CS633 Lecture 02 Line Segments Intersection

Jyh-Ming Lien
Dept of Computer Science
George Mason University

Based on Chapter 2 of the textbook and Ming Lin's lecture note at UNC

Line Segments Intersection

- Driving Applications
- Geographic information system:
- the "Map overlay" problems

- Computer Graphics:
- Polygon intersection
- 3D Morphing
- Modeling:
- Polygonal Boolean operations
(Constructive Solid Geometry or CSG)

Application 1 Thematic Map Overlay

- GISs split each map into several layers
- Each layer is called a thematic map
- storing one type of information
- Find overlay of several maps to locate interesting junctions
- Line/curve intersections
- Region overlapping
- Point location

Transform to a Geometric Problem

GIS

Finding the overlay of two maps

- Curves can be approximated by small (line) segments
- Each thematic map can be viewed as a collection of line segments

Computational Geometry computing all intersection points between the line segments of two sets
 further

Make 2 sets into 1. But, how do we identify the real intersections?

Line Segments Intersection

- Problem: Given a set of line segments
- Output: Intersections and for each intersection output the intersecting segments.

Problem Analysis

- Brute Force Approach: $\mathrm{O}\left(n^{2}\right)$
- Is this the lower bound of the problem?
- Is this good for our problem? Why?
- Even there are no intersections, we will spend $\mathrm{O}\left(n^{2}\right)$ time
- Desiderata: output (intersection) sensitive
- Observation: Segments that are close together are the candidates for intersection
- How do you determine two segments that are close or far away???
- Can the distance of two segments tell you anything?

Closeness of Segments

- Draw a line l (horizontal line) find intersections between segments and l,
- Order segments from left to right according to the intersecting point on l
- Now, we know which segments are close to each (w.r.t l)

Plane Sweep

- Now if we move the line up and down
- we should reveal the relationships (closeness) of the line segment across the plane
- How do you compute the intersections between l and segments efficiently?
- Do you have to compute the intersections all the time when l sweeps?

CS633

Plane Sweep

- How do you compute the intersections between l and segments efficiently?
- Project the interval to Y -axis and build a data structure (interval tree) (?)

Plane Sweep

- Do you have to compute the intersections all the time when l when move up and down?
- No!
- The segment orders only change at the events:
- End points
- intersections

CS633

Plane Sweep: Summary

- Status of l : the set of segments intersecting l
- Maintain a data structure T so the intersecting segments are sorted from left to right
- Event points: where updates are required

Plane Sweep

- Status of l : (insert S_{6} to T$)$
$-S_{6}$

Plane Sweep

- Status of l : (insert S_{5} to T)
$-\mathrm{S}_{5} \mathrm{~S}_{6}$

Plane Sweep

- Status of l : (insert S_{2} to T)
$-S_{2} S_{5} S_{6}$

Plane Sweep

- Status of l : (insert S_{3} to T)
$-\mathrm{S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{6}$

Plane Sweep

- Status of l : (insert S_{1} and S_{8} to T)
$-\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{6} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : (delete S_{6} to T)
$-\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : $\left(\operatorname{swap} S_{1}\right.$ and S_{2} in $\left.T\right)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : $\left(\operatorname{swap} \mathrm{S}_{3}\right.$ and S_{5} in T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{8}$

Plane Sweep

- Status of $l:\left(\operatorname{add} \mathrm{S}_{7}\right.$ to T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{7} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : $\left(\operatorname{swap} \mathrm{S}_{7} \mathrm{~S}_{8}\right.$ in T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{8} \mathrm{~S}_{7}$

Plane Sweep

- Status of l : (delete $\mathrm{S}_{1}, \mathrm{~S}_{8}$ from T)
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{7}$

Plane Sweep

- Status of l : (delete S_{7} from T)
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{3}$

Plane Sweep

- Status of l : (delete $\mathrm{S}_{2}, \mathrm{~S}_{5}, \mathrm{~S}_{3}$ from T)
- ϕ

