CS633 Lecture 03 Polygon Triangulation

Jyh-Ming Lien
Dept of Computer Science
George Mason University

Based on Chapter 3 of the textbook And Ming Lin's lecture note at UNC

Triangulation

- Chapter 3 of the Textbook
- Driving Applications
- Guarding an art gallery
- Rendering

- Collision detection
- Simulation (finite element method)
- ...

Guarding an Art Gallery

- Place as few cameras as possible
- Each part of the gallery must be visible to at least one of them
- Problems: how many cameras and where should they be located?

Art Gallery: Transform to Geometric Problem

- Floor plan may be sufficient and can be approximated as a simple polygon.
- A simple polygon is a region enclosed by single closed polygonal chain that doesn't self-intersect
- A camera's position corresponds to a point in the polygon
- A camera sees those points in the polygon to which it can be connected with an open segment that lies in the interior of the polygon
- assuming we have omni-cam that sees all directions

Art Gallery: Problem Analysis

- Bound the number of cameras needed in terms of n, number of vertices in the polygon
- 2 polygons with the same number of vertices may not be equally easy to guard
- A convex polygon can always be guarded by 1
- Note: Find the minimum number of cameras for a specific polygon is NP-hard

Art Gallery: Our Plan

- Triangulate the polygon P
- Decompose P into a set of simpler shapes
- Decompose each shape to triangle
- Place a camera in each triangle

Triangulation of a Polygon

- Definition: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals
- Triangulations are usually NOT unique

Can Any Polygon Be Triangulated?

- Yes, but how?

Size of Triangulation

- Any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles
- How many diagonals?

Polygon Triangulation

- Brute force: Find a diagonal and triangulate the two resulting sub-polygons recursively: $\mathbf{O}\left(n^{2}\right)$
- Ear clipping/trimming: $\mathbf{O}\left(n^{2}\right)$

Clearly we need more efficiently?

Polygon Triangulations

- Triangulation of a convex polygon: $\mathbf{O}(n)$
- First decompose a nonconvex polygon into convex pieces and then triangulate the pieces.
- But, it is as hard to do a convex decomposition as to triangulate the polygon
=> Decompose a polygon into monotone pieces

Polygon Triangulations

- Decompose a simple polygon into a monotone polygon: $\mathbf{O}(n \log n)$
- Plane sweep algorithm
- Triangulation of a monotone polygon: $\mathbf{O (n)}$

Total time to compute a triangulation: $\mathrm{O}(n \log n)$

Partition a Polygon into Monotone Pieces

- A simple polygon is monotone w.r.t. a line l if for any line l ' perpendicular to l the intersection of the polygon with l ' is connected

Partition a Polygon into Monotone Pieces

- Property: If we walk from a topmost to a bottom-most vertex along the left (or right) boundary chain, then we always move downwards or horizontally, never upwards

CS633

Turn Vertex

Imagine walking from the topmost vertex of P to the bottommost vertex on the left/right boundary chain......

- Definition: A vertex where the direction in which we walk switches from downward to upward or vice versa

Turn Vertex

Types of Turn Vertices

- Start Vertex - its two neighbors lie below it and the interior angle $<\mathbf{1 8 0}^{\circ}$
- End Vertex - its two neighbors lie above it and the interior angle $<\mathbf{1 8 0}^{\circ}$
- Split Vertex - its two neighbors lie below it and the interior angle $>\mathbf{1 8 0}^{\circ}$
- Merge Vertex - its two neighbors lie above it and the interior angle $>\mathbf{1 8 0}^{\circ}$

Types of Turn Vertices

Turn Vertex

- To partition a polygon into y-monotone pieces, get rid of split and merge vertices by adding diagonals

Property Summary

- The split and merge vertices are sources of local non-monotonicity
- A polygon is y-monotone if it has no split or merge vertices
- Use the plane-sweep method to remove split \& merge vertices

Plane Sweep

- Input: A simple polygon P
- $v_{1} \ldots v_{n}$: a counter-clockwise enumeration of vertices of P
- $e_{1} \ldots e_{n}$: a set of edges of P, where $e_{i}=\operatorname{segment}\left(v_{i}, v_{i+1}\right)$
- Events (places where the sweep line status changes)
- Polygon vertices
- Sorted from top to bottom

