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� Basic and modulo arithmetic
� Greatest common divisor (GCD)
� Check if a number is prime (an easier problem)
� Prime number factorization (a very hard problem)
� Generate random prime number with arbitrary length
� Cryptography:

– Private/Public-key cryptography (symmetric/asymmetric
cryptography).

– RSA cryptosystem
– Based on the fact that primality check can be done much more

efficiently than factoring.
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� The typical setting

– Alice and Bob wish to communicate in private
– Eve will try to find out what they are saying
– When Alice wants to send a messagex, she encode it ase(x)
– Bob then applies his decryption functiond(·) to get his message

d(e(x)) = x
– Hopefully, Eve does not know how to converte(x) back toe, i.e.,

d(·)
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� Alice and Bob choose a secret codebook (key) together
� Example: One time pad usingbitwise xor

– Encodeer(x) = x⊕ r
– Decodeer(er(x)) = (x⊕ r)⊕ r = x⊕ (r ⊕ r) = x

� Example:

– x = 11110000
– r = 01110010
– Encoded messageer(x) = 11110000⊕ 01110010 = 10000010
– Decoded message

er(er(x)) = 10000010⊕ 01110010 = 11110000

� Drawbacks of One time pad:

– r needs to be discarded after use.
– If r is used twice,x1 ⊕R andx2 ⊕R, then Eve can easily know

x1 ⊕ x2.

� A more secure/popular private-key cryptography: Advanced
Encryption Standard (AES) (by Rijmen and Daeme 1998)
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� For thousands of years, it was believed that the only way to establish
secure communications was to first exchange a secret codebook
(private key).

� PKC is a ground breaking idea in cryptography (by Merkle, Diffie and
Hellman 1976)

(Ralph Merkle, Martin Hellman, Whitfield Diffie, Public Key Cryptography (PKC)

Inventors (c) Chuck Painter/Stanford News Service.)
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� Example:

(Images from Wikipedia)
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� RSA is a type of PKC (by Rivest, Shamir, Adleman 1978)

Ronald Rivest Adi Shamir Len Adleman
(Images fromhttp://www.livinginternet.com/)

� A brief history of RSA:

– RSA is inspired by Diffie and Hellman’s paper on PKC
– First publicized by Martin Gardner on Scientific American in 1977
– NSA attempts to prevent RSA being distributed
– RSA published on CACM in 1978
– RSA was written up by Adam Back in 5 line PERL program

(3-line version, from http://www.cypherspace.org/adam/rsa/)
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� As usual, the US Government prohibited exporting the code outside of
the country

� People started to protest and put the PERL code:

– in their e-mail signatures,
– on t-shirts, and
– on their skins...

(Images from http://www.cypherspace.org/adam/rsa/)

� In Sep 2000, the US patent for RSA expired
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� Making RSA keys

– Bob picks two prime numbersp andq and letsN = pq.
– Let e be any relative prime to(p− 1)(q − 1)
– Let d = (e%(p− 1)(q − 1))−1

– Bob’s public key: e andN
– Bob’s private key: d

� Communicate using RSA keys

– Alice encodes a messagex: e(x) = xe%N
– Bob decodes a message:d(e(x)) = (e(x))d%N
– If Eve wants to decode a encrypted message, she will need to

. Try all possiblex until xe%N = e(x)

. Try to findp andq from N using prime number factorization

� The security of RSA is based the following simple fact

– Given N , e, and y = xe%N , it is computationally intractable to
determine x
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� RSA is based heavily on number theory

– modulo arithmetic
– prime number generation

� What do we need to in RSA?

– An algorithm to generate prime numbers with arbitrary length
– An algorithm to computexy%N for arbitrary largex andy
– An algorithm to compute the inverse of a modulo, i.e.,(x%N)−1
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� Example:

� Important observation: The sum of any three single-bit (digit)
numbers is at most two bits (digits) long.

� Complexity:

� Can we do better?
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� What is the time complexity of multiplying two integers usingthe algorithms
we learned in elementary schools?
Example: how do you compute this:1101 × 1011?

� Complexity:

� Is there a better way of multiplying two integers than this elementary-school
method?
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� Russian peasant method (This is the method in Al Khwarizmi’s book)
� Computingxy

– If y is even,x · y = 2(x · y

2 )

– If y is odd,x · y = x + 2(x · y−1
2 )

� Example:123× 77=

xy =
y x z

77 ·123 +0
38 ·246 +123
19 ·492 +123
9 ·984 +123 + 492
4 ·1968 +123 + 492 + 984
2 ·3936 +123 + 492 + 984
1 ·7872 +123 + 492 + 984 = 9471
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� Algorithm
Algorithm 0.1: MULTIPLY (x, y)

if y = 1
then return (x)

z =MULTIPLY(x, by/2c)
if y%2 = 0

then return (2z)
else return (x + 2z)

� Time complexity:
O(n2) given thatx andy are bothn bits long

� Advantage:
very fast and easy hardware implementation!

