
CS633 Lecture 02
Line Segments Intersection

Jyh-Ming Lien
Dept of Computer Science

George Mason University

Based on Chapter 2 of the textbook
and Ming Lin’s lecture note at UNC

CS633

Line Segments Intersection

• Driving Applications
– Geographic information system:

• the “Map overlay” problems

– Computer Graphics:
• Polygon intersection
• 3D Morphing

– Modeling:
• Polygonal Boolean operations
(Constructive Solid Geometry or CSG)

P1

 P2

CS633

Application 1
Thematic Map Overlay

• GISs split each map into several
layers

• Each layer is called a thematic
map
– storing one type of information

• Find overlay of several maps to
locate interesting junctions
– Line/curve intersections
– Region overlapping

– Point location
– …

CS633

Transform to a Geometric
Problem

• Curves can be approximated by small (line) segments

• Each thematic map can be viewed as a collection of line
segments

GIS
Finding the
overlay of two
maps

Computational Geometry
computing all intersection points
between the line segments of two
sets

Make 2 sets into 1.
But, how do we
identify the real
intersections?

To simplify
further

CS633

Line Segments Intersection

• Problem: Given a set of line segments

• Output: Intersections and for each
intersection output the intersecting
segments.

CS633

Problem Analysis

• Brute Force Approach: O(n2)
– Is this the lower bound of the problem?
– Is this good for our problem? Why?

• Even there are no intersections, we will spend O(n2) time

• Desiderata: output (intersection) sensitive
• Observation: Segments that are close together are

the candidates for intersection
– How do you determine two segments that are close or

far away???
• Can the distance of two segments tell you anything?

CS633

Closeness of Segments

• Draw a line l (horizontal line) find intersections
between segments and l,

• Order segments from left to right according to
the intersecting point on l

• Now, we know which segments are close to
each (w.r.t l)

l

s1
s2 s3

s4
s5

s6

s7

s8

CS633

Plane Sweep

• Now if we move the line up and down
– we should reveal the relationships (closeness) of the

line segment across the plane
• How do you compute the intersections between l and

segments efficiently?
• Do you have to compute the intersections all the time

when l sweeps?

l
s1

s2 s3
s4

s7

s8

s5
s6

CS633

Plane Sweep

• How do you compute the intersections
between l and segments efficiently?
– Project the interval to Y-axis and build a data

structure (interval tree) (?)

x

y

CS633

Plane Sweep
• Do you have to compute the intersections all the

time when l when move up and down?
– No!
– The segment orders only change at the events:

• End points
• intersections

l
s1

s2 s3
s4

s7

s8

s5
s6

CS633

Plane Sweep: Summary

• Status of l: the set of segments intersecting l
– Maintain a data structure T so the intersecting segments

are sorted from left to right
• Event points: where updates are required

l : sweep line

event point

CS633

Plane Sweep

• Status of l : (insert S6 to T)

– S6

l
s1

s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (insert S5 to T)

– S5S6

ls1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (insert S2 to T)

– S2S5S6

ls1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (insert S3 to T)

– S2S3S5S6

ls1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (insert S1 and S8 to T)

– S1S2S3S5S6S8

l
s1

s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (delete S6 to T)

– S1S2S3S5S8

l
s1

s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (swap S1 and S2 in T)

– S2S1S3S5S8

l
s1

s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (swap S3 and S5 in T)

– S2S1S5S3S8

l

s1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (add S7 to T)

– S2S1S5S3S7S8

l

s1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (swap S7 S8 in T)

– S2S1S5S3S8S7

l

s1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (delete S1 , S8 from T)

– S2S5S3S7

l

s1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (delete S7 from T)

– S2S5S3

l

s1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep

• Status of l : (delete S2 ,S5 ,S3 from T)

– φ

l

s1
s2 s3

s7

s8

s5
s6

CS633

Plane Sweep Algorithm
Sketch 1

• Create an event queue Q and add the end points of the segments
from top to bottom to the event queue

• Create a horizontal sweep line l and maintain a sorted list T

• Repeat until no events in Q
– e ←Q.pop()

