CS483 Analysis of Algorithms Lecture 02 – Algorithms with numbers *

Jyh-Ming Lien

January 30, 2008

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

What will we learn ▷ today?	□ Basic and modulo arithmetic
Cryptography	\Box Greatest common divisor (GCD)
Basic Arithmetic	\Box Check if a number is prime (an easier problem)
Modular Arithmetic	□ Prime number factorization (a very hard problem)
Greatest Common Divisor & Modular division	□ Generate random prime number with arbitrary length
Generate random primes	□ Cryptography:
Conclusion	 Private/Public-key cryptography (symmetric/asymmetric

cryptography).

– RSA cryptosystem

efficiently than factoring.

CS483 Lecture 02-Algorithms with numbers – 2

Based on the fact that primality check can be done much more

 Cryptography
 Typical setting in cryptography
 Private-key cryptography
 Public-key cryptography
 (PKC)
 Public-key cryptography
 RSA
 RSA
 RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Cryptography

Cryptography

Typical setting in cryptography Private-key cryptography Public-key cryptography (PKC) Public-key cryptography RSA RSA RSA

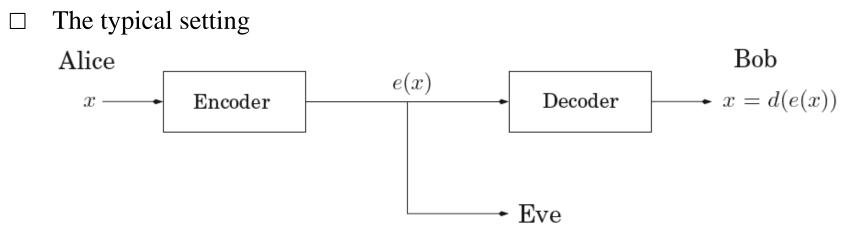
Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion



- Alice and Bob wish to communicate in private
- Eve will try to find out what they are saying
- When Alice wants to send a message x, she encode it as e(x)
- Bob then applies his decryption function $d(\cdot)$ to get his message d(e(x)) = x
- Hopefully, Eve does not know how to convert e(x) back to e, i.e., $d(\cdot)$

Cryptography Typical setting in cryptography Private-key

Cryptography

Public-key cryptography

(PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Alice and Bob choose a secret codebook (key) together
 Example: One time pad using *bitwise xor*

- Encode $e_r(x) = x \oplus r$
- Decode $e_r(e_r(x)) = (x \oplus r) \oplus r = x \oplus (r \oplus r) = x$

\Box **Example**:

- x = 11110000
- r = 01110010
- Encoded message $e_r(x) = 11110000 \oplus 01110010 = 10000010$
- Decoded message

 $e_r(e_r(x)) = 10000010 \oplus 01110010 = 11110000$

\Box Drawbacks of One time pad:

- r needs to be discarded after use.
- If r is used twice, $x_1 \oplus R$ and $x_2 \oplus R$, then Eve can easily know $x_1 \oplus x_2$.
- □ A more secure/popular private-key cryptography: Advanced Encryption Standard (AES) (by Rijmen and Daeme 1998)

Cryptography

Typical setting in

cryptography

Private-key cryptography

Public-key Cryptography (PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

1071

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

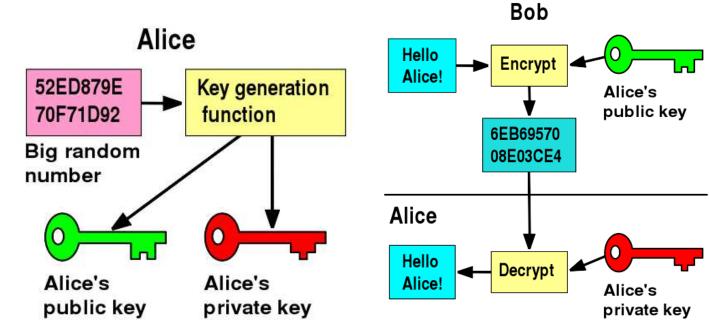
Conclusion

- □ For thousands of years, it was believed that the only way to establish secure communications was to first exchange a secret codebook (private key).
- □ PKC is a ground breaking idea in cryptography (by Merkle, Diffie and Hellman 1976)