Plane Sweep

- Status of the sweep line
- Intersecting edges
- Ordered from left to right
- Only store edges that P is on the right (Should be clear later)
- Helper of the edge
- The helper of edge e_{i}
- Is a vertex
- The lowest vertex above l that can see e_{i}

Remove Split Point

- If the sweep line stops at a split point
- add a diagonal
- from the split point
- To the lowest point (above l) between its left and right segment (in the status)
- this is exactly the helper of the segment

Remove Merge Point

- If the sweep line stops at a merge point
- add a diagonal
- from the merge point
- To the highest point (below l) between its left and right segment (in the status)

Remove Merge Point

- Merge point can be also handled using helper!
- When the sweep line is at q, the helper of e_{i} is p
- After at q, the helper of e_{i} is q
- When a merge point is replaced we add a diagonal

BREAK TIME!

- Take a 10 min break

Make Monotone: Algorithm

Input: A simple polygon P
Output: A partitioning of P into monotone subpolygons

1. Construct a priority queue Q on the vertices of P, using their y coordinates as priority. If two points have the same y-coordinates, the one with smaller x has higher priority
2. Initialize an empty sweep line status T
3. while Q is not empty
4. do Remove v_{i} with the highest priority from Q
5. Call the appropriate procedure to handle the vertex, depending on its type

Start Vertex

(Insert e_{i})
Insert e_{i} in T and set $h e l p e r\left(e_{i}\right)$ to v_{i}

End Vertex

(Delete e_{i-1})

1. if helper $\left(e_{i-1}\right)$ is a merge vertex then Insert diagonal connecting v_{i} to helper (e_{i-1}) in D
2. Delete e_{i-1} from T

Split Vertex

(Update e_{j})

Search in T to find the edge e_{j} directly left of v_{i}
Insert diagonal connecting v_{i} to helper $\left(e_{j}\right)$ in D
helper $\left(e_{j}\right) \leftarrow v_{i}$

(Insert e_{i})

Insert e_{i} in T and set helper $\left(e_{i}\right)$ to v_{i}

Merge Vertex

(Delete e_{i-1})

if helper $\left(e_{i-1}\right)$ is a merge vertex
then Insert diagonal connecting v_{i} to helper $\left(e_{i-1}\right)$ in D
Delete e_{i-1} from T

(Update e_{j})

Search in T to find the edge e_{j} directly left of v_{i}
if $\operatorname{helper}\left(e_{j}\right)$ is a merge vertex then Insert diagonal connecting v_{i} to
 helper $\left(e_{j}\right)$ in D
helper $\left(e_{j}\right) \leftarrow v_{i}$

Regular Vertex

- the interior of P lies to the right of v_{i}
(Delete e_{i-1})
if helper $\left(e_{i-1}\right)$ is a merge vertex
then Insert diag. connect v_{i} to helper $\left(e_{i-1}\right)$ in D
Delete e_{i-1} from T
(Insert e_{i})
Insert e_{i} in T and set helper $\left(e_{i}\right)$ to v_{i}
- the interior of P lies to the left of v_{i}
(Update e_{j})
Search in T to find the edge e_{j} directly left of v_{i}
if helper $\left(e_{j}\right)$ is a merge vertex
then Insert diag. connect v_{i} to helper $\left(e_{j}\right)$ in D
$\operatorname{helper}\left(e_{i}\right) \leftarrow v_{i}$

Regular Vertex

- the interior of P lies to the right of v_{i}
(Delete $\mathrm{e}_{\mathrm{i}-1}$)
(Insert e_{i})

Regular Vertex

- the interior of P lies to the left of v_{i}
(Update e_{j})

Partitioning Analysis

- Construct priority queue: O (nlogn)
- Initialize T: $O(1)$
- Handle an event: $O(\log n)$
- one operation on $Q: O(\log n)$
- at most $\mathbf{1}$ query, $\mathbf{1}$ insertion \& $\mathbf{1}$ deletion on $T: O(\log n)$
- Totall run time: $O(n \log n)$
- Storage: $O(n)$