– Place l at e

– Find the segments intersecting the sweep line l and store them in T

– For each pair of adjacent segments in T
• Check intersection

• Add intersection to Q

CS633

Plane Sweep Algorithm
To include the idea of being close in the horizontal

direction, only test segments that are adjacent in
the horizontal direction --

• Only test each with ones to its left and right

• New “status”: ordered sequence of segments

l

Sj Sk Sl Sm

CS633

Plane Sweep

• Status of l : (insert S6 to T)

– φ

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

CS633

Plane Sweep

• Status of l : (insert S6 to T)

– S6

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

CS633

Plane Sweep

• Status of l : (insert S5 to T)

– S5S6

ls1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

CS633

Plane Sweep

• Status of l : (insert S2 to T)

– S2S5S6

ls1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

CS633

Plane Sweep

• Status of l : (insert S3 to T)

– S2S3S5S6

ls1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

CS633

Plane Sweep

• Status of l : (insert S1 and S8 to T)
– S1S2S3S5S6S8

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

CS633

Plane Sweep

• Status of l : (delete S6 to T)

– S1S2S3S5S8

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

CS633

Plane Sweep

• Status of l : (swap S1 and S2 in T)
– S2S1S3S5S8

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

CS633

Plane Sweep

• Status of l : (swap S3 and S5 in T)
– S2S1S5S3S8

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

CS633

Plane Sweep

• Status of l : (add S7 to T)
– S2S1S5S3S7S8

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Plane Sweep

• Status of l : (swap S7 S8 in T)
– S2S1S5S3S8S7

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Plane Sweep

• Status of l : (delete S1 , S8 from T)
– S2S5S3S7

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Plane Sweep

• Status of l : (delete S7 from T)
– S2S5S3

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Plane Sweep

• Status of l : (delete S2 ,S5 ,S3 from T)
– φ

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Plane Sweep Algorithm
Sketch 1

• Create an event queue Q and add end points of the segments
from top to bottom to the event queue

• Create a horizontal sweep line l and maintain a sorted list T

• Repeat until no events in Q
– e ←Q.pop()

– Place l at e

– Find the segments intersecting the sweep line l and store them in T

– For each pair of adjacent segments in T
• Check intersection
• Add intersection to Q

What’s the problem of this algorithm?

No need to check
all pairs!

CS633

Plane Sweep Algorithm
Sketch 2

• Create an event queue Q and add end points of the segments from top to
bottom to the event queue

• Create a horizontal sweep line l and maintain a sorted list T

• Repeat until no events in Q
– e ←Q.pop()

– Place l at e

– If e is an upper point of a segment s
• Add s to T

• Check intersection between s and s’ left and right segments in T

– If e is a lower point of a segment s
• Remove s from T

• Check intersection between s’ left and right segments in T

– If e is an intersecting point of a set of segments S
• Reorder S in T accordingly

• Check the leftmost segment with the segment on its left

• Check the rightmost segment with the segment on its right

CS633

Plane Sweep

• Status of l : (insert S6 to T)

– S6

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

CS633

Plane Sweep

• Status of l : (insert S5 to T)

– S5S6

ls1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

Check intersection: S5S6

CS633

Plane Sweep

• Status of l : (insert S2 to T)

– S2S5S6

ls1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

Check intersection: S2S5

CS633

Plane Sweep

• T - Status of l : (insert S3 to T)

– S2S3S5S6

ls1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

Check intersection: S3S5

Check intersection: S3S2

CS633

Plane Sweep

• T - Status of l : (insert S1 and S8 to T)
– S1S2S3S5S6S8

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

Check intersection: S1S2

Check intersection: S8S6

CS633

Plane Sweep

• T - Status of l : (delete S6 to T)

– S1S2S3S5S8

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

Check intersection: S5S8

CS633

Plane Sweep

• T - Status of l : (swap S1 and S2 in T)
– S2S1S3S5S8

l
s1

s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

Check intersection: S1S3

CS633

Plane Sweep

• T - Status of l : (swap S3 and S5 in T)
– S2S1S5S3S8

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

Check intersection: S1S5
Check intersection: S3S8

CS633

Plane Sweep

• T - Status of l : (add S7 to T)
– S2S1S5S3S7S8

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

Check intersection: S7S3
Check intersection: S7S8

CS633

Plane Sweep

• T - Status of l : (swap S7 S8 in T)
– S2S1S5S3S8S7

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

Check intersection: S8S3

CS633

Plane Sweep

• T - Status of l : (delete S1 , S8 from T)
– S2S5S3S7

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

Check intersection: S2S5

CS633

Plane Sweep

• T - Status of l : (delete S7 from T)
– S2S5S3

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Plane Sweep

• T - Status of l : (delete S2 ,S5 ,S3 from T)
– φ

l

s1
s2 s3

s7

s8

s5
s6

a

b

c

d

e

f

g

h

i

j

k

m

n

o

p
q

r

CS633

Nasty Cases (Degeneracies)