(Ralph Merkle, Martin Hellman, Whitfield Diffie, Public Key Cryptography (PKC) Inventors (c) Chuck Painter/Stanford News Service.) What will we learn today? Cryptography Typical setting in cryptography Private-key cryptography Public-key cryptography (PKC) Public-key \triangleright cryptography RSA RSA RSA RSA **Basic** Arithmetic Modular Arithmetic Greatest Common Divisor & Modular division

Generate random primes

Conclusion



(Images from Wikipedia)

Cryptography

Typical setting in cryptography Private-key cryptography Public-key cryptography (PKC) Public-key cryptography ▷ RSA RSA RSA

RSA

```
Basic Arithmetic
```

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

RSA is a type of PKC (by Rivest, Shamir, Adleman 1978)

Ronald Rivest Adi Shamir Len Adleman (Images from *http://www.livinginternet.com/*)

\Box A brief history of RSA:

- RSA is inspired by Diffie and Hellman's paper on PKC
- First publicized by Martin Gardner on Scientific American in 1977
- NSA attempts to prevent RSA being distributed
- RSA published on CACM in 1978
- RSA was written up by Adam Back in 5 line PERL program

-export-a-crypto-system-sig -RSA-3-lines-PERL #!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj \$/=unpack('H*',\$_);\$_=`echo 16dio\U\$k"SK\$/SM\$n\EsN0p[lN*1 lK[d2%Sa2/d0\$^lxp"|dc`;s/\W//g;\$_=pack('H*',/((..)*)\$/)

(3-line version, from http://www.cypherspace.org/adam/rsa/)

 \square

Cryptography

Typical setting in cryptography Private-key cryptography Public-key cryptography

(PKC)

Public-key cryptography

RSA

 \triangleright RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

As usual, the US Government prohibited exporting the code outside of the country

 \Box People started to protest and put the PERL code:

- in their e-mail signatures,
- on t-shirts, and
- on their skins...

(Images from http://www.cypherspace.org/adam/rsa/)
 □ In Sep 2000, the US patent for RSA expired

Cryptography

Typical setting in cryptography

Private-key cryptography

Public-key cryptography (PKC)

Public-key cryptography

RSA

RSA

 \triangleright RSA

RSA

```
Basic Arithmetic
```

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

\Box Making RSA keys

- Bob picks two prime numbers p and q and lets N = pq.
- Let *e* be any relative prime to (p-1)(q-1)
- Let $d = (e\%(p-1)(q-1))^{-1}$
- **Bob's public key**: e and N
- **Bob's private key**: d

Communicate using RSA keys

- Alice encodes a message $x: e(x) = x^e \% N$
- Bob decodes a message: $d(e(x)) = (e(x))^d \% N$
- If Eve wants to decode a encrypted message, she will need to
 - Try all possible x until $x^e \% N = e(x)$
 - \triangleright Try to find p and q from N using prime number factorization
- \Box The security of RSA is based the following simple fact
 - Given N, e, and $y = x^e \% N$, it is computationally intractable to determine x

Cryptography

Typical setting in

cryptography

Private-key cryptography Public-key cryptography

(PKC)

Public-key cryptography

RSA

RSA

RSA

 \triangleright RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

 \Box RSA is based heavily on number theory

- modulo arithmetic
- prime number generation
- \Box What do we need to in RSA?
 - An algorithm to generate prime numbers with arbitrary length
 - An algorithm to compute $x^{y}\% N$ for arbitrary large x and y
 - An algorithm to compute the inverse of a modulo, i.e., $(x\% N)^{-1}$

Cryptography

▷ Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Basic Arithmetic

Integer addition

| |

What will we learn today?

Cryptography

Basic Arithmetic Integer addition Integer multiplication Integer multiplication Integer division

Modular Arithmetic

Greatest Common Divisor & Modular division

```
Generate random primes
```

Conclusion

Example: Carry: 1 1 1 1 1 1 0 1 0 1 (53)1 1 1 (35)0 0 0 (88)0 1 1 0 0 0

□ Important observation: The sum of any three single-bit (digit) numbers is at most two bits (digits) long.

 \Box Complexity:

 \Box Can we do better?

