C5633 Lecture 02
Line Segments Intersection

Jyh-Ming Lien
Dept of Computer Science
George Mason University

Based on Chapter 2 of the textbook
and Ming Lin’s lecture note at UNC

Line Segments Intersection
e Driving Applications
« the “Map overlay” problems

* Polygon intersection

 Polygonal Boolean operations

(Constructive Solid Geometry or CSQG)

CS633

Application 1
Thematic Map Overlay

e (GISs split each map into several
layers

e Fach layer is called a thematic
map
— storing one type of information

e Find overlay of several maps to
locate interesting junctions

— Line/curve intersections

— Region overlapping

— Point location

CS633

Transform to a Geometric
Problem

Finding the
overlay of two
maps

e Curves can be approximated by small (line) segments

e Fach thematic map can be viewed as a collection of line

Segments
A4
. _ : . To simplify Make 2 sets into 1.
computing all intersection points further R But, how do we
between the line segments of two identify the real
sets intersections?

Line Segments Intersection

 Problem: Given a set of line segments

 Output: Intersections and for each
intersection output the intersecting
segments.

Problem Analysis

e Brute Force Approach: O(n?)
— Is this the lower bound of the problem?
— Is this good for our problem? Why?

e Even there are no intersections, we will spend O(n?) time

* Desiderata: output (intersection) sensitive

« Observation: Segments that are are
the candidates for intersection

— How do you determine two segments that are close or
far away??¢?
e Can the distance of two segments tell you anything?

Closeness of Segments

e Draw a line [(horizontal line) find intersections
between segments and /,

e Order segments from left to right according to
the intersecting point on /

e Now, we know which segments are close to

each () S

\374 l

S

Plane Sweep

e Now if we move the line up and down

— we should reveal the relationships (closeness) of the
line segment across the plane
* How do you compute the intersections between [and
segments 4

e Do you have to compute the intersections all the time
when [sweeps?

S
85 6 l
8774

Plane Sweep

e How do you compute the intersections
between [and segments ¢

— Project the interval to Y-axis and build a data
structure (interval tree) (?)

"

Plane Sweep

e Do you have to compute the intersections all the
time when / when move up and down?

— The segment orders only change at the events:
e End points
* intersections

S

S
S?L

Plane Sweep: Summary

» Status of I: the set of segments intersecting /

— Maintain a data structure T so the intersecting segments
are sorted from left to right

 Event points: where updates are required

Plane Sweep

e Status of /: (insert S. to T)

Plane Sweep

e Status of /: (insert S; to T)
T SSS6

S
Sg

s S5 _»
>< T

Plane Sweep

e Status of /: (insert S, to T)
_S,S.S,

Plane Sweep

e Status of /: (insert S;to T)
~$,5.S.S,

Plane Sweep

e Status of /: (insert S, and Sgto T)
~$.5,5,5.5,S,

S
S 85/ °
S.1 /S 2 .33 / 88

KA

Plane Sweep

e Status of /: (delete S, to T)
~$,5,5.S.S,

Plane Sweep

e Status of /: (swap S;and S, inT)
~$,5.5.S.S,

e Status of /:
— S281858388

Plane Sweep

(swap S;and S inT)

SN ’

Plane Sweep

e Status of /: (add S, to T)
_ S28185838788

S, A2 .8; 8'5/86 Sg
/><\>\/ ’L

Plane Sweep

e Status of /: (swap S, Sgin T)
_ S28185838887

S S

/><* 7N S”L

Plane Sweep

e Status of / : (delete S, , Sgfrom T)
_$,5.S.S,

Se Se
s, S2.s, / sy
x 3734
J 4 e

Plane Sweep

e Status of / : (delete S, from T)
_$,S.S,

S

S 6
x ol
d 4 e

Plane Sweep

e Status of /: (delete S, ,S. ,S, from T)
— ¢

S S

Plane Sweep Algorithm
Sketch 1

Create an event queue () and add the end points of the segments
from top to bottom to the event queue

Create a horizontal sweep line / and maintain a sorted list T

Repeat until no events in Q

— e <=Q.pop()

— Placelate

— Find the segments intersecting the sweep line / and store them in T

— For each pair of adjacent segments in T
e Check intersection
e Add intersection to Q

Plane Sweep Algorithm

e Only test each with ones to its left and right

e New “status”: ordered sequence of segments

Plane Sweep

e Status of /: (insert S. to T)

Plane Sweep

e Status of /: (insert S. to T)
_ S,

Plane Sweep

e Status of /: (insert S; to T)
_S.S,

Plane Sweep

e Status of /: (insert S, to T)
_S,S.S,

e SB

Plane Sweep

e Status of /: (insert S;to T)
_ S2538556

Plane Sweep

e Status of /: (insert S;and S;to T)
o S15253558688

o S5 6
S_1 C 826‘33 / /
a

S
8
— k
D]
q S7
d b A m 0

Plane Sweep

e Status of /: (delete S, to T)
~$,5,5.S.S,

< . Ss 6
as(l 0/26°§3 //
J
s;

ks8
P

b
d h

Plane Sweep

o Status of /: (swap S;and S, inT)
_5,5,5.5.S,

< . Ss Se
S, S5 2¢.8 / Sg
N / ‘
J n
p A S,
b m 0
h

d

Plane Sweep

o Status of /: (swap S;and S; inT)

