CS633 Lecture 02 Line Segments Intersection

Jyh-Ming Lien Dept of Computer Science George Mason University

Based on Chapter 2 of the textbook and Ming Lin's lecture note at UNC

Line Segments Intersection

- Driving Applications
 - Geographic information system:
 - the "Map overlay" problems
 - Computer Graphics:
 - Polygon intersection
 - 3D Morphing
 - Modeling:
 - Polygonal Boolean operations (Constructive Solid Geometry or CSG)

Application 1 Thematic Map Overlay

- GISs split each map into several layers
- Each layer is called a *thematic map*
 - storing one type of information
- Find overlay of several maps to locate interesting junctions
 - Line/curve intersections
 - Region overlapping
 - Point location

Whitehorse Bay Ft. Simpson Vellowknife Ft. Simpson Vellowknife Uranium Careek Lyan Lase Edmonton Vettoria Vellowknife Uranium Careek Lyan Lase Edmonton

- ...

Transform to a Geometric Problem

GIS Finding the overlay of two maps

- Curves can be approximated by small (line) segments
- Each thematic map can be viewed as a collection of line segments

Line Segments Intersection

- Problem: Given a set of line segments
- Output: Intersections and for each intersection output the intersecting segments.

Problem Analysis

- Brute Force Approach: $O(n^2)$
 - Is this the lower bound of the problem?
 - Is this good for our problem? Why?
 - Even there are no intersections, we will spend $O(n^2)$ time
- **Desiderata**: output (intersection) sensitive
- **Observation**: Segments that are close together are the candidates for intersection
 - How do you determine two segments that are close or far away???
 - Can the distance of two segments tell you anything?

Closeness of Segments

- Draw a line *l* (horizontal line) find intersections between segments and *l*,
- Order segments from left to right according to the intersecting point on *l*
- Now, we know which segments are close to each (w.r.t l)

- Now if we move the line up and down
 - we should reveal the relationships (closeness) of the line segment across the plane
 - How do you compute the intersections between *l* and segments efficiently?
 - Do you have to compute the intersections all the time when *l* sweeps?

- How do you compute the intersections between *l* and segments efficiently?
 - Project the interval to Y-axis and build a data structure (interval tree) (?)

- Do you have to compute the intersections all the time when *l* when move up and down?
 - No!
 - The segment orders only change at the events:
 - End points
 - intersections

- Status of *l*: the set of segments intersecting *l*
 - Maintain a data structure T so the intersecting segments are sorted from left to right
- Event points: where updates are required

• Status of l: (insert S₆ to T)

 $-S_{6}$

• Status of l: (insert S₅ to T)

 $-S_{5}S_{6}$

 S_1 S_2 S_3 S_7 S_8 l

• Status of l: (insert S₂ to T)

 $-S_2S_5S_6$

• Status of l: (insert S₃ to T)

• Status of l: (insert S_1 and S_8 to T)

 $-S_1S_2S_3S_5S_6S_8$

- Status of l: (delete S_6 to T)
 - $-S_1S_2S_3S_5S_8$

• Status of l: (swap S_1 and S_2 in T)

 $-S_2S_1S_3S_5S_8$

• Status of l: (swap S_3 and S_5 in T)

 $-S_2S_1S_5S_3S_8$

- Status of l: (swap $S_7 S_8$ in T)
 - $-S_2S_1S_5S_3S_8S_7$

• Status of l: (delete S_1 , S_8 from T)

• Status of *l* : (delete S₇ from T)

 $-S_2S_5S_3$

• Status of l: (delete S₂, S₅, S₃ from T) $-\phi$

Plane Sweep Algorithm Sketch 1

- Create an event queue Q and add the end points of the segments from top to bottom to the event queue
- Create a horizontal sweep line *l* and maintain a sorted list T
- Repeat until no events in Q
 - e ←Q.pop()
 - Place *l* at e
 - Find the segments intersecting the sweep line *l* and store them in T
 - For each pair of adjacent segments in T
 - Check intersection
 - Add intersection to Q

Plane Sweep Algorithm

- To include the idea of being close in the horizontal direction, only test segments that are adjacent in the horizontal direction --
- Only test each with ones to its left and right
- New "status": ordered sequence of segments

• Status of l: (insert S₆ to T)

φ

• Status of l: (insert S₆ to T)

 $-S_{6}$

• Status of l: (insert S₅ to T)