Integer multiplication

What will we learn today? Cryptography Basic Arithmetic Integer addition	 □ What is the time complexity of multiplying two integers using the algorithms we learned in elementary schools? Example: how do you compute this: 1101 × 1011? 										
▷ Integer multiplication							1	1	0	1	
Integer multiplication Integer multiplication						×	1	0	1	1	
Integer division						~	1	0	1	1	-
Modular Arithmetic							1	1	0	1	(1101 times 1)
Greatest Common Divisor						1	1	0	1		(1101 times 1, shifted once)
& Modular division					0	0	0	0			(1101 times 0, shifted twice)
Generate random primes			+	1	1	0	1				(1101 times 1, shifted thrice)
Conclusion						-					
			1	0	0	0	1	1	1	1	(binary 143)
		Complex	kity:								
	□ Is there a better way of multiplying two integers than this elementary-school method?										

What will we learn today?	Russian peas
Cryptography	Computing x
Basic Arithmetic	
Integer addition Integer multiplication	- If y is eve
Integer multiplication	- If y is odd
Integer multiplication	II y 15 000
Integer division	Example: 123
Modular Arithmetic	•
Greatest Common Divisor & Modular division	xy =
Generate random primes	
Conclusion	y
	((
	38
	19
	9
	4
	-
	2
	1

sant method (This is the method in Al Khwarizmi's book) ry

- If y is even,
$$x \cdot y = 2(x \cdot \frac{y}{2})$$

- If y is odd, $x \cdot y = x + 2(x \cdot \frac{y-1}{2})$

 $23 \times 77 =$

 $x \quad z$ $\cdot 123 + 0$ $\cdot 246 + 123$ $\cdot 492 + 123$ $\cdot 984 + 123 + 492$ $\cdot 1968 + 123 + 492 + 984$ $\cdot 3936 + 123 + 492 + 984$ $\cdot 7872 + 123 + 492 + 984 = 9471$

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

 \triangleright Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

 $\Box \quad \begin{array}{l} \text{Algorithm} \\ \hline \text{Algorithm 0.1: } \text{MULTIPLY}(x, y) \end{array}$

```
if y = 1
then return (x)
z = MULTIPLY(x, \lfloor y/2 \rfloor)
if y\%2 = 0
then return (2z)
else return (x + 2z)
```

 \Box Time complexity:

 $O(n^2)$ given that x and y are both n bits long

 \Box Advantage:

very fast and easy hardware implementation!

 \Box Can we do better?

Integer division

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

 \triangleright Integer division

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Computing (q, r) = x/y- If x is even, $(q', r') = (x/2)/y \Rightarrow (q, r) = (2q', 2r')$ - If x is odd, $(q', r') = ((x - 1)/2)/y \Rightarrow (q, r) = (2q', 2r' + 1)$ If x < y, (q, r) = (0, x)

 \Box Example: 123/17=

x	y	q	r
123	17	7	4
61	—	3	10
30	_	1	13
15	_	0	15

 \Box Time complexity?

Cryptography

Basic Arithmetic

▷ Modular Arithmetic

Definitions

Modulo Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Modular Arithmetic

Definitions

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

 \triangleright Definitions

Modulo Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

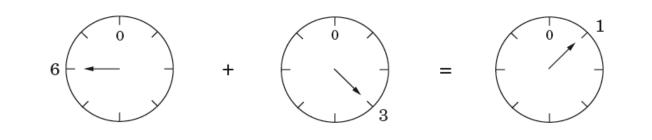
Modulo Exponentiation

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Figure 1.3 Addition modulo 8.



□ N divides x if x mod N = 0□ x mod N = x%N = x - kN□ If x%N = r, then (x - r)%N = 0□ It is usually convenient to write:

 $(x \equiv y \mod N)$ iff $(x \mod N) = (y \mod N)$.

 \Box Example:

$$- 31 \equiv 13 \mod 3$$

$$-14 \equiv 59 \mod 5$$

What will we learn today? If xCryptography **Basic Arithmetic** Modular Arithmetic Definitions Modulo ▷ Addition/Multiplication Modulo Addition/Multiplication Modulo Exponentiation Modulo Exponentiation Greatest Common Divisor & Modular division Generate random primes Conclusion

$$\equiv x' \mod N$$
 and $y \equiv y' \mod N$, then:
 $x + y \equiv x' + y' \mod N$
and
 $xy \equiv x'y' \mod N$

More properties:

- $x + (y + z) \equiv (x + y) + z \mod N$ (associativity) - $xy \equiv yx \mod N$ (commutativity)
- $x(y+z) \equiv xy + xz \mod N$ (distributivity)

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

Modulo

Addition/Multiplication

Modulo Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

□ Addition: (x%N) + (y%N) = (x+y)%N

– Complexity:

 $\square \quad \text{Multiplication} \ (x\% N)(y\% N) = (xy\% N)$

– Complexity:

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

- Modulo
- Addition/Multiplication

Modulo

- Addition/Multiplication
- ▷ Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

- \Box Exponentiation: $x^y \% N$
 - Brute force: Compute x^y then compute $x^y \% N$
 - Problem: if x and y are 20 bits long, $x^y = 2^{(19)(524288)}$, which is about 10⁷ bits long. In cryptography, x and y can be much longer than this.