� Can we do better?
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� Computing(q, r) = x/y

– If x is even,(q′, r′) = (x/2)/y ⇒ (q, r) = (2q′, 2r′)
– If x is odd,(q′, r′) = ((x− 1)/2)/y ⇒ (q, r) = (2q′, 2r′ + 1)If

x < y, (q, r) = (0, x)

� Example:123/17=

x y q r
123 17 7 4
61 − 3 10
30 − 1 13
15 − 0 15

� Time complexity?
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� N dividesx if x mod N = 0
� x mod N = x%N = x− kN
� If x%N = r, then(x− r)%N = 0
� It is usually convenient to write:

(x ≡ y mod N) iff (x mod N) = (y mod N).

� Example:

– 31 ≡ 13 mod 3
– 14 ≡ 59 mod 5



Modulo Addition/Multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

.
Modulo
Addition/Multiplication

Modulo
Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 20

� If x ≡ x′ mod N andy ≡ y′ mod N , then:

x + y ≡ x′ + y′ mod N

and

xy ≡ x′y′ mod N

� More properties:

– x + (y + z) ≡ (x + y) + z mod N (associativity)
– xy ≡ yx mod N (commutativity)
– x(y + z) ≡ xy + xz mod N (distributivity)
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� Addition: (x%N) + (y%N) = (x + y)%N

– Complexity:

� Multiplication (x%N)(y%N) = (xy%N)

– Complexity:
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� Exponentiation:xy%N

– Brute force: Computexy then computexy%N

. Problem: ifx andy are 20 bits long,xy = 2(19)(524288), which
is about107 bits long. In cryptography,x andy can be much
longer than this.

– Incremental:x%N → x2%N → x3%N → · · · → xy%N

. Problem: Ify is n bits long, we need to perform2n

multiplications. This means the incremental method has time
complexity exponential ton.
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� Decrease-n-conquer

– If y is even,
x

y = (xb y
2
c)2

⇒ x
y%N = (xb y

2
c%N)2%N

– If y is odd,
x

y = x · (xb y
2
c)2

⇒ x
y%N = x · (xb y

2
c%N)2%N

Algorithm 0.2: MODEXP(x, y, N )

if y = 1
then return (x)

z ←MODEXP(x, by

2 c, N)
if y is even

then return (z2%N)
else return ((x · z2)%N)
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� Greatest Common Divisor Problem: Given two non-negative
integersm andn, find the largest integer, denoted asgcd(m, n), that
can evenly divide bothm andn.

� Example: Ifm = 98 andn = 42, thengcd(m, n) =
� How do we design an algorithm to solve this problem?
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� Observation: the range ofgcd(m, n) is in [1,min(m, n)]

Algorithm 0.3: gcd(m, n)

for i = {min(m, n), · · · , 1}

do
{

if m%i = 0 and n%i = 0
then return (i)

� How long does the algorithm take?

� Can we do better?
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� Observation: use the strategy that we learned in the middle schools,
i.e., “Prime factorization”.

� Example: m = 98 = 2× 7× 7 andn = 42 = 2× 3× 7
⇒ gcd(m, n) = 2× 7 = 14

� Algorithm : gcd(m, n)

Algorithm 0.4: gcd(m, n)

Perform prime factorization for m
Perform prime factorization for n
Find and multiply the common prime factors from m and n

� Well, the “algorithm” above is not really an algorithm yet, because we
do not specify:

1. how to perform prime factorization on an integer?
2. how to find the common numbers from two lists of integers?
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� Problem: Given an integern, find a sequence of prime numbersS,
whose multiplication isn.

� Find a list of prime numbersP that are smaller thann

Algorithm 0.5: PRIME FACTORIZATION(n)

i← 2
while i < n

do















if n%i = 0

then
{

S ← i
n← n

i

elsei← next prime number
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� Problem: Given two lists of numbers,Pm andPn, find a list of the
common numbersPc from Pm andPn.

