CS483 Analysis of Algorithms Lecture 02 – Algorithms with numbers *

Jyh-Ming Lien

January 30, 2008

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

What will we learn today?

What will we learn today?	☐ Basic and modulo arithmetic
Cryptography	☐ Greatest common divisor (GCD)
Basic Arithmetic	☐ Check if a number is prime (an easier problem)
Modular Arithmetic	☐ Prime number factorization (a very hard problem)
Greatest Common Divisor & Modular division	☐ Generate random prime number with arbitrary length
Generate random primes	☐ Cryptography:
Conclusion	 Private/Public-key cryptography (symmetric/asymmetric cryptography). RSA cryptosystem Based on the fact that primality check can be done much more efficiently than factoring.

What will we learn today?

> Cryptography

Typical setting in cryptography

Private-key cryptography

Public-key cryptography

(PKC)

Public-key cryptography

RSA

RSA

RSA RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

Cryptography

Typical setting in cryptography

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key cryptography

Public-key cryptography

(PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

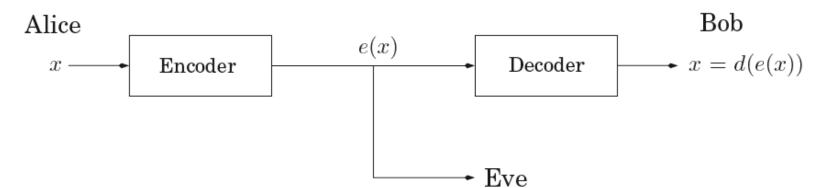
Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

 \Box The typical setting



- Alice and Bob wish to communicate in private
- Eve will try to find out what they are saying
- When Alice wants to send a message x, she encode it as e(x)
- Bob then applies his decryption function $d(\cdot)$ to get his message d(e(x)) = x
- Hopefully, Eve does not know how to convert e(x) back to e, i.e., $d(\cdot)$

Private-key cryptography

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key

> cryptography

Public-key cryptography (PKC)

(PKC)

Public-key cryptography

RSA

RSA

RSA RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- ☐ Alice and Bob choose a secret codebook (key) together
- ☐ **Example**: One time pad using *bitwise xor*
 - Encode $e_r(x) = x \oplus r$
 - Decode $e_r(e_r(x)) =$
- \Box Example:
 - x = 11110000
 - r = 01110010
 - Encoded message
 - Decoded message
- ☐ Drawbacks of One time pad:

_

☐ A more secure/popular private-key cryptography: Advanced Encryption Standard (AES) (by Rijmen and Daeme 1998)

Public-key cryptography (PKC)

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key cryptography Public-key

cryptography (PKC)

Public-key cryptography

RSA

RSA

RSA RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- ☐ For thousands of years, it was believed that the only way to establish secure communications was to first exchange a secret codebook (private key).
- □ PKC is a ground breaking idea in cryptography (by Merkle, Diffie and Hellman 1976)

(Ralph Merkle, Martin Hellman, Whitfield Diffie, Public Key Cryptography (PKC) Inventors (c) Chuck Painter/Stanford News Service.)

Public-key cryptography

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key cryptography Public-key cryptography

(PKC)

Public-key

cryptography

RSA

RSA

RSA RSA

Basic Arithmetic

Modular Arithmetic

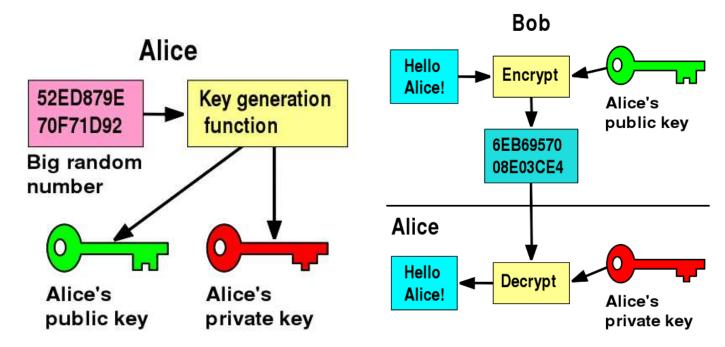
Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

\Box Example:



(Images from Wikipedia)

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key cryptography Public-key cryptography (PKC)

Public-key cryptography

> RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

☐ RSA is a type of PKC (by Rivest, Shamir, Adleman 1978)

Ronald Rivest Adi Shamir Len Adleman (Images from http://www.livinginternet.com/)

- \Box A brief history of RSA:
 - RSA is inspired by Diffie and Hellman's paper on PKC
 - First publicized by Martin Gardner on Scientific American in 1977
 - NSA attempts to prevent RSA being distributed
 - RSA published on CACM in 1978
 - RSA was written up by Adam Back in 5 line PERL program

```
-export-a-crypto-system-sig -RSA-3-lines-PERL

#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack('H*',$_);$_=`echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc`;s/\W//g;$_=pack('H*',/((..)*)$/)
```

(3-line version, from http://www.cypherspace.org/adam/rsa/)

RSA

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key cryptography Public-key cryptography (PKC)

Public-key cryptography

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- ☐ As usual, the US Government prohibited exporting the code outside of the country
- ☐ People started to protest and put the PERL code:
 - in their e-mail signatures,
 - on t-shirts, and
 - on their skins...

