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Triangulation

• Chapter 3 of the Textbook

• Driving Applications
– Guarding an art gallery
– Rendering
– Collision detection
– Simulation (finite element method)
– … 
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Guarding an Art Gallery

• Place as few cameras as possible

• Each part of the gallery must be visible 
to at least one of them

• Problems: how many cameras and 
where should they be located?
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Art Gallery: Transform to
 Geometric Problem

• Floor plan may be sufficient and can be 
approximated as a simple polygon.

–  A simple polygon is a region enclosed by single closed 
polygonal chain that doesn’t self-intersect 

• A camera’s position corresponds to a point in the 
polygon

• A camera sees those points in the polygon to which 
it can be connected with an open segment that lies 
in the interior of the polygon
– assuming we have omni-cam that sees all directions
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Art Gallery:
Problem Analysis

• Bound the number of cameras needed in terms of 
n, number of vertices in the polygon

• 2 polygons with the same number of vertices may 
not be equally easy to guard
– A convex polygon can always be guarded by 1

• Note: Find the minimum number of cameras for a 
specific polygon is NP-hard
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Art Gallery: Our Plan

• Triangulate the polygon P
– Decompose P into a set of simpler shapes
– Decompose each shape to triangle

• Place a camera in each triangle
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Triangulation of a Polygon

• Definition:  A decomposition of a polygon into 
triangles by a maximal set of non-intersecting 
diagonals 

• Triangulations are usually NOT unique
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Can Any Polygon Be Triangulated?

• Yes, but how?

v
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Size of Triangulation

• Any triangulation of a simple polygon 
with n vertices consists of exactly n-2 
triangles 

• How many diagonals?
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Polygon Triangulation

• Brute force: Find a diagonal and 
triangulate the two resulting sub-polygons 
recursively:  O(n2)

• Ear clipping/trimming:  O(n2)

Clearly we need more efficiently?
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Polygon Triangulations

• Triangulation of a convex polygon: O(n)

• First decompose a nonconvex polygon into 
convex pieces and then triangulate the pieces.  
– But, it is as hard to do a convex decomposition as 

to triangulate the polygon

=> Decompose a polygon into monotone pieces
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Polygon Triangulations

• Decompose a simple polygon into a monotone 
polygon: O(nlogn)
– Plane sweep algorithm

• Triangulation of a monotone polygon: O(n)

Total time to compute a triangulation: O(nlogn)
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Partition a Polygon into Monotone 
Pieces

• A simple polygon is monotone w.r.t. a line l if for any 
line l’ perpendicular to l  the intersection of the 
polygon with l’ is connected

ll

k
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Partition a Polygon into Monotone 
Pieces

• Property:  If we walk from a topmost to a bottom-most vertex 
along the left (or right) boundary chain, then we always move 
downwards or horizontally, never upwards

l
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Turn Vertex

Imagine walking from the topmost vertex of P to 
the bottommost vertex on the left/right 
boundary chain…... 

• Definition:  A vertex where the direction in 
which we walk switches from downward to 
upward or vice versa 
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Turn Vertex

l
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Types of Turn Vertices

• Start Vertex - its two neighbors lie below it 
and the interior angle < 180°

• End Vertex - its two neighbors lie above it and 
the interior angle < 180°

• Split Vertex - its two neighbors lie below it and 
the interior angle > 180°

• Merge Vertex - its two neighbors lie above it 
and the interior angle > 180°
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Types of Turn Vertices

split

merge

start

end
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Turn Vertex

• To partition a polygon 
into y-monotone pieces, 
get rid of split and merge 
vertices by adding 
diagonals
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Property Summary

• The split and merge vertices are sources 
of local non-monotonicity

• A polygon is y-monotone if it has no 
split or merge vertices

• Use the plane-sweep method to remove 
split & merge vertices
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Plane Sweep

• Input: A simple polygon P
– v1 … vn:  a counter-clockwise 

enumeration of vertices of P

– e1 … en:  a set of edges of P, where 
ei = segment (vi , vi+1)