Incremental: $x\%N \to x^2\%N \to x^3\%N \to \cdots \to x^y\%N$

▶ Problem: If y is n bits long, we need to perform 2^n multiplications. This means the incremental method has time complexity exponential to n.

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

Modulo

Addition/Multiplication

Modulo

Addition/Multiplication

Modulo Exponentiation

▷ Modulo Exponentiation

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

□ Decrease-n-conquer

- If y is even,

If y is odd,

_

$$x^{y} = (x^{\lfloor \frac{y}{2} \rfloor})^{2}$$
$$\Rightarrow x^{y} \% N = (x^{\lfloor \frac{y}{2} \rfloor} \% N)^{2} \% N$$

$$x^{y} = x \cdot (x^{\lfloor \frac{y}{2} \rfloor})^{2}$$
$$\Rightarrow x^{y} \% N = x \cdot (x^{\lfloor \frac{y}{2} \rfloor} \% N)^{2} \% N$$

Algorithm 0.2: MODEXP(x, y, N)if y = 1then return (x) $z \leftarrow MODEXP(x, \lfloor \frac{y}{2} \rfloor, N)$ if y is even then return $(z^2\% N)$ else return $((x \cdot z^2)\% N)$

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular ▷ division

Definition

Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division

Generate random primes

Conclusion

Greatest Common Divisor & Modular division

Definition

What will we learn today? Cryptography **Basic Arithmetic** Modular Arithmetic Greatest Common Divisor & Modular division \triangleright Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

Greatest Common Divisor Problem: Given two non-negative integers m and n, find the largest integer, denoted as gcd(m, n), that can evenly divide both m and n.

 \square Example: If m = 98 and n = 42, then gcd(m, n) =

 \Box How do we design an algorithm to solve this problem?

What will we learn today? \square Cryptography **Basic Arithmetic** Modular Arithmetic Greatest Common Divisor & Modular division Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

Observation: the range of gcd(m, n) is in [1, min(m, n)]**Algorithm 0.3:** gcd(m, n)

for
$$i = \{\min(m, n), \cdots, 1\}$$

do
$$\begin{cases} \text{if } m\% i = 0 \text{ and } n\% i = 0 \\ \text{then return } (i) \end{cases}$$

How long does the algorithm take?

 \Box Can we do better?

What will we learn today? Cryptography **Basic Arithmetic** \square Modular Arithmetic Greatest Common Divisor & Modular division Definition Solution 1 - Brute force Solution 2 - Prime \triangleright factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

□ **Observation**: use the strategy that we learned in the middle schools, i.e., "Prime factorization".

```
Example: m = 98 = 2 \times 7 \times 7 and n = 42 = 2 \times 3 \times 7
\Rightarrow \gcd(m, n) = 2 \times 7 = 14
```

```
\Box Algorithm: gcd(m, n)
```

```
Algorithm 0.4: gcd(m, n)
```

Perform prime factorization for mPerform prime factorization for nFind and multiply the common prime factors from m and n

Well, the "algorithm" above is not really an algorithm yet, because we do not specify:

- 1. how to perform prime factorization on an integer?
- 2. how to find the common numbers from two lists of integers?

What will we learn today? \square Cryptography **Basic Arithmetic** Modular Arithmetic Greatest Common Divisor & Modular division Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime \triangleright factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

Problem: Given an integer n, find a sequence of prime numbers S, whose multiplication is n.