~ 5,5,5:5,S,

Plane Sweep

e Status of /: (add S, to T)
o S25155538788

SZev'/ 88

Plane Sweep

e Statusof /: (swap S, S, T)
~ $,5,5.5.5,5,

5 .
&XCSZGV/ N
a

Plane Sweep

o Status of /: (delete S, , Sgfrom T)

= 5,5.5,5,

SZeY/ 88

Plane Sweep

o Status of /: (delete S, fromT)
_S,S.8,

S i

Plane Sweep

e Status of /: (delete S, ,S; ,S, fromT)
— ¢

Plane Sweep Algorithm
Sketch 1

What’s the problem of this algorithm?

Create an event queue () and add end points of the segments
from top to bottom to the event queue

Create a horizontal sweep line / and maintain a sorted list T
Repeat until no events in Q

— e <=Q.pop()

— Place/ate

— Find the segments intersecting the sweep line / and store them in T

— For each pair of adjacent segments in T
e Check intersection No need to check
e Add intersection to Q all pairs!

CS633

Plane Sweep Algorithm
Sketch 2

Create an event queue () and add end points of the segments from top to
bottom to the event queue

Create a horizontal sweep line / and maintain a sorted list T
Repeat until no events in Q
— e <Q.pop()
— Place/ate
— If e is an upper point of a segment s
e Adds toT
e Check intersection between s and s’ left and right segments in T
— If eiis a lower point of a segment s
e Remove s fromT
e Check intersection between s’ left and right segments in T
— If eis an intersecting point of a set of segments S

e Reorder Sin T accordingly
e Check the leftmost segment with the segment on its left

e Check the rightmost segment with the segment on its right

Plane Sweep

e Status of /: (insert S. to T)
_ S,

Plane Sweep

e Status of /: (insert S; to T)

— S5
> Check intersection: S:S,

Plane Sweep

e Status of /: (insert S, to T)
_S,S.S,

Check intersection: S,S,

SZe i SB l

k
S?L
m 0

Plane Sweep

o T - Status of /: (insert S, to T)
_§.§.6.§ Check intersection: S;S,
2737576 Check intersection: S,S,

CS633

Plane Sweep

o T - Status of /: (insert S, and Sgto T)
— 5,5,5;5:5,.S;4 Check intersection: S,S,

S

Check intersection: S S,

Sg
Sg

d

S5
g .
S1 c/. 2e‘S,2 / /
C o
J

< ; . >
)’& >a< S?Z
b m o

h

CS633

Plane Sweep

o T - Status of /: (delete S, to T)
B 5152535558 Check intersection: S;Sg

S
5 o O
n

S
S 9 i S
a%;.Zeés //) 8 l
/\x il
q 7

; b k m 0

Plane Sweep

e T-Statusof /: (swap S;and S, inT)
— 5,5,5;5:S, Check intersection: S,;S;

Plane Sweep

e T-Status of /: (swap S;and S: inT)

— 5,5,5:5;5, Check intersection: S,S;
Check intersection: S;S,

5 S6
4 i
< ‘///51 \\; s;;ﬁf\\‘ >

CS633

Plane Sweep

e T-Statusof/: (add S,to T)

— 5,5,5:5;5.5, Check intersection: S-S,
Check intersection: S S

SZev'/ SS
>/

CS633

Plane Sweep

o T-Status of /: (swap S,S,.. T)

— 5,5,5:55S,S, Check intersection: S;S,
. Ss 6
S}(ZV/ 5B
p . S;L]

Plane Sweep

o T - Status of /: (delete S, , Sgfrom T)
— 5,S:5,S, Check intersection: S,S,

S S

5
S 9 i
axczesg/'/ /-
j
P n
q S7L]

g ¢ b h/) m

Plane Sweep

e T - Status of /: (delete S, from T)
_S,S.8,

Plane Sweep

e T - Status of [: (delete S, ,S. ,S, from T)
-0

Nasty Cases (Degeneracies)

e Horizontal lines
e Overlapping line segments

e Multiple line segments intersect at one
single point

Handling Changes in Status

S;
S, \7 S
S \ ;
/ S5\ i

s 51 U(p)={s,)
L(p)={S,, S;}

52 C(p)=(S,, S,}

HandleEventPoint (p)

See your textbook for detail

Most of these are just some work on bookkeeping

Event Queue Structure

e Event queue requires the following methods

— remove next event and return it to be treated

— among 2 events with the same y-coordinate, the one
with smaller x-coordinate is returned

(left-to-right priority order)
— allows for insertions & check if it is already there
— allows 2+ event points to coincide

(ex) two upper end points coincide

Status Structure, T

e Store the segments in a balanced binary search
tree T according to their orders
— both fetching & insertion takes O(log m) time, where
m is the number of events
e Maintain the status of / using T

— the left-to-right order of segments on the line [< the
left-to-right order of leaves in T

— segments in internal nodes guide search
— each update and search takes O(log n)

Status Structure, T

Handling Changes in Status

' S5/\ S/\s
LA T
ANRAN
HE B3

Algorithm Analysis

* [mportant property

— All the intersections above the sweep line must be
found

— Poof: When the sweep line is “Very close” to the
intersection, its intersecting line segments must
become adjacent!