(Images from http://www.cypherspace.org/adam/rsa/)

☐ In Sep 2000, the US patent for RSA expired

RSA

What will we learn today? Making RSA keys Cryptography Typical setting in cryptography Private-key cryptography Public-key cryptography (PKC) Public-key cryptography **Bob's public key: RSA Bob's private key**: **RSA** > RSA **RSA** Communicate using RSA keys **Basic Arithmetic** Alice encodes a message x: $e(x) = x^e \% N$ Modular Arithmetic Bob decodes a message: $d(e(x)) = (e(x))^d \% N$ **Greatest Common Divisor** & Modular division If Eve wants to decode a encrypted message, she will need to Generate random primes Conclusion \triangleright \triangleright The security of RSA is based the following simple fact

RSA

What will we learn today?

Cryptography

Typical setting in cryptography

Private-key cryptography Public-key cryptography (PKC)

Public-key cryptography

RSA

RSA

RSA

▶ RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- ☐ RSA is based heavily on number theory
 - modulo arithmetic
 - prime number generation
- \square What do we need to in RSA?
 - An algorithm to generate prime numbers with arbitrary length
 - An algorithm to compute $x^y \% N$ for arbitrary large x and y
 - An algorithm to compute the inverse of a modulo, i.e., $(x\%N)^{-1}$

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Basic Arithmetic

Integer addition

What will we learn today?	Example:								
Cryptography Basic Arithmetic	Carry:	1			1	1	1		
Integer addition Integer multiplication Integer multiplication			1	1	0	1	0	1	(53)
Integer multiplication Integer division			1	0	0	0	1	1	(35)
Modular Arithmetic Greatest Common Divisor & Modular division		1	0	1	1	0	0	0	(88)
Generate random primes Conclusion	Important observation observation is at medical Complexity:				=	ree sin	ıgle-bi	t (digit)
	Can we do bette	r?							

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

▶ Integer multiplication

Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

☐ What is the time complexity of multiplying two integers using the algorithms we learned in elementary schools?

Example: how do you compute this: 1101×1011 ?

			×	1 1		0 1		-
+	1	0 1	0	1	0			(1101 times 1) (1101 times 1, shifted once) (1101 times 0, shifted twice) (1101 times 1, shifted thrice)
1	0	0	0	1	1	1	1	(binary 143)

- \Box Complexity:
- ☐ Is there a better way of multiplying two integers than this elementary-school method?

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

> Integer multiplication

Integer multiplication
Integer division

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- ☐ Russian peasant method (This is the method in Al Khwarizmi's book)
- \Box Computing xy
 - If y is even, $x \cdot y = 2(x \cdot \frac{y}{2})$
 - If y is odd, $x \cdot y = x + 2(x \cdot \frac{y-1}{2})$
- \square Example: $123 \times 77 =$

Integer multiplication

What will we learn today?	Algorithm
Basic Arithmetic Integer addition Integer multiplication Integer multiplication Integer multiplication Integer division Modular Arithmetic Greatest Common Divisor & Modular division Generate random primes Conclusion	Algorithm 0.1: MULTIPLY(x, y)
	Time complexity:
	Advantage: very fast and easy hardware implementation! Can we do better?

Integer division

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

▶ Integer division

Modular Arithmetic

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

- \square Computing (q,r) = x/y
 - If x is even,
 - If x is odd,
 - If x < y, (q, r) = (0, x)
- \square Example: 123/17=

☐ Time complexity?

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

Modular Arithmetic

Definitions

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

Figure 1.3 Addition modulo 8.

- \square N divides x if x mod N = 0
- $\square \quad x \mod N = x\%N = x kN$
- $\Box \quad \text{If } x\%N = r \text{, then } (x r)\%N = 0$
- \Box It is usually convenient to write:

$$(x \equiv y \mod N) \text{ iff } (x \mod N) = (y \mod N).$$

- □ Example:
 - $-31 \equiv 13 \mod 3$
 - $-14 \equiv 59 \mod 5$

Modulo Addition/Multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

 \square If $x \equiv x' \mod N$ and $y \equiv y' \mod N$, then:

$$x + y \equiv x' + y' \mod N$$

and

$$xy \equiv x'y' \mod N$$

- ☐ More properties:
 - $-x + (y+z) \equiv (x+y) + z \mod N$ (associativity)
 - $-xy \equiv yx \mod N$ (commutativity)
 - $x(y+z) \equiv xy + xz \mod N$ (distributivity)