Plane Sweep Algorithm Sketch 1

- Create an event queue Q and add the end points of the segments from top to bottom to the event queue
- Create a horizontal sweep line l and maintain a sorted list T
- Repeat until no events in Q
- e $\leftarrow \mathrm{Q}$. .pop()
- Place l ate
- Find the segments intersecting the sweep line l and store them in T
- For each pair of adjacent segments in T
- Check intersection
- Add intersection to Q

Plane Sweep Algorithm

To include the idea of being close in the horizontal direction, only test segments that are adjacent in the horizontal direction --

- Only test each with ones to its left and right
- New "status": ordered sequence of segments

Plane Sweep

- Status of l : (insert S_{6} to T)
- ϕ

Plane Sweep

- Status of l : (insert S_{6} to T)
- S_{6}

Plane Sweep

- Status of l : (insert S_{5} to T$)$
$-\mathrm{S}_{5} \mathrm{~S}_{6}$

Plane Sweep

- Status of l : (insert S_{2} to T)
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{6}$

Plane Sweep

- Status of l : (insert S_{3} to T)
$-\mathrm{S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{6}$

Plane Sweep

- Status of l : (insert S_{1} and S_{8} to T)
$-\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{6} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : (delete S_{6} to T)
$-\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : $\left(\operatorname{swap} \mathrm{S}_{1}\right.$ and S_{2} in T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : $\left(\operatorname{swap} \mathrm{S}_{3}\right.$ and S_{5} in T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : (add S_{7} to T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{7} \mathrm{~S}_{8}$

Plane Sweep

- Status of l : (swap $\mathrm{S}_{7} \mathrm{~S}_{8}$ in T$)$
- $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{8} \mathrm{~S}_{7}$

Plane Sweep

- Status of l : (delete $\mathrm{S}_{1}, \mathrm{~S}_{8}$ from T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{7}$

Plane Sweep

- Status of l : (delete S_{7} from T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{3}$

Plane Sweep

- Status of l : (delete $\mathrm{S}_{2}, \mathrm{~S}_{5}, \mathrm{~S}_{3}$ from T)
$-\phi$

Plane Sweep Algorithm Sketch 1

What's the problem of this algorithm?

- Create an event queue Q and add end points of the segments from top to bottom to the event queue
- Create a horizontal sweep line l and maintain a sorted list T
- Repeat until no events in Q
$-\mathrm{e} \leftarrow \mathrm{Q} \cdot \operatorname{pop}()$
- Place lat e
- Find the segments intersecting the sweep line l and store them in T
- For each pair of adjacent segments in T
- Check intersection
- Add intersection to Q

No need to check all pairs!

Plane Sweep Algorithm Sketch 2

- Create an event queue Q and add end points of the segments from top to bottom to the event queue
- Create a horizontal sweep line l and maintain a sorted list T
- Repeat until no events in Q
$-\mathrm{e} \leftarrow \mathrm{Q} . \operatorname{pop}()$
- Place l at e
- If e is an upper point of a segment s
- Add s to T
- Check intersection between s and s^{\prime} left and right segments in T
- If e is a lower point of a segment s
- Remove s from T
- Check intersection between s^{\prime} left and right segments in T
- If e is an intersecting point of a set of segments S
- Reorder S in T accordingly
- Check the leftmost segment with the segment on its left
- Check the rightmost segment with the segment on its right

CS633

Plane Sweep

- Status of l : (insert S_{6} to T)
- S_{6}

Plane Sweep

- Status of l : (insert S_{5} to T$)$
$-\mathrm{S}_{5} \mathrm{~S}_{6}$
Check intersection: $\mathrm{S}_{5} \mathrm{~S}_{6}$

Plane Sweep

- Status of l : (insert S_{2} to T)

$$
-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{6}
$$

Check intersection: $\mathrm{S}_{2} \mathrm{~S}_{5}$

Plane Sweep

- T - Status of l : (insert S_{3} to T)
$-\mathrm{S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{6}$
Check intersection: $\mathrm{S}_{3} \mathrm{~S}_{5}$
Check intersection: $\mathrm{S}_{3} \mathrm{~S}_{2}$

Plane Sweep

- T - Status of l : (insert S_{1} and S_{8} to T)
$-\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{6} \mathrm{~S}_{8}$ Check intersection: $\mathrm{S}_{1} \mathrm{~S}_{2}$ Check intersection: $\mathrm{S}_{8} \mathrm{~S}_{6}$