Find a list of prime numbers P that are smaller than n

```
Algorithm 0.5: PRIME FACTORIZATION(n)

i \leftarrow 2

while i < n

do \begin{cases} \text{if } n\% i = 0 \\ \text{then } \begin{cases} S \leftarrow i \\ n \leftarrow \frac{n}{i} \\ \text{else } i \leftarrow \text{next prime number} \end{cases}
```

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Definition

Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime ▷ factorization Solution 3 - Euclidean Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid's

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Conclusion

□ Problem: Given two lists of numbers, P_m and P_n, find a list of the common numbers P_c from P_m and P_n.
□ Example: P_m = {2,7,7}, P_n = {2,3,7} ⇒ P_c = {2,7}
□ Algorithm

Algorithm 0.6: COMMON ELEMENTS (P_m, P_n)

comment: initially we create an empty list P_c

for each
$$i \in P_m$$

do
$$\begin{cases} \text{if } i \in P_n \\ \text{then } \begin{cases} P_c \leftarrow i \\ \text{remove } i \text{ from } P_n \end{cases} \end{cases}$$

 \square

What will we learn today? Cryptography **Basic Arithmetic** Modular Arithmetic Greatest Common Divisor & Modular division Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean \triangleright Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm

Modulo division

Generate random primes

Conclusion

□ **Observation 1**: gcd(m, n) = gcd(n, m%n)□ **Observation 2**: gcd(m, 0) = m

Proof. We want to show that gcd(m, n) can divide m%n evenly. Let $m = x \times gcd$ and $n = y \times gcd \Rightarrow$ $m\%n = (m - z \times n) = (x \times gcd - z \times (y \times gcd)) =$ $(x - z \times y) \times gcd.$ \Box (image of Euclid)

Example: gcd(98, 42) = gcd(42, 14) = gcd(14, 0) = 14Algorithm

Algorithm 0.7: gcd(m, n)

while $n \neq 0$ do $\begin{cases} r = m\%n \\ m = n \\ n = r \end{cases}$ return (m)

What will we learn today? Cryptography **Basic Arithmetic** Modular Arithmetic Greatest Common Divisor & Modular division Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean ▷ Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

 \Box Time complexity of Algorithm 0.7?

- Hint: If $a \ge b$, then a% b < a/2

What will we learn today? | | Cryptography \square **Basic Arithmetic** Modular Arithmetic Greatest Common Divisor & Modular division Definition Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of \triangleright Euclid's algorithm Solution 3 - Euclidean Algorithm Modulo division Generate random primes Conclusion

```
GCD is key to dividing in the modular world
Lemma: If d divides both a and b and d = ax + by for some integers
x and y, then d = gcd(a, b).
```

– proof:

Example: $gcd(13, 4) = 1, 13 \cdot 1 + 4 \cdot (-3) = 1$ Algorithm 0.8: EXT-gcd(a, b)

```
if b = 0

then return (1, 0, a)

(x', y', d) = \text{EXT-gcd}(b, a\% b)

return (y', x' - \lfloor a/b \rfloor y', d)
```

What will we learn today?	
Cryptography	
Basic Arithmetic	
Modular Arithmetic	
Greatest Common Divisor & Modular division	
Definition	
Solution 1 - Brute force Solution 2 - Prime factorization	
Solution 2 - Prime	
factorization	
Solution 2 - Prime	
factorization	
Solution 3 - Euclidean	
Algorithm	
Solution 3 - Euclidean	
Algorithm	
An extension of Euclid's	
algorithm	
Solution 3 - Euclidean	
\triangleright Algorithm	
Modulo division	
Generate random primes	
Conclusion	

Is Algorithm 0.8 correct?

\Box Time complexity of Algorithm 0.8?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor

& Modular division

Definition

Solution 1 - Brute force Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 2 - Prime factorization Solution 3 - Euclidean Algorithm Solution 3 - Euclidean Algorithm An extension of Euclid's algorithm Solution 3 - Euclidean Algorithm ▷ Modulo division Generate random primes

Conclusion

 \Box In real number arithmetic, $b/a = b \cdot 1/a = b \cdot a^{-1}$

 $\Box \quad \text{For modulo division, } (b\% N)/(a\% N) = (b\% N)(a^{-1}\% N)$

- We need to define a^{-1}
- $\quad x = a^{-1} \text{ if } ax \equiv 1 \mod N$
- $ax \equiv 1 \mod N \Rightarrow ax + Ny = 1 \Rightarrow \gcd(a, N) = 1$

□ Modular division theorem. For any $a \mod N$, a is invertible if a and N are relatively prime. If a is invertible, a^{-1} can be found in time $O(n^3)$ ($n = \log N$) using the extended Euclid algorithm.

