
CS633 Lecture 03
Polygon Triangulation

Jyh-Ming Lien
Dept of Computer Science

George Mason University

Based on Chapter 3 of the textbook
And Ming Lin’s lecture note at UNC

CS633

Triangulation

• Chapter 3 of the Textbook

• Driving Applications
– Guarding an art gallery
– Rendering
– Collision detection
– Simulation (finite element method)
– …

CS633

Guarding an Art Gallery

• Place as few cameras as possible

• Each part of the gallery must be visible
to at least one of them

• Problems: how many cameras and
where should they be located?

CS633

Art Gallery: Transform to
 Geometric Problem

• Floor plan may be sufficient and can be
approximated as a simple polygon.

– A simple polygon is a region enclosed by single closed
polygonal chain that doesn’t self-intersect

• A camera’s position corresponds to a point in the
polygon

• A camera sees those points in the polygon to which
it can be connected with an open segment that lies
in the interior of the polygon
– assuming we have omni-cam that sees all directions

CS633

Art Gallery:
Problem Analysis

• Bound the number of cameras needed in terms of
n, number of vertices in the polygon

• 2 polygons with the same number of vertices may
not be equally easy to guard
– A convex polygon can always be guarded by 1

• Note: Find the minimum number of cameras for a
specific polygon is NP-hard

CS633

Art Gallery: Our Plan

• Triangulate the polygon P
– Decompose P into a set of simpler shapes
– Decompose each shape to triangle

• Place a camera in each triangle

CS633

Triangulation of a Polygon

• Definition: A decomposition of a polygon into
triangles by a maximal set of non-intersecting
diagonals

• Triangulations are usually NOT unique

CS633

Can Any Polygon Be Triangulated?

• Yes, but how?

v

CS633

Size of Triangulation

• Any triangulation of a simple polygon
with n vertices consists of exactly n-2
triangles

• How many diagonals?

CS633

Polygon Triangulation

• Brute force: Find a diagonal and
triangulate the two resulting sub-polygons
recursively: O(n2)

• Ear clipping/trimming: O(n2)

Clearly we need more efficiently?

CS633

Polygon Triangulations

• Triangulation of a convex polygon: O(n)

• First decompose a nonconvex polygon into
convex pieces and then triangulate the pieces.
– But, it is as hard to do a convex decomposition as

to triangulate the polygon

=> Decompose a polygon into monotone pieces

CS633

Polygon Triangulations

• Decompose a simple polygon into a monotone
polygon: O(nlogn)
– Plane sweep algorithm

• Triangulation of a monotone polygon: O(n)

Total time to compute a triangulation: O(nlogn)

CS633

Partition a Polygon into Monotone
Pieces

• A simple polygon is monotone w.r.t. a line l if for any
line l’ perpendicular to l the intersection of the
polygon with l’ is connected

ll

k

CS633

Partition a Polygon into Monotone
Pieces

• Property: If we walk from a topmost to a bottom-most vertex
along the left (or right) boundary chain, then we always move
downwards or horizontally, never upwards

l

CS633

Turn Vertex

Imagine walking from the topmost vertex of P to
the bottommost vertex on the left/right
boundary chain…...

• Definition: A vertex where the direction in
which we walk switches from downward to
upward or vice versa

CS633

Turn Vertex

l

CS633

Types of Turn Vertices

• Start Vertex - its two neighbors lie below it
and the interior angle < 180°

• End Vertex - its two neighbors lie above it and
the interior angle < 180°

• Split Vertex - its two neighbors lie below it and
the interior angle > 180°

• Merge Vertex - its two neighbors lie above it
and the interior angle