• Horizontal lines

• Overlapping line segments

• Multiple line segments intersect at one
single point

CS633

Handling Changes in Status

l

S4

S1

S3 S8S7

S5

S2

S1S3

p

U(p)={S2 }
L(p)={S4 , S5 }
C(p)={S1 , S3 }

CS633

HandleEventPoint (p)
1. Let U(p) be set of segments whose upper end point is p
2. Search in T for set S(p) of all segments that contains p;
 they are adjacent in T. Let L(p) ⊂ S(p) be the set of
 segments whose lower endpts in p and C(p) ⊂ S(p) be
 the set of segments that contains p in its interior
3. If L(p) ∪ U(p) ∪ C(p) contains more than 1 segment
4. then Report p as an intersect with L(p), U(p) and C(p)

5. Delete segments in L(p) ∪ C(p) from T
6. Insert segments in U(p) ∪ C(p) into T. Order segments
 in T according to their order on sweep line just below p.
 A horizontal one comes last among all containing p.

See your textbook for detail
Most of these are just some work on bookkeeping

CS633

Event Queue Structure

• Event queue requires the following methods
– remove next event and return it to be treated
– among 2 events with the same y-coordinate, the one

with smaller x-coordinate is returned

 (left-to-right priority order)
– allows for insertions & check if it is already there

– allows 2+ event points to coincide
 (ex) two upper end points coincide

CS633

Status Structure, T
• Store the segments in a balanced binary search

tree T according to their orders
– both fetching & insertion takes O(log m) time, where

m is the number of events

• Maintain the status of l using T
– the left-to-right order of segments on the line l ↔ the

left-to-right order of leaves in T

– segments in internal nodes guide search
– each update and search takes O(log n)

CS633

Status Structure, T

lSj Sk Sl SmSi

Si

Sj Sk

Sl Sm

Si

Sj

Sk

SlT

CS633

Handling Changes in Status

S7 S3

S1 S8

S3

S2

S1

S2
S7

T

S1

S3 S8

S5

S4

S1

S3

S7 S5 S4

S7

T

S2

l

S4

S1

S3 S8S7
S5

S1S3

Delete=
Add=

CS633

Algorithm Analysis

•Important property
– All the intersections above the sweep line must be

found
– Poof: When the sweep line is “Very close” to the

intersection, its intersecting line segments must
become adjacent!

CS633

Algorithm Analysis

• Correctness: Does the algorithm find all
intersections? (sketch)
– Assume there is an intersecting point p that is not found
⇒ The segments intersecting at p never become adjacent when the line

sweeps down
⇒ There is no event above p, which makes the segments adjacent
⇒ However, this is not possible.

p p p

CS633

Algorithm Analysis

• Let S be a set of n segments in a plane

• All intersections in S can be reported in
– O(n log n + k log n) time

• where k is the size of the output (output includes
intersection points and line segments intersecting at the
points)

– O(n+I) space
• where I is the size of the number of intersections

CS633

Algorithm Analysis

• With better analysis using Euler’s Formula
– O(n log n + I log n) time

• where I is the size of the number of intersections

•
• By treating the segments and intersections as a planar

graph, we know
• Therefore,

• So, how large is |E|, the number of edges in G?

Let p be all intersections, then k =
∑

p

m(p).

m(p)=degree(p)
k =

∑

p

m(p) =
∑

p

degree(p) = 2|E|.