Algorithm Analysis

e Correctness: Does the algorithm find all
intersections? (sketch)

— Assume there is an intersecting point p that is not found

= The segments intersecting at p never become adjacent when the line
sweeps down

=> There is no event above p, which makes the segments adjacent

=> However, this is not possible.

|

P D P

Algorithm Analysis

e Let S be a set of n segments in a plane

e All intersections in S can be reported in
— O(n log n + klog n) time

e where £ is the size of the output (output includes
intersection points and line segments intersecting at the
points)

— O(n+I) space

e where [is the size of the number of intersections

Algorithm Analysis

e With better analysis using Euler’s Formula
— O(n log n +I'log n) time

e where [is the size of the number of intersections
o Let p be all intersections, then k = Z m(p).
* By treating the segments and intersections as a planar

graph, we know m(p)=degree(p) N

e Therefore, k = Zm(p) = Zdegree(p) =2|E|. *._
p p

e So, how large is |E|, the number of edges in G?

Algorithm Analysis

— O(n) space, without storing all events

e e.g. only store intersection points of pairs of segments that
are currently adjacent on the sweep line

67

Application 1
Thematic Map Overlay

e Now, we are be to do this:
®e

Gz~

Application 2

Overlay of Subdivisions

e Let S, S, be two planar subdivisions of
complexity n, and n, respectively; and let n =
n, +n,

e Overlay of S, and S, can be constructed in
O(n log n + k log n) time, where k is the
complexity of overlay

tis

Define a Subdivision:
Doubly-Connected Edge List

3 records: vertices, faces and “half-edges”

Vertex:

— coordinates(v)
— aptr to a half-edge

Face:

— OuterComponent(f): outer boundary
— InnerComponent(f): holes boundaries

Half edge:

— a ptr to Origin(e)

— aptrto a twin-edge

— ptrs to Next(e) & Prev(e) edges
— its left IncidentFace(e)

Doubly-Connected Edge List

coordinates(v)
a ptr to a half-edge e,

OuterComponent(f): €,

InnerComponent(f): €,

a ptr to Origin(e): V,
a ptr to a twin-edge: €,
ptrs to Next(e) & Prev(e) edges: €, and €

its left IncidentFace(e): f1

Doubly-Connected Edge List

How do you find all incident
edges of f, ¢

V3

How do you find all incident
vertices of e,?

How do you find all incident
edges of v, ?

How do you find all incident v
faces of v, ? 1

Application 2 @\;63

Overlay of Subdivisions

1. Find intersections
2. Update half-edges

3. Update faces
1. Find boundaries
2. Classity boundaries (external or hole)
3. Group boundaries

Application 2 @@ (&
Overlay of Subdivisions |

Update faces
1. Find boundaries (cycles)
2. Classify boundaries (external or hole)

3. Group boundaries

Application 3

Polygon intersection

e Let P,, P, be two polygons, check if they collide with
each other in O(n log n) time

Y RY

collision no collision

Application 4

Boolean Operations

e Let P, P, be two polygons with n, and n,
vertices respectively; and let n = n, + n,

e Their Boolean operations (intersection, union,
and difference) can each be computed in O(n
log n + k log n) time, where k is the complexity
of the output

Application 4

Boolean Operations

° DUQ

L

Application 5
3D Morphing

e Compute or specify corresponding
regions

* Merge corresponding regions AT

) d
‘ flatten ‘ o Y
at] ®
o
- o o
merge T
Feature-based Surface Decomposition for

Polyhedral Morphing; Gregory, Arthur; State,
Andrei; Lin, Ming C.; Manocha, Dinesh; Livingston,
Mark A.. Proceedings of the Symposium on
Computational Geometry. 1999. pp 415-416.

Application
3D Morphing

 Now we have found the
correspondences for all points!

(f WA
1 5
« Specify how each point move to its
corresponding point

o
L\ .

Another example using this technique

Conclusion

* Line segments intersection
— Line sweep paradigm
— Output sensitive algorithm

* Doubly-linked edge list
— Representing subdivisions
 Applications
— GIS map overlay (lines, regions)
— 2D collision detection and Boolean operations
— 3D morphing

Homework Assignment

e Exercise: 2.1, 2.11, 2.14

Next time: Art Gallery problem &
Triangulation

CS633

