CS633 Lecture 03 Polygon Triangulation

Jyh-Ming Lien

Dept of Computer Science George Mason University

Based on Chapter 3 of the textbook And Ming Lin's lecture note at UNC

Triangulation

- Chapter 3 of the Textbook
- Driving Applications
 - Guarding an art gallery
 - Rendering
 - Collision detection
 - Simulation (finite element method)

Guarding an Art Gallery

- Place as few cameras as possible
- Each part of the gallery must be visible to at least one of them
- Problems: how many cameras and where should they be located?

Art Gallery: Transform to Geometric Problem

- Floor plan may be sufficient and can be approximated as a simple polygon.
 - A simple polygon is a region enclosed by single closed polygonal chain that doesn't self-intersect
- A camera's position corresponds to a point in the polygon
- A camera sees those points in the polygon to which it can be connected with an open segment that lies in the interior of the polygon
 - assuming we have omni-cam that sees all directions

Art Gallery: Problem Analysis

- Bound the number of cameras needed in terms of *n*, number of vertices in the polygon
- 2 polygons with the same number of vertices may not be equally easy to guard
 - A convex polygon can always be guarded by 1
- Note: Find the minimum number of cameras for a specific polygon is NP-hard

Art Gallery: Our Plan

• Triangulate the polygon *P*

- **– Decompose** *P* **into a set of simpler shapes**
- Decompose each shape to triangle
- Place a camera in each triangle

Triangulation of a Polygon

- **Definition:** A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals
- Triangulations are usually **NOT** unique

Can Any Polygon Be Triangulated?

• Yes, but how?

Size of Triangulation

• Any triangulation of a simple polygon with *n* vertices consists of exactly *n*-2 triangles

• How many diagonals?

Polygon Triangulation

- Brute force: Find a diagonal and triangulate the two resulting sub-polygons recursively: O(n²)
- Ear clipping/trimming: **O**(*n*²)

Clearly we need more efficiently?

Polygon Triangulations

- Triangulation of a convex polygon: **O**(*n*)
- First decompose a nonconvex polygon into **convex** pieces and then triangulate the pieces.
 - But, it is as hard to do a convex decomposition as to triangulate the polygon

=> Decompose a polygon into monotone pieces

Polygon Triangulations

- Decompose a simple polygon into a monotone polygon: O(*n*log*n*)
 - Plane sweep algorithm
- Triangulation of a monotone polygon: **O**(*n*)

Total time to compute a triangulation: O(nlogn)

Partition a Polygon into Monotone Pieces

• A simple polygon is monotone w.r.t. a line *l* if for any line *l*' perpendicular to *l* the intersection of the polygon with *l*' is connected

Partition a Polygon into Monotone Pieces

 Property: If we walk from a topmost to a bottom-most vertex along the left (or right) boundary chain, then we always move downwards or horizontally, never upwards

Turn Vertex

Imagine walking from the topmost vertex of *P* to the bottommost vertex on the left/right boundary chain.....

• Definition: A vertex where the direction in which we walk switches from downward to upward or vice versa

Types of Turn Vertices

- Start Vertex its two neighbors lie below it and the interior angle < 180°
- End Vertex its two neighbors lie above it and the interior angle < 180°
- Split Vertex its two neighbors lie below it and the interior angle > 180°
- Merge Vertex its two neighbors lie above it and the interior angle > 180°

Turn Vertex

• To partition a polygon into y-monotone pieces, get rid of split and merge vertices by adding diagonals

Property Summary

- The split and merge vertices are sources of local non-monotonicity
- A polygon is y-monotone if it has no split or merge vertices
- Use the plane-sweep method to remove split & merge vertices

Plane Sweep

• Input: A simple polygon *P*

- $v_1 \dots v_n$: a counter-clockwise enumeration of vertices of *P*
- $e_1 \dots e_n$: a set of edges of *P*, where $e_i = segment(v_i, v_{i+1})$
- Events (places where the sweep line status changes)
 - Polygon vertices
 - Sorted from top to bottom

Plane Sweep

• Status of the sweep line

- Intersecting edges
 - Ordered from left to right
 - Only store edges that P is on the right (Should be clear later)
- Helper of the edge
- The helper of edge e_i
 - Is a vertex
 - The lowest vertex above *l* that can see *e_i*

Remove Split Point

- If the sweep line stops at a split point
 - add a diagonal
 - from the split point
 - To the lowest point (above *l*) between its left and right segment (in the status)
 - this is exactly the helper of the segment

Remove Merge Point

- If the sweep line stops at a merge point
 - add a diagonal
 - from the merge point
 - To the highest point (below *l*) between its left and right segment (in the status)

Remove Merge Point

- Merge point can be also handled using helper!
 - When the sweep line is at q, the helper of e_i is p
 - After at q, the helper of e_i is q
 - When a merge point is replaced we add a diagonal

BREAK TIME!