• Status of l: (insert S₂ to T)

 $-S_{2}S_{5}S_{6}$

• Status of l: (insert S₃ to T)

• Status of l: (insert S₁ and S₈ to T) - S₁S₂S₃S₅S₆S₈

• Status of l: (swap S_1 and S_2 in T) - $S_2S_1S_3S_5S_8$

• Status of l: (swap S₃ and S₅ in T) - S₂S₁S₅S₃S₈

- Status of l: (add S_7 to T)
 - $-S_2S_1S_5S_3S_7S_8$

• Status of l: (swap $S_7 S_8 in T$) - $S_2 S_1 S_5 S_3 S_8 S_7$

• Status of l: (delete S_1 , S_8 from T) - $S_2S_5S_3S_7$

- Status of l: (delete S_7 from T)
 - $-S_2S_5S_3$

• Status of l: (delete S₂, S₅, S₃ from T) - ϕ

Plane Sweep Algorithm Sketch 1

What's the problem of this algorithm?

- Create an event queue Q and add end points of the segments from top to bottom to the event queue
- Create a horizontal sweep line *l* and maintain a sorted list T
- Repeat until no events in Q
 - e ←Q.pop()
 - Place *l* at e
 - Find the segments intersecting the sweep line *l* and store them in T
 - For each pair of adjacent segments in T
 - Check intersection
 - Add intersection to Q

No need to check all pairs!

Plane Sweep Algorithm Sketch 2

- Create an event queue Q and add end points of the segments from top to bottom to the event queue
- Create a horizontal sweep line *l* and maintain a sorted list T
- Repeat until no events in Q
 - e **←**Q.pop()
 - Place *l* at e
 - If e is an upper point of a segment **s**
 - Add **s** to T
 - Check intersection between s and s' left and right segments in T
 - If e is a lower point of a segment **s**
 - Remove **s** from T
 - Check intersection between s' left and right segments in T
 - If e is an intersecting point of a set of segments S
 - Reorder **S** in T accordingly
 - Check the leftmost segment with the segment on its left
 - Check the rightmost segment with the segment on its right

• Status of l: (insert S₆ to T)

 $-S_{6}$

- Status of l: (insert S₅ to T)
 - $-S_{5}S_{6}$

• Status of l: (insert S₂ to T)

h

 $-S_2S_5S_6$

d

m

• T - Status of l: (insert S_3 to T) - $S_2S_3S_5S_6$ Check intersection: S_3S_5 Check intersection: S_3S_5

• T - Status of l: (insert S₁ and S₈ to T) - S₁S₂S₃S₅S₆S₈ Check intersection: S₁S₂ Check intersection: S₈S₆

• T - Status of l: (delete S_6 to T) - $S_1S_2S_3S_5S_8$ Check intersection: S_5S_8

• T - Status of l: (swap S_1 and S_2 in T) - $S_2S_1S_3S_5S_8$ Check intersection: S_1S_3

• T - Status of l: (swap S_3 and S_5 in T) - $S_2S_1S_5S_3S_8$ Check intersection: S_1S_5 Check intersection: S_3S_8

- T Status of l : (add S_7 to T)
 - S₂S₁S₅S₃S₇S₈ Check intersection: S₇S₃ Check intersection: S₇S₈

• T - Status of l: (swap $S_7 S_{8 in} T$) - $S_2 S_1 S_5 S_3 S_8 S_7$ Check intersection: $S_8 S_3$

• T - Status of l: (delete S_1 , S_8 from T) - $S_2S_5S_3S_7$ Check intersection: S_2S_5

• T - Status of l: (delete S₇ from T) - S₂S₅S₃

• T - Status of l: (delete S_2 , S_5 , S_3 from T) - ϕ

Nasty Cases (Degeneracies)

- Horizontal lines
- Overlapping line segments
- Multiple line segments intersect at one single point

HandleEventPoint (p)

the set of See your textbook for detail Most of these are just some work on bookkeeping nonzontal one comes last among all containing p.