Plane Sweep

- T-Status of l : (delete S_{6} to T)
$-\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{8}$
Check intersection: $\mathrm{S}_{5} \mathrm{~S}_{8}$

Plane Sweep

- T-Status of l : (swap S_{1} and S_{2} in T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{3} \mathrm{~S}_{5} \mathrm{~S}_{8}$
Check intersection: $\mathrm{S}_{1} \mathrm{~S}_{3}$

Plane Sweep

- T-Status of l : (swap S_{3} and S_{5} in T)
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{8}$
Check intersection: $\mathrm{S}_{1} \mathrm{~S}_{5}$
Check intersection: $\mathrm{S}_{3} \mathrm{~S}_{8}$

Plane Sweep

- T - Status of l : (add S_{7} to T)
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{7} \mathrm{~S}_{8}$
Check intersection: $\mathrm{S}_{7} \mathrm{~S}_{3}$
Check intersection: $\mathrm{S}_{7} \mathrm{~S}_{8}$

Plane Sweep

- T - Status of l : (swap $\mathrm{S}_{7} \mathrm{~S}_{8}$ in T$)$
$-\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{8} \mathrm{~S}_{7}$
Check intersection: $\mathrm{S}_{8} \mathrm{~S}_{3}$

Plane Sweep

- T-Status of l : (delete $\mathrm{S}_{1}, \mathrm{~S}_{8}$ from T)
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{3} \mathrm{~S}_{7}$
Check intersection: $\mathrm{S}_{2} \mathrm{~S}_{5}$

Plane Sweep

- T - Status of l : (delete S_{7} from T)
$-\mathrm{S}_{2} \mathrm{~S}_{5} \mathrm{~S}_{3}$

Plane Sweep

- T - Status of $l:\left(\right.$ delete S_{2}, S_{5}, S_{3} from $\left.T\right)$
$-\phi$

Nasty Cases (Degeneracies)

- Horizontal lines
- Overlapping line segments
- Multiple line segments intersect at one single point

Handling Changes in Status

HandleEventPoint (p)

Let $U(p)$ be set of segments whose upper end point is p
Search in T for set $S(p)$ of all segments that contains p;
they are adjacent in T. Let $L(p) \subset S(p)$ be the set of
segments whose lower endpts in p and $C(p) \subset S(p)$ be
See your textbook for detail
Most of these are just some work on bookkeeping
Delete segments in $L(p) \cup C(p)$ from T
Insert segments in $U(p) \cup C(p)$ into T. Order segments
in T according to their order on sweep line just below p

Event Queue Structure

- Event queue requires the following methods
- remove next event and return it to be treated
- among 2 events with the same y-coordinate, the one with smaller x-coordinate is returned (left-to-right priority order)
- allows for insertions \& check if it is already there
- allows 2+ event points to coincide (ex) two upper end points coincide

Status Structure, T

- Store the segments in a balanced binary search tree T according to their orders
- both fetching \& insertion takes $O(\log m)$ time, where m is the number of events
- Maintain the status of / using T
- the left-to-right order of segments on the line $/ \leftrightarrow$ the left-to-right order of leaves in T
- segments in internal nodes guide search
- each update and search takes $O(\log n)$

Status Structure, T

Handling Changes in Status

Algorithm Analysis

- Important property
- All the intersections above the sweep line must be found
- Poof: When the sweep line is "Very close" to the intersection, its intersecting line segments must become adjacent!

Algorithm Analysis

- Correctness: Does the algorithm find all intersections? (sketch)
- Assume there is an intersecting point p that is not found
\Rightarrow The segments intersecting at p never become adjacent when the line sweeps down
\Rightarrow There is no event above p, which makes the segments adjacent
\Rightarrow However, this is not possible.