CS633

Algorithm Analysis

– O(n) space, without storing all events
• e.g. only store intersection points of pairs of segments that

are currently adjacent on the sweep line

67

CS633

Application 1
Thematic Map Overlay

• Now, we are be to do this:

f1

f2
r1

r5

r3

r2
r4

r6

t1 t2 t3

t4

t5

t6

t7

t8

t9

t10

t11
t12

t13

CS633

Application 2
Overlay of Subdivisions

• Let S1, S2 be two planar subdivisions of
complexity n1 and n2 respectively; and let n =
n1 + n2

• Overlay of S1 and S2 can be constructed in
O(n log n + k log n) time, where k is the
complexity of overlay

f1

f2
r1

r5

r3

r2
r4

r6

t1 t2 t3

t4

t5

t6

t7

t8

t9

t10

t11
t12

t13

CS633

Define a Subdivision:
Doubly-Connected Edge List

• 3 records: vertices, faces and “half-edges”

• Vertex:
– coordinates(v)
– a ptr to a half-edge

• Face:
– OuterComponent(f): outer boundary
– InnerComponent(f): holes boundaries

• Half edge:
– a ptr to Origin(e)
– a ptr to a twin-edge
– ptrs to Next(e) & Prev(e) edges
– its left IncidentFace(e)

CS633

Doubly-Connected Edge List

• v3:
– coordinates(v)

– a ptr to a half-edge e3

• f2:
– OuterComponent(f): e6

– InnerComponent(f): e11

• e1:
– a ptr to Origin(e): v3

– a ptr to a twin-edge: e2

– ptrs to Next(e) & Prev(e) edges: e2 and e9

– its left IncidentFace(e): f1

f1

f3

f2

e1

e2

e3 e9

e8

e7e6

e5e4

e10

v1

v3

v2

v4

v5
v6

v7

v8
e11

CS633

Doubly-Connected Edge List
• How do you find all incident

edges of f1 ?

• How do you find all incident
vertices of e4?

• How do you find all incident
edges of v3 ?

• How do you find all incident
faces of v3 ?

f1

f3

f2

e1

e2

e3 e9

e8

e7e6

e5e4

e10

v1

v3

v2

v3

v5
v6

v7

v8
e11

CS633

Application 2
Overlay of Subdivisions

1. Find intersections

2. Update half-edges

3. Update faces
1. Find boundaries
2. Classify boundaries (external or hole)
3. Group boundaries

f1

f2
r1

r5

r3

r2 r4
r6

t1 t2 t3

t4
t5

t6

t7

t8

t9

t10

t11
t12

t13

CS633

Application 2
Overlay of Subdivisions

Update faces
1. Find boundaries (cycles)

2. Classify boundaries (external or hole)

3. Group boundaries

f1

f2
r1

r5

r3

r2 r4
r6

t1 t2 t3

t4
t5

t6

t7

t8

t9

t10

t11
t12

t13

c∞

c2 c3

c4

c5
c6

c7

c8

c1

CS633

Application 3
Polygon intersection

• Let P1, P2 be two polygons, check if they collide with
each other in O(n log n) time

P1

 P2

P1

 P2

collision no collision

CS633

Application 4
Boolean Operations

• Let P1, P2 be two polygons with n1 and n2
vertices respectively; and let n = n1 + n2

• Their Boolean operations (intersection, union,
and difference) can each be computed in O(n
log n + k log n) time, where k is the complexity
of the output

CS633

Application 4
Boolean Operations

• P-Q

• P∪Q

• P∩Q

P
Q

CS633

Application 5
3D Morphing

• Compute or specify corresponding
regions

• Merge corresponding regions
flattenflatten

merge

Feature-based Surface Decomposition for
Polyhedral Morphing; Gregory, Arthur; State,
Andrei; Lin, Ming C.; Manocha, Dinesh; Livingston,
Mark A.. Proceedings of the Symposium on
Computational Geometry. 1999. pp 415-416.

CS633

Application
3D Morphing

• Now we have found the
correspondences for all points!

• Specify how each point move to its
corresponding point

Another example using this technique

CS633

Conclusion

• Line segments intersection
– Line sweep paradigm
– Output sensitive algorithm

• Doubly-linked edge list
– Representing subdivisions

• Applications
– GIS map overlay (lines, regions)
– 2D collision detection and Boolean operations
– 3D morphing

CS633

Homework Assignment

• Exercise: 2.1, 2.11, 2.14

Next time: Art Gallery problem &
Triangulation