Event Queue Structure

- Event queue requires the following methods
 - remove next event and return it to be treated
 - among 2 events with the same y-coordinate, the one with smaller x-coordinate is returned
 (left-to-right priority order)
 - allows for insertions & check if it is already there
 - allows 2+ event points to coincide
 (ex) two upper end points coincide

Status Structure, T

- Store the segments in a balanced binary search tree *T* according to their orders
 - both fetching & insertion takes O(log m) time, where
 m is the number of events
- Maintain the status of *I* using *T*
 - the left-to-right order of segments on the line $l \leftrightarrow$ the left-to-right order of leaves in T
 - segments in internal nodes guide search
 - each update and search takes $O(\log n)$

Important property

- All the intersections above the sweep line must be found
- Poof: When the sweep line is "Very close" to the intersection, its intersecting line segments must become adjacent!

- Correctness: Does the algorithm find all intersections? (sketch)
 - Assume there is an intersecting point p that is not found
 - ⇒ The segments intersecting at p never become adjacent when the line sweeps down
 - \Rightarrow There is no event above p, which makes the segments adjacent
 - \Rightarrow However, this is not possible.

- Let **S** be a set of *n* segments in a plane
- All intersections in S can be reported in
 - $-O(n \log n + k \log n)$ time
 - where *k* is the size of the output (output includes intersection points and line segments intersecting at the points)
 - **O**(*n*+*I*) space
 - where *I* is the size of the number of intersections

- With better analysis using Euler's Formula
 - $-O(n \log n + I \log n)$ time
 - where *I* is the size of the number of intersections
 - Let p be all intersections, then $k = \sum m(p)$.
 - By treating the segments and intersections as a planar graph, we know m(p)=degree(p)
 - Therefore, $k = \sum_{p} m(p) = \sum_{p} \text{degree}(p) = 2|E|.$
 - So, how large is |E|, the number of edges in G?

- O(n) space, without storing all events

• e.g. only store intersection points of pairs of segments that are currently adjacent on the sweep line

Application 2 Overlay of Subdivisions

- Let S_1 , S_2 be two planar subdivisions of complexity n_1 and n_2 respectively; and let $n = n_1 + n_2$
- Overlay of S₁ and S₂ can be constructed in
 O(n log n + k log n) time, where k is the complexity of overlay

Define a Subdivision: Doubly-Connected Edge List

- 3 records: vertices, faces and "half-edges"
- Vertex:
 - coordinates(v)
 - a ptr to a half-edge
- Face:
 - OuterComponent(f): outer boundary
 - InnerComponent(f): holes boundaries
- Half edge:
 - a ptr to Origin(e)
 - a ptr to a twin-edge
 - ptrs to Next(e) & Prev(e) edges
 - its left IncidentFace(e)

Doubly-Connected Edge List

- V₃:
 - coordinates(v)
 - a ptr to a half-edge \boldsymbol{e}_3
- f₂:
 - OuterComponent(f): e_6
 - InnerComponent(f): e₁₁
- e₁:
 - a ptr to Origin(e): V_3
 - a ptr to a twin-edge: e_2
 - ptrs to Next(e) & Prev(e) edges: e_2 and e_9
 - its left IncidentFace(e): f_1

MASON

Doubly-Connected Edge List

- How do you find all incident edges of f₁ ?
- How do you find all incident vertices of e₄?
- How do you find all incident edges of v₃?
- How do you find all incident faces of v₃?

Application 2 (Overlay of Subdivisions

- 1. Find intersections
- 2. Update half-edges

- **3.** Update faces
 - 1. Find boundaries
 - 2. Classify boundaries (external or hole)
 - 3. Group boundaries

Application 2 Overlay of Subdivisions

Update faces

- 1. Find boundaries (cycles)
- Classify boundaries (external or hole) 2.
- 3. Group boundaries

Application 3 Polygon intersection

Let P₁, P₂ be two polygons, check if they collide with each other in O(n log n) time

Application 4 Boolean Operations

- Let P_1 , P_2 be two polygons with n_1 and n_2 vertices respectively; and let $n = n_1 + n_2$
- Their Boolean operations (intersection, union, and difference) can each be computed in O(n log n + k log n) time, where k is the complexity of the output

Application 4 Boolean Operations

- P-Q
- PUQ
- P∩Q

CS633

Conclusion

Line segments intersection

- Line sweep paradigm
- Output sensitive algorithm

Doubly-linked edge list

- Representing subdivisions

Applications

- GIS map overlay (lines, regions)
- 2D collision detection and Boolean operations
- 3D morphing

Homework Assignment

• Exercise: 2.1, 2.11, 2.14

Next time: Art Gallery problem & Triangulation