Algorithm Analysis

- Let S be a set of n segments in a plane
- All intersections in S can be reported in
$-O(n \log n+k \log n)$ time
- where k is the size of the output (output includes intersection points and line segments intersecting at the points)
$-O(n+I)$ space
- where I is the size of the number of intersections

Algorithm Analysis

- With better analysis using Euler's Formula
$-O(n \log n+I \log n)$ time
- where I is the size of the number of intersections
- Let p be all intersections, then $k=\sum m(p)$.
- By treating the segments and intersections as a planar graph, we know $m(p)=\operatorname{degree}(p)$
- Therefore, $k=\sum_{p} m(p)=\sum_{p} \operatorname{degree}(p)=2|E|$.
- So, how large is $|\mathrm{E}|$, the number of edges in G ?

Algorithm Analysis

- O(n) space, without storing all events
- e.g. only store intersection points of pairs of segments that are currently adjacent on the sweep line

Application 1
 Thematic Map Overlay

- Now, we are be to do this:

Application 2 Overlay of Subdivisions

- Let S_{1}, S_{2} be two planar subdivisions of complexity n_{1} and n_{2} respectively; and let $n=$ $n_{1}+n_{2}$
- Overlay of S_{1} and S_{2} can be constructed in $O(n \log n+k \log n)$ time, where k is the complexity of overlay

Define a Subdivision: Doubly-Connected Edge List

- 3 records: vertices, faces and "half-edges"
- Vertex:
- coordinates(v)
- a ptr to a half-edge
- Face:
- OuterComponent(f): outer boundary
- InnerComponent(f): holes boundaries
- Half edge:
- a ptr to Origin(e)
- a ptr to a twin-edge
- ptrs to Next(e) \& Prev(e) edges
- its left IncidentFace(e)

Doubly-Connected Edge List

- V_{3} :
- coordinates(v)
- a ptr to a half-edge e_{3}
- f_{2} :
- OuterComponent(f): e_{6}
- InnerComponent(f): e_{11}
- e_{1} :
- a ptr to Origin(e): V_{3}
- a ptr to a twin-edge: e_{2}
$-\quad$ ptrs to $\operatorname{Next}(\mathrm{e}) \& \operatorname{Prev}(\mathrm{e})$ edges: e_{2} and e_{9}
- its left IncidentFace(e): f_{1}

Doubly-Connected Edge List

- How do you find all incident edges of f_{1} ?
- How do you find all incident vertices of e_{4} ?
- How do you find all incident edges of v_{3} ?
- How do you find all incident faces of v_{3} ?

Application 2 四要 Overlay of Subdivisions

1. Find intersections
2. Update half-edges

3. Update faces
4. Find boundaries
5. Classify boundaries (external or hole)
6. Group boundaries

Application 2 Overlay of Subdivisions

Update faces

1. Find boundaries (cycles)
2. Classify boundaries (external or hole)
3. Group boundaries

Application 3 Polygon intersection

- Let P_{1}, P_{2} be two polygons, check if they collide with each other in $\mathrm{O}(n \log n)$ time

collision
no collision

Application 4 Boolean Operations

- Let P_{1}, P_{2} be two polygons with n_{1} and n_{2} vertices respectively; and let $n=n_{1}+n_{2}$
- Their Boolean operations (intersection, union, and difference) can each be computed in $O(n$ $\log n+k \log n$) time, where k is the complexity of the output

Application 4 Boolean Operations

- P-Q
- $P \cup Q$
- $P \cap Q$

Application 5 3D Morphing

YGEORGE
ANIVERSIT

- Compute or specify corresponding regions

- Merge corresponding regions

Feature-based Surface Decomposition for
Polyhedral Morphing; Gregory, Arthur; State,
Andrei; Lin, Ming C.; Manocha, Dinesh; Livingston,
Mark A.. Proceedings of the Symposium on
Computational Geometry. 1999. pp 415-416.

Application 3D Morphing

- Now we have found the correspondences for all points!

- Specify how each point move to its corresponding point

Another example using this technique

Conclusion

- Line segments intersection
- Line sweep paradigm
- Output sensitive algorithm
- Doubly-linked edge list
- Representing subdivisions
- Applications
- GIS map overlay (lines, regions)
- 2D collision detection and Boolean operations
- 3D morphing

Homework Assignment

- Exercise: 2.1, 2.11, 2.14

Next time: Art Gallery problem \& Triangulation