Modulo Addition/Multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

- - Complexity:

- \square Multiplication (x%N)(y%N) = (xy%N)
 - Complexity:

Modulo Exponentiation

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor

& Modular division

Generate random primes

Conclusion

- \square Exponentiation: $x^y \% N$
 - Brute force: Compute x^y then compute $x^y \% N$
 - ▶ Problem:

- Incremental: $x\%N \to x^2\%N \to x^3\%N \to \cdots \to x^y\%N$
 - ▶ Problem:

Modulo Exponentiation

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- ☐ Decrease-n-conquer
 - If y is even,
 - If y is odd,

Algorithm 0.2: MODEXP(x, y, N)

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular

> division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

Greatest Common Divisor & Modular division

Definition

What will we learn today? Cryptography **Basic Arithmetic** Modular Arithmetic **Greatest Common Divisor** & Modular division Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

- Greatest Common Divisor Problem: Given two non-negative integers m and n, find the largest integer, denoted as gcd(m, n), that can evenly divide both m and n.
- Example: If m = 98 and n = 42, then gcd(m, n) =
- How do we design an algorithm to solve this problem?

Solution 1 - Brute force

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

 \square **Observation**: the range of gcd(m, n) is in [1, min(m, n)]

Algorithm 0.3: gcd(m, n)

for
$$i = \{\min(m, n), \dots, 1\}$$

do
$$\begin{cases} \text{if } m\%i = 0 \text{ and } n\%i = 0 \\ \text{then return } (i) \end{cases}$$

 \square How long does the algorithm take?

 \Box Can we do better?

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force Solution 2 - Prime

> factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

- □ **Observation**: use the strategy that we learned in the middle schools, i.e., "Prime factorization".
- □ **Example**: $m = 98 = 2 \times 7 \times 7$ and $n = 42 = 2 \times 3 \times 7$ ⇒ $gcd(m, n) = 2 \times 7 = 14$
- \square Algorithm: gcd(m, n)

Algorithm 0.4: gcd(m, n)

Perform prime factorization for m

Perform prime factorization for n

Find and multiply the common prime factors from m and n

- ☐ Well, the "algorithm" above is not really an algorithm yet, because we do not specify:
 - 1. how to perform prime factorization on an integer?
 - 2. how to find the common numbers from two lists of integers?

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

> factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

- \square **Problem**: Given an integer n, find a sequence of prime numbers S, whose multiplication is n.
- \square Find a list of prime numbers P that are smaller than n

Algorithm 0.5: PRIME FACTORIZATION(n)

$$\begin{array}{c} i \leftarrow 2 \\ \textbf{while } i < n \\ \textbf{do} \ \begin{cases} \textbf{if } n\%i = 0 \\ \textbf{then } \begin{cases} S \leftarrow i \\ n \leftarrow \frac{n}{i} \end{cases} \\ \textbf{else } i \leftarrow \text{next prime number} \end{array}$$

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

> factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

- \square **Problem**: Given two lists of numbers, P_m and P_n , find a list of the common numbers P_c from P_m and P_n .
- \square **Example**: $P_m = \{2, 7, 7\}, P_n = \{2, 3, 7\} \Rightarrow P_c = \{2, 7\}$
- □ Algorithm

Algorithm 0.6: COMMON ELEMENTS (P_m, P_n)

comment: initially we create an empty list P_c

$$\begin{array}{l} \textbf{for each } i \in P_m \\ \textbf{do } \begin{cases} \textbf{if } i \in P_n \\ \textbf{then } \end{cases} \begin{cases} P_c \leftarrow i \\ \text{remove } i \text{ from } P_n \end{cases} \end{array}$$

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

▶ Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

- \square **Observation 1**: gcd(m, n) = gcd(n, m%n)
- \square Observation 2: gcd(m, 0) = m

Proof.

(image of Euclid)

- \square **Example**: gcd(98, 42) =
- □ Algorithm

Algorithm 0.7: gcd(m, n)

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

> Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

- \Box Time complexity of Algorithm 0.7?
 - Hint: If $a \ge b$, then a%b < a/2

An extension of Euclid's algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of

Euclid's algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

- ☐ GCD is key to dividing in the modular world
- Lemma: If d divides both a and b and d = ax + by for some integers x and y, then $d = \gcd(a, b)$.
 - proof:

 \square Example: $gcd(13, 4) = 1, 13 \cdot 1 + 4 \cdot (-3) = 1$

Algorithm 0.8: EXT-gcd(a, b)