Example

Example

Example

Example

Example

Example

$\mathrm{T}=$
(e2, v2)

Example

Example

Example

Example

Example

$\mathrm{T}=$

Example

$\mathrm{T}=$

Example

$\mathrm{T}=$

Polygon Triangulation

- Decompose a simply polygon into a monotone polygon: $\mathbf{O}(n \log n)$
- Plane sweep algorithm
- Triangulation of a monotone polygon: $\mathbf{O}(n)$

Total time to compute a triangulation: $\mathrm{O}(n \log n)$

Triangulate a Monotone Polygon

- Walk from top to bottom on both chains (Sweep line, again)
- Greedy algorithm. Add as many diagonals as possible from each vertex

Triangulate a Monotone Polygon

- Assuming all vertices are one the same side
- We maintain a stack S
- S contains vertices
- Above the sweep line
- Not be triangulated
- Forms an upside-down funnel

Triangulate a Monotone Polygon

- Now there is a vertex on the other side of the chain
- Maintain the same stack S
- When the sweep line stops at this new vertex, add diagonals from it to all the vertices in S

Triangulate a Monotone Polygon

- This funnel is an invariant of the algorithm
- consisted of a singe edge $\&$ a chain of reflex vertices
- only the highest vertex (at the bottom of S) is convex

Summary

When the sweep line is at a vertex V_{j}

On the single edge side

- must be the lower end point of the edge: add diagonals to all reflex edges, except last one.
- This vertex and first are pushed back to stack

On the chain of reflex vertices

- pop one; this one is already connected to V_{j}
- pop vertices from stack till not possible

Triangulate a Monotone Polygon

Input: A strictly y-monotone polygon P stored in a d.-c. e. list D
Output: A triangulation of P stored in doubly-connected edge list D

1. Merge the vertices on the left and right chains of P into one sequence, sorted on decreasing y-coordinate, with the leftmost comes first. Let $u_{1} \ldots u_{n}$ denote sorted sequence
2. Push u_{1} and u_{2} onto the stack S
3. for $\mathbf{j} \leftarrow \mathbf{3}$ to $\mathbf{n} \leftarrow \mathbf{1}$
4. if u_{j} and vertex on top of S are on different chains
5. Add diagonals from u_{j} to all vertices in S
6. if u_{j} and vertex on top of S are on same chains
7. Add diagonals from u_{j} to vertices in \mathbf{S} until you cannot do so
8. Add diagonals from u_{n} to all stack vertices except the

Triangulation Algorithm Analysis

- A strictly y-monotone polygon with n vertices can be triangulated in linear time
- A simple polygon with n vertices can be triangulated in $\mathrm{O}(n \log n)$ time with an algorithm that uses $\mathrm{O}(n)$ storage

Art Gallery Problem

- We can guard a gallery by $n-2$ cameras
- We can do better by placing cameras at the diagonals, then we only need $n / 2$
- Even better by placing cameras at vertices of the polygons => $\lfloor n / 3\rfloor$ needed by using 3-coloring scheme of a triangulated polygon (ex) combshape like polygon
- 3-coloring of a polygon always exists

Art Gallery Problem

CS633

Art Gallery Problem

3-coloring

Dual graph

How many cameras are really Needed?

Art Gallery Theorem

- For a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras

Chvátal's Comb

Conclusion

- Triangulation in $\mathrm{O}(n \log n)$ time
- n is the number of vertices
- Decompose a polygon into monotone subpolygons: $\mathrm{O}(n \log n)$ time (plane-sweep algorithm)
- Triangulate each subpolygons: $\mathrm{O}(n)$ time
- Art gallery problem
- Represent the floor plan as a polygon
- Triangulate the polygon
- 3 coloring the vertices of the "graph of the triangulation"
- Place cameras at the color with fewest vertices
- Art gallery theorem: $\lfloor n / 3\rfloor$ cameras is always sufficient but sometime necessary

Assignment

- Exercises 3.6 \& 3.13.
- Check the discussion board on Friday night (9/18)
- I will send out a programming assignment
- Written in C or C++
- Art gallery problem
- Due by midnight 11:59pm EDT Sep 27
- Detailed instructions will be posted as well