� Example: Pm = {2, 7, 7}, Pn = {2, 3, 7} ⇒ Pc = {2, 7}
� Algorithm

Algorithm 0.6: COMMON ELEMENTS(Pm, Pn)

comment: initially we create an empty listPc

for each i ∈ Pm

do







if i ∈ Pn

then
{

Pc ← i
remove i from Pn
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� Observation 1: gcd(m, n) = gcd(n, m%n)
� Observation 2: gcd(m, 0) = m

Proof. We want to show thatgcd(m, n) can divide
m%n evenly. Letm = x × gcd andn = y × gcd ⇒

m%n = (m − z × n) = (x × gcd−z × (y × gcd) =
(x − z × y) × gcd. (image of Euclid)

� Example: gcd(98, 42) = gcd(42, 14) = gcd(14, 0) = 14
� Algorithm

Algorithm 0.7: gcd(m, n)

while n 6= 0

do







r = m%n
m = n
n = r

return (m)
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� Time complexity of Algorithm 0.7?

– Hint: If a ≥ b, thena%b < a/2
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� GCD is key to dividing in the modular world
� Lemma: If d divides botha andb andd = ax + by for some integers

x andy, thend = gcd(a, b).

– proof:

� Example:gcd(13, 4) = 1, 13 · 1 + 4 · (−3) = 1

Algorithm 0.8: EXT-gcd(a, b)

if b = 0
then return (1, 0, a)

(x′, y′, d) =EXT-gcd(b, a%b)
return (y′, x′ − ba/bcy′, d)
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� Is Algorithm 0.8 correct?

� Time complexity of Algorithm 0.8?
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� In real number arithmetic,b/a = b · 1/a = b · a−1

� For modulo division,(b%N)/(a%N) = (b%N)(a−1%N)

– We need to definea−1

– x = a−1 if ax ≡ 1 mod N
– ax ≡ 1 mod N ⇒ ax + Ny = 1⇒ gcd(a, N) = 1

� Modular division theorem. For anya mod N , a is invertible ifa and
N are relatively prime. Ifa is invertible,a−1 can be found in time
O(n3) (n = log N ) using the extended Euclid algorithm.
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� Given a numberp how do we know ifp is a prime?
� We wish to answer this without trying to factorp.
� We do this based on Fermat’s little theorem (AD 1640)

– If p is a prime, then for every1 ≤ a < p,

ap−1 ≡ 1 mod p

– proof.
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� Our 1st attempt

� Problem: Note that the theorem is “Ifp is prime, then ....” But our
test above is taking another direction “IfaN−1 ≡ 1 mod N , thenN
is prime.

� Consequence: Some non-prime (composite) number may have some
sucha which satisfies the “If” statement above.

– In fact, there are a set of (very rare) numbers that haveall such
1 ≤ a < p which satisfies the “If” statement above. These
numbers are called “Carmichael numbers.” (We will ignore these
numbers for now)
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� Lemma: If aN−1 6≡ 1 mod N for somea which is relatively prime
to N , then there must have at leastN

2 of sucha < N .

– proof:

� This basically means:

– If N is prime,aN−1 ≡ 1 mod N for all a < N
– If N is not prime,aN−1 ≡ 1 mod N for < N

2 number ofa < N
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� Our strategy: Run our 1st algorithmk times

– Pr(1st algorithm returns ‘yes’ andN is prime)=1
– Pr(1st algorithm returns ‘yes’ andN is not prime)≤ 1

2
– Pr(All k instances of 1st algorithm return ‘yes’ andN is not

prime)≤ 1
2k

– The error decreases ‘exponentially’

� Our 2nd attempt

Algorithm 0.9: PRIMIALITY 2(N )

Pickk positive integersa1, a2, . . . ak < N at random
if aN−1

i ≡ 1 mod N for all i = 1, 2, . . . , k
then return (yes)
else return (no)
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� Observation: There are many prime numbers.

– Lagrange’s prime number theorem. Let π(x) be the number of
primes≤ x, thenπ(x) ≈ x

ln x
.

– Given an-bit long numberN , there are aboutN
n

prime numbers

� Now we describe a brute force method to generate a random prime
number:

Algorithm 0.10: RANDOMPRIME(n)

for i = {1, 2, 3, . . . , N}

do







N ← a random bit stream with lengthn
if PRIMIALITY 2(N)

then return (N)

� What is the time complexity of RANDOMPRIME?
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� Making RSA keys

– Two prime numbersp andq andN = pq.
– e be any relative prime to(p − 1)(q − 1)
– d = (e%(p − 1)(q − 1))−1

� Communicate using RSA keys

– Alice encodes a messagex: e(x) = xe%N

– Bob decodes a message:d(e(x)) = (e(x))d%N

� Why does it work? We will show that(xe%N)d = x%N

– proof:
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� We talked about

– Basic/Modulo arithmetic
– GCD
– Primality and prime number generation
– Private/Public key cyrptography
– RSA

� We’ve walked through Chapter 1.1-1.4. (Please read 1.5, hashing)
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