• Events (places where the sweep 
line status changes)
– Polygon vertices

– Sorted from top to bottom vi

vi+1
ei
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Plane Sweep

• Status of the sweep line
– Intersecting edges

• Ordered from left to right

• Only store edges that P is on the 
right (Should be clear later)

– Helper of the edge

• The helper of edge  ei

– Is a vertex

– The lowest vertex above l that 
can see ei

ei

Helper of  ei
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Remove Split Point

• If the sweep line stops at a 
split point
– add a diagonal 

– from the split point

– To the lowest point (above l) 
between its left and right 
segment (in the status)

– this is exactly the helper of  
the segment

ei



CS633

Remove Merge Point

• If the sweep line stops at a 
merge point
– add a diagonal 

– from the merge point

– To the highest point (below l) 
between its left and right 
segment (in the status)

ei
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Remove Merge Point

• Merge point can be also 
handled using helper!
– When the sweep line is at q, the 

helper of ei is p 

– After at q, the helper of ei is q

– When a merge point is replaced 
we add a diagonal

ei

qp



CS633

BREAK TIME!

• Take a 10 min break
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Make Monotone: Algorithm

Input: A simple polygon P

Output: A partitioning of P into monotone subpolygons

1.  Construct a priority queue Q on the vertices of P, using their y-
coordinates as priority.  If two points have the same y-coordinates, 
the one with smaller x has higher priority

2.  Initialize an empty sweep line status T

3.  while Q is not empty

4.   do Remove vi with the highest priority from Q

5.         Call the appropriate procedure to handle the vertex, 

                   depending on its type
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Start Vertex

(Insert ei)

Insert ei in T and set  helper(ei) to vi

ei

vi
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End Vertex

(Delete ei-1)
1.  if helper(ei-1) is a merge vertex

     then Insert diagonal connecting vi 
to helper(ei-1) in D

2.  Delete ei-1 from T

ei-1

vi

ei
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Split Vertex

(Update ej )
Search in T to find the edge ej directly 

left of vi

Insert diagonal connecting vi to 
helper(ej ) in D

helper(ej ) ← vi

(Insert ei)
Insert ei in T and set helper(ei ) to vi

ej vi

Helper of  ej

ei
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Merge Vertex

(Delete ei-1)
if helper(ei-1) is a merge vertex
     then Insert diagonal connecting vi to 

helper(ei-1) in D

Delete ei-1 from T

(Update ej )
Search in T to find the edge ej directly left 

of vi

if helper(ej) is a merge vertex
   then Insert diagonal connecting vi to 

helper(ej) in D
helper(ej ) ← vi

ej

vi Helper of  ej

ei ei-1
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Regular Vertex

• the interior of  P lies to the right of  vi
        (Delete ei-1)

  if helper(ei-1) is a merge vertex
       then Insert diag. connect vi to helper(ei-1) in D 
      Delete ei-1 from T  

     (Insert ei) 
      Insert ei in T and set helper(ei) to vi

• the interior of  P lies to the left of  vi
     (Update ej )

     Search in T to find the edge ej directly left of vi

  if helper(ej) is a merge vertex
       then Insert diag. connect vi to helper(ej) in D

    helper(ej ) ← vi
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Regular Vertex

• the interior of P 
lies to the right 
of vi

vi

ei

ei-1

(Delete ei-1)

 (Insert ei) 
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Regular Vertex

• the interior of P 
lies to the left of 
vi

vi ei

ei-1

(Update ej)

ej
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Partitioning Analysis

• Construct priority queue: O(nlogn)
• Initialize T: O(1)
• Handle an event: O(log n)

– one operation on Q:  O(logn)
– at most 1 query, 1 insertion & 1 deletion on T: O(logn)

• Total run time:  O(n log n) 
• Storage: O(n)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e12, v12)



CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v1) (e12, v12)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v1) (e12, v11)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v13)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v10)

Add diagonal v13v10
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e2, v2)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e2, v2) (e8,v8)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e3, v3) (e8,v8)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e3, v9)
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e3, v6) (e6,v6)