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random ▷ primes

Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

Generate random primes

Primality testing

What will we learn today? Cryptography Basic Arithmetic Modular Arithmetic Greatest Common Divisor & Modular division

Generate random primes Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

□ Given a number p how do we know if p is a prime?
□ We wish to answer this without trying to factor p.
□ We do this based on Fermat's little theorem (AD 1640)

- If p is a prime, then for every $1 \le a < p$,

$$a^{p-1} \equiv 1 \mod p$$

– proof.

 What will we learn today?

 Cryptography

 Basic Arithmetic

 Modular Arithmetic

 Greatest Common Divisor

 & Modular division

 Generate random primes

 Primality testing

 ▷ Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

 \Box Our 1st attempt

Pick some
$$a$$
 — Is $a^{N-1} \equiv 1 \mod N$?
Fermat's test

□ **Problem**: Note that the theorem is "If *p* is prime, then" But our test above is taking another direction "If $a^{N-1} \equiv 1 \mod N$, then *N* is prime.

 \Box Consequence: Some non-prime (composite) number may have some such *a* which satisfies the "If" statement above.

- In fact, there are a set of (very rare) numbers that have *all* such $1 \le a < p$ which satisfies the "If" statement above. These numbers are called "Carmichael numbers." (We will ignore these numbers for now)

Primality testing

 \square

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Primality testing

Primality testing

 \triangleright Primality testing

Primality testing

Generate a random prime

Conclusion

Lemma: If $a^{N-1} \not\equiv 1 \mod N$ for some a which is relatively prime to N, then there must have at least $\frac{N}{2}$ of such a < N.

– proof:

 \Box This basically means:

- If N is prime, $a^{N-1} \equiv 1 \mod N$ for all a < N

- If N is not prime, $a^{N-1} \equiv 1 \mod N$ for $< \frac{N}{2}$ number of a < N

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

 \triangleright Primality testing

Generate a random prime

Conclusion

 \Box Our strategy: Run our 1st algorithm k times

- Pr(1st algorithm returns 'yes' and N is prime)=1
- Pr(1st algorithm returns 'yes' and N is not prime) $\leq \frac{1}{2}$
- Pr(All k instances of 1st algorithm return 'yes' and N is not prime) $\leq \frac{1}{2^k}$
- The error decreases 'exponentially'

Our 2nd attempt

```
Algorithm 0.9: PRIMIALITY2(N)
```

```
Pick k positive integers a_1, a_2, \dots a_k < N at random
if a_i^{N-1} \equiv 1 \mod N for all i = 1, 2, \dots, k
then return (yes)
else return (no)
```

What will we learn today?CryptographyBasic ArithmeticModular ArithmeticGreatest Common Divisor
& Modular divisionGenerate random primesPrimality testingPrimality testingPrimality testingPrimality testingPrimality testingPrimality testingprimality testingprimality testingprimality testingDenerate a random▷primeConclusion

 \Box Observation: There are many prime numbers.

- Lagrange's prime number theorem. Let $\pi(x)$ be the number of primes $\leq x$, then $\pi(x) \approx \frac{x}{\ln x}$.
- Given a *n*-bit long number N, there are about $\frac{N}{n}$ prime numbers

□ Now we describe a brute force method to generate a random prime number:

Algorithm 0.10: RANDOMPRIME(*n*)

```
 \begin{aligned} & \text{for } i = \{1, 2, 3, \dots, N\} \\ & \text{do } \begin{cases} N \leftarrow \text{a random bit stream with length } n \\ & \text{if } \text{PRIMIALITY2}(N) \\ & \text{then return } (N) \end{cases} \end{aligned}
```

□ What is the time complexity of RANDOMPRIME?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

 \triangleright Conclusion

Back to RSA

Summary

Conclusion

Analysis of Algorithms

Back to RSA

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

 \triangleright Back to RSA

Summary

\Box Making RSA keys

- Two prime numbers p and q and N = pq.
- e be any relative prime to (p-1)(q-1)
- $d = (e\%(p-1)(q-1))^{-1}$
- \Box Communicate using RSA keys
 - Alice encodes a message $x: e(x) = x^e \% N$
 - Bob decodes a message: $d(e(x)) = (e(x))^d \% N$

 \square Why does it work? We will show that $(x^e \% N)^d = x \% N$

- proof:

Summary

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor & Modular division

Generate random primes

Conclusion

Back to RSA

▷ Summary

We talked about

- Basic/Modulo arithmetic
- GCD

 \square

- Primality and prime number generation
- Private/Public key cyrptography
- RSA

We've walked through Chapter 1.1-1.4. (Please read 1.5, hashing)