq c g(n)$ for every $n \geq n_{0}$
\square Examples:
$-\frac{n^{3}}{5} \in \Omega\left(n^{2}\right)$
- why?
- $2 n-51 \in \Omega(n)$
- why?

Ω-notation

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation Asymptotic Notation and Basic Efficiency Classes
O-notation
O-notation
Ω-notation
$\triangleright \Omega$-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus

Summary
\square We denote Ω as an asymptotic lower bound

$\square \quad$ Try the following commands in gnuplot
$-\operatorname{plot}[0: 10](x * x * x) / 5, x * x$
$-\operatorname{plot}[0: 100] 2 * x-51, x$

Θ-notation

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes
O-notation
O-notation
Ω-notation
Ω-notation
$\triangleright \Theta$-notation
Θ-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus
Summary
\square Definition: $f(n)$ is in $\Theta(g(n))$ if $f(n)$ is bounded above and below by $g(n)$ (within constant multiple)

- there exist positive constant c_{1} and c_{2} and non-negative integer n_{0} such that $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for every $n \geq n_{0}$
\square Examples:
$-\quad \frac{1}{2} n(n-1) \in \Theta\left(n^{2}\right)$
- why?
- $\quad 2 n-51 \in \Theta(n)$
- why?

Θ-notation

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation Asymptotic Notation and Basic Efficiency Classes
O-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
$\triangleright \Theta$-notation
Useful Property
Comparing Orders of Growth
Orders of growth of some important functions

Syllabus

Summary
$\square \quad$ We denote Θ as an asymptotic tight bound

$\square \quad$ Try the following commands in gnuplot
$-\operatorname{plot}[0: 10](x * x-x) / 2,(x * x) / 4, x * x$

- plot $[0: 200] 2 * x-51, x, 2 * x$

Useful Property

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes
O-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
\triangleright Useful Property

Comparing Orders of

Growth
Orders of growth of some important functions

Syllabus

Summary

1. $f(n) \in O(f(n))$

Proof.
2. $\quad f(n) \in O(g(n))$ if and only if $g(n) \in \Omega(f(n))$

Proof.
3. $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

Proof.
4. $\quad f_{1}(n) \in O\left(g_{1}(n)\right)$ and $f_{2}(n) \in O\left(g_{2}(n)\right)$, then
$f_{1}(n)+f_{2}(n) \in O\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)$
Proof.

Comparing Orders of Growth

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation and Basic Efficiency Classes
O-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of
D Growth
Orders of growth of some important functions

Syllabus
Summary

1. Comparing Orders of Growth

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}= \begin{cases}0 & t(n) \text { has a smaller order of growth than } g(n) \\ c>0 & t(n) \text { has the same order of growth as } g(n) \\ \infty & t(n) \text { has a larger order of growth than } g(n)\end{cases}
$$

2. Example: Compare the orders of growth of $\frac{1}{2} n(n-1)$ and n^{2}
3. Example: Compare the orders of growth of $\log n$ and \sqrt{n}
4. Example: Compare the orders of growth of $n!$ and 2^{n}

Some tools for computing limits

\square L'Hôpital's rule

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

\square Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Orders of growth of some important functions

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Asymptotic Notation and
Basic Efficiency Classes
O-notation
O-notation
Ω-notation
Ω-notation
Θ-notation
Θ-notation
Useful Property
Comparing Orders of Growth

Orders of growth of some important
D functions
Syllabus
Summary

1. All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithms base $a>1$ is

Proof.
2. All polynomials of the same degree k belong to the same class:
$a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0} \in \Theta\left(n^{k}\right)$
Proof.
3. Exponential functions a^{n} have different orders of growth for different a 's, i.e., $2^{n} \notin \Theta\left(3^{n}\right)$
Proof.
4. order $\log n<$ order $n^{a>0}<$ order $a^{n}<\operatorname{order} n!<\operatorname{order} n^{n}$

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
\triangle Syllabus
Grading and Important
Dates
Policies
Summary

Syllabus

Grading and Important Dates

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Grading and Important
Δ Dates
Policies
Summary
\square Webpage: http://cs.gmu.edu/~jmlien/teaching/08_spring_cs483/
\square TA: TBA
\square Required Textbook: Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani, McGraw-Hill, 2006, ISBN 0073523402.
$\square \quad$ Grading

1. Quizzes and CS Culture assignments 15\%
2. Assignments 25%
3. Midterm Exam 25\%
4. Final Exam 35%
\square Final grade:

- $\mathbf{A}(\geq 90)$
- $\mathbf{B}(\geq 80)$
- $\mathbf{C}(\geq 70)$
- D (≥ 60)
- $\mathbf{F}(<60)$
\square Important Dates.
- Spring Break (March 10 - 16)
- Midterm Exam (March 19)
- Final Exam (May 07)

Policies

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Grading and Important Dates
\triangle Policies
Summary
$\square \quad$ Quizzes are mainly for keeping you coming to the class. The quiz will be a closed book exam. You can also have up to two opportunities of making up your missed/failed quizzes by turning in two CS culture assignments.
$\square \quad$ CS culture assignment is a one-page written summary (form available online) of a talk from a CS seminar (see http://cs.gmu.edu/events/) that you attend during the Spring'08 semester.
\square Assignments must be completed by the stated due date and time. Your assignment score will be halved every extra day after the due date.
\square Exams. You will be allowed to have one page (letter size) of notes for the midterm and two pages (one sheet) for the final. No copying of anything from the textbook or another person is allowed. You can write some things verbatim. You can also write your notes on the computer and print them. The notes sheet will be handed in with the exam.

A Brief History

A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
Summary
Assignment

Summary

Summary

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
Δ Summary
Assignment
\square Two important men in algorithms: Al Khwarizmi \& Leo Fibonacci
\square Fibonacci number
\square General ideas of design of algorithms
\square Analysis of algorithms: experimental and theoretical
\square Asymptotic notations: O (upper bound), Θ (lower bound), Ω (tight bound)
Please read Chapter 0 Prologue in the textbook.

Assignment

A Brief History
A Brief History (Cont.)
Fibonacci number
Design Algorithms
Analysis of algorithms
Asymptotic Notation
Syllabus
Summary
Summary
D Assignment
$\square \quad$ Chapter 0, Exercise 1
\square Chapter 0, Exercise 2
\square Due Jan 30 2008, before the class.

[^0]: *this lecture note is based on Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and Introduction to the Design and Analysis of Algorithms by Anany Levitin.