Add diagonal v6v9
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1
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Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1
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Polygon Triangulation

• Decompose a simply polygon into a monotone 
polygon: O(nlogn)
– Plane sweep algorithm

• Triangulation of a monotone polygon: O(n)

Total time to compute a triangulation: O(nlogn)
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Triangulate a Monotone Polygon

• Walk from top to bottom on both chains 
(Sweep line, again)

• Greedy algorithm. Add as many 
diagonals as possible from each vertex
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Triangulate a Monotone Polygon

• Assuming all vertices 
are one the same side

• We maintain a stack S

• S contains vertices 
– Above the sweep line

– Not be triangulated

– Forms an upside-down 
funnel 
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Triangulate a Monotone Polygon

• Now there is a vertex 
on the other side of the 
chain

• Maintain the same stack 
S

• When the sweep line 
stops at this new vertex, 
add diagonals from it to 
all the vertices in S 
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Triangulate a Monotone Polygon

• This funnel is an invariant of the algorithm
– consisted of a singe edge & a chain of reflex vertices
– only the highest vertex (at the bottom of S) is convex
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Summary
When the sweep line is at a vertex Vj

On the single edge side
– must be the lower end point of the edge: add diagonals to 

all reflex edges, except last one. 
– This vertex and first are pushed back to stack

On the chain of reflex vertices
– pop one; this one is already connected to Vj

– pop vertices from stack till not possible
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Triangulate a Monotone Polygon
Input: A strictly y-monotone polygon P stored in a d.-c. e. list D
Output: A triangulation of P stored in doubly-connected edge list D
1.  Merge the vertices on the left and right chains of P into one sequence, sorted 

on decreasing y-coordinate, with the leftmost comes first.  Let u1 ...un 
denote sorted sequence

2.  Push u1 and u2 onto the stack S

3.  for j ← 3 to n ← 1
4.         if uj  and vertex on top of S are on different chains 

5.                    Add diagonals from uj to all vertices in S

6.             if uj  and vertex on top of S are on same chains 

7.                    Add diagonals from uj to vertices in S until you cannot do so

8.  Add diagonals from un to all stack vertices except the
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Triangulation Algorithm Analysis

• A strictly y-monotone polygon with n 
vertices can be triangulated in linear 
time

• A simple polygon with n vertices can be 
triangulated in O(n log n) time with an 
algorithm that uses O(n) storage
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Art Gallery Problem

• We can guard a gallery by n-2 cameras

• We can do better by placing cameras at the 
diagonals, then we only need n/2

• Even better by placing cameras at vertices of the 
polygons => n/3 needed by using 3-coloring 
scheme of a triangulated polygon (ex) comb-
shape like polygon
– 3-coloring of a polygon always exists
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Art Gallery Problem

9 cameras

11 vertices
9 triangles

5 cameras
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Art Gallery Problem

Dual graph

? Traverse the 
dual graph in 
DFS order

? cameras

How many cameras are really
Needed?

3-coloring
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Art Gallery Theorem

• For a simple polygon with n vertices, n/3 cameras are 
occasionally necessary and always sufficient to have 
every point in the polygon visible from at least one of 
the cameras

Chvátal's Comb
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Conclusion

• Triangulation in O(nlogn) time
– n is the number of vertices
– Decompose a polygon into monotone subpolygons: O(nlogn) 

time (plane-sweep algorithm)
– Triangulate each subpolygons: O(n) time

• Art gallery problem
– Represent the floor plan as a polygon
– Triangulate the polygon
– 3 coloring the vertices of the “graph of the triangulation”
– Place cameras at the color with fewest vertices
– Art gallery theorem: n/3 cameras is always sufficient but 

sometime necessary
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Assignment

• Exercises 3.6 & 3.13. 

• Check the discussion board on Friday 
night (9/18)
– I will send out a programming assignment
– Written in C or C++

– Art gallery problem
– Due by midnight 11:59pm EDT Sep 27

• Detailed instructions will be posted as well