• Take a 10 min break

Make Monotone: Algorithm

Input: A simple polygon *P*

Output: A partitioning of *P* into monotone subpolygons

- **1.** Construct a priority queue *Q* on the vertices of *P*, using their *y*-coordinates as priority. If two points have the same *y*-coordinates, the one with smaller *x* has higher priority
- **2.** Initialize an empty sweep line status *T*
- **3.** while *Q* is not empty
- **4. do** Remove v_i with the highest priority from Q
- 5. Call the appropriate procedure to handle the vertex, depending on its type

End Vertex

(Delete e_{i-1})

- 1. if *helper(e_{i-1})* is a merge vertex
 then Insert diagonal connecting v_i
 to *helper(e_{i-1})* in D
- **2.** Delete e_{i-1} from T

Split Vertex

 e_{j}

Helper of e_i

 \mathcal{V}_i

 e_i

(Update e_j)

Search in *T* to find the edge e_j directly left of v_i Insert diagonal connecting v_i to $helper(e_j)$ in *D*

 $helper(e_j) \leftarrow v_i$

(Insert *e_i*)

Insert e_i in T and set $helper(e_i)$ to v_i

Merge Vertex

(Delete e_{i-1})
if helper(e_{i-1}) is a merge vertex
 then Insert diagonal connecting v_i to
 helper(e_{i-1}) in D
Delete e_{i-1} from T

(Update e_j)

Search in *T* to find the edge e_j directly left of v_i

if $helper(e_i)$ is a merge vertex

then Insert diagonal connecting v_i to $helper(e_j)$ in D

 $helper(e_j) \leftarrow v_i$

Regular Vertex

• the interior of *P* lies to the right of v_i

```
(Delete e<sub>i-1</sub>)
if helper(e<sub>i-1</sub>) is a merge vertex
    then Insert diag. connect v<sub>i</sub> to helper(e<sub>i-1</sub>) in D
Delete e<sub>i-1</sub> from T
  (Insert e<sub>i</sub>)
```

```
Insert e_i in T and set helper(e_i) to v_i
```

• the interior of *P* lies to the left of v_i

```
(Update e_j)
Search in T to find the edge e_j directly left of v_i
if helper(e_j) is a merge vertex
then Insert diag. connect v_i to helper(e_j) in D
helper(e_i) \leftarrow v_i
(CS633)
```


Partitioning Analysis

- **Construct priority queue:** *O(nlogn)*
- Initialize T: O(1)
- Handle an event: $O(\log n)$
 - one operation on Q: O(logn)
 - at most 1 query, 1 insertion & 1 deletion on T: O(logn)
- Total run time: O(n log n)
- **Storage:** *O(n)*

Polygon Triangulation

- Decompose a simply polygon into a monotone polygon: O(nlogn)
 - Plane sweep algorithm
- Triangulation of a monotone polygon: **O**(*n*)

Total time to compute a triangulation: O(*n***log***n*)

- Walk from top to bottom on both chains (Sweep line, again)
- Greedy algorithm. Add as many diagonals as possible from each vertex

- Assuming all vertices are one the same side
- We maintain a stack S
- S contains vertices
 - Above the sweep line
 - Not be triangulated
 - Forms an upside-down funnel

- Now there is a vertex on the other side of the chain
- Maintain the same stack S
- When the sweep line stops at this new vertex, add diagonals from it to all the vertices in S

- This funnel is an invariant of the algorithm
 - consisted of a singe edge & a chain of reflex vertices
 - only the highest vertex (at the bottom of S) is convex

Summary

When the sweep line is at a vertex V_i

On the single edge side

- must be the lower end point of the edge: add diagonals to all reflex edges, except last one.
- This vertex and first are pushed back to stack

On the chain of reflex vertices

- **–** pop one; this one is already connected to V_i
- pop vertices from stack till not possible

Input: A strictly y-monotone polygon *P* stored in a d.-c. e. list *D*

Output: A triangulation of *P* stored in doubly-connected edge list *D*

- **1.** Merge the vertices on the left and right chains of *P* into one sequence, sorted on decreasing y-coordinate, with the leftmost comes first. Let $u_1 \dots u_n$ denote sorted sequence
- **2.** Push u_1 and u_2 onto the stack *S*
- 3. for $j \leftarrow 3$ to $n \leftarrow 1$

5.

- 4. if u_j and vertex on top of *S* are on different chains
 - Add diagonals from u_i to all vertices in S
- 6. if u_i and vertex on top of *S* are on same chains
- 7. Add diagonals from u_i to vertices in S until you cannot do so
- **8.** Add diagonals from u_n to all stack vertices except the

Triangulation Algorithm Analysis

- A strictly y-monotone polygon with *n* vertices can be triangulated in linear time
- A simple polygon with *n* vertices can be triangulated in O(*n* log *n*) time with an algorithm that uses O(*n*) storage

Art Gallery Problem

- We can guard a gallery by *n*-2 cameras
- We can do better by placing cameras at the diagonals, then we only need *n*/2
- Even better by placing cameras at vertices of the polygons => [n/3] needed by using 3-coloring scheme of a triangulated polygon (ex) comb-shape like polygon
 - 3-coloring of a polygon always exists

Art Gallery Theorem

• For a simple polygon with *n* vertices, $\lfloor n/3 \rfloor$ cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras

Chvátal's Comb

Conclusion

• Triangulation in O(nlogn) time

- n is the number of vertices
- Decompose a polygon into monotone subpolygons: O(nlogn) time (plane-sweep algorithm)
- Triangulate each subpolygons: O(n) time

• Art gallery problem

- Represent the floor plan as a polygon
- Triangulate the polygon
- 3 coloring the vertices of the "graph of the triangulation"
- Place cameras at the color with fewest vertices
- Art gallery theorem: $\lfloor n/3 \rfloor$ cameras is always sufficient but sometime necessary

Assignment

- Exercises 3.6 & 3.13.
- Check the discussion board on Friday night (9/18)
 - I will send out a programming assignment
 - Written in C or C++
 - Art gallery problem
 - Due by midnight 11:59pm EDT Sep 27
 - Detailed instructions will be posted as well