Solution 3 - Euclidean Algorithm

What will we learn today?	Is Algorithm 0.8 correct?	
Cryptography		
Basic Arithmetic		
Modular Arithmetic		
Greatest Common Divisor & Modular division		
Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm	Time complexity of Algorithm 0.8?	
Modulo division		
Generate random primes		
Conclusion		

Modulo division

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

 \square In real number arithmetic, $b/a = b \cdot 1/a = b \cdot a^{-1}$

- \square For modulo division, $(b\%N)/(a\%N) = (b\%N)(a^{-1}\%N)$
 - We need to define a^{-1}
 - $-x = a^{-1}$ if $ax \equiv 1 \mod N$
 - $-ax \equiv 1 \mod N \Rightarrow ax + Ny = 1 \Rightarrow \gcd(a, N) = 1$

Modular division theorem. For any $a \mod N$, a is invertible if a and N are relatively prime. If a is invertible, a^{-1} can be found in time $O(n^3)$ $(n = \log N)$ using the extended Euclid algorithm.

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random

> primes

Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

Generate random primes

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

- \square Given a number p how do we know if p is a prime?
- \square We wish to answer this without trying to factor p.
- ☐ We do this based on Fermat's little theorem (AD 1640)
 - If p is a prime, then for every $1 \le a < p$,

$$a^{p-1} \equiv 1 \mod p$$

- proof.

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Primality testing

Primality testing

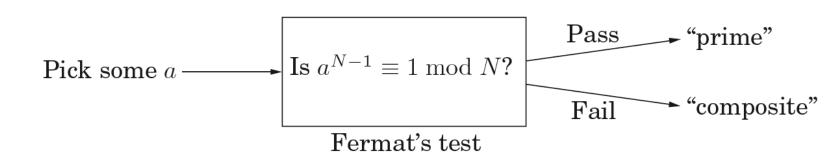
Primality testing

Primality testing

Generate a random prime

Conclusion

☐ Our 1st attempt



- Problem: Note that the theorem is "If p is prime, then" But our test above is taking another direction "If $a^{N-1} \equiv 1 \mod N$, then N is prime.
- \square Consequence: Some non-prime (composite) number may have some such a which satisfies the "If" statement above.
 - In fact, there are a set of (very rare) numbers that have *all* such $1 \le a < p$ which satisfies the "If" statement above. These numbers are called "Carmichael numbers." (We will ignore these numbers for now)

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

- Lemma: If $a^{N-1} \not\equiv 1 \mod N$ for some a which is relatively prime to N, then there must have at least $\frac{N}{2}$ of such a < N.
 - proof:

- \Box This basically means:
 - If N is prime, $a^{N-1} \equiv 1 \mod N$ for all a < N
 - If N is not prime, $a^{N-1} \equiv 1 \mod N$ for $< \frac{N}{2}$ number of a < N

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

- \square Our strategy: Run our 1st algorithm k times
 - Pr(1st algorithm returns 'yes' and N is prime)=1
 - Pr(1st algorithm returns 'yes' and N is not prime) $\leq \frac{1}{2}$
 - Pr(All k instances of 1st algorithm return 'yes' and N is not prime) $\leq \frac{1}{2^k}$
 - The error decreases 'exponentially'
- □ Our 2nd attempt

Algorithm 0.9: PRIMIALITY2(N)

Generate a random prime

What will we learn today? Observation: There are many prime numbers. Cryptography **Lagrange's prime number theorem**. Let $\pi(x)$ be the number of **Basic Arithmetic** primes $\leq x$, then $\pi(x) \approx \frac{x}{\ln x}$. Modular Arithmetic **Greatest Common Divisor** Given a *n*-bit long number N, there are about $\frac{N}{n}$ prime numbers & Modular division Generate random primes Now we describe a brute force method to generate a random prime Primality testing number: Primality testing Primality testing Primality testing Generate a random **Algorithm 0.10:** RANDOMPRIME(n)> prime Conclusion What is the time complexity of RANDOMPRIME?

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Back to RSA

Summary

Conclusion

Back to RSA

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Back to RSA

Summary

- ☐ Making RSA keys
 - Two prime numbers p and q and N = pq.
 - e be any relative prime to (p-1)(q-1)
 - $-d = (e\%(p-1)(q-1))^{-1}$
- ☐ Communicate using RSA keys
 - Alice encodes a message x: $e(x) = x^e \% N$
 - Bob decodes a message: $d(e(x)) = (e(x))^d \% N$
- \square Why does it work? We will show that $(x^e\%N)^d=x\%N$
 - proof:

Summary

What will we learn today? We talked about Cryptography Basic/Modulo arithmetic **Basic Arithmetic** GCD Modular Arithmetic Primality and prime number generation **Greatest Common Divisor** & Modular division Private/Public key cyrptography Generate random primes **RSA** Conclusion Back to RSA We've walked through Chapter 1.1-1.4. (Please read 1.5, hashing) **⊳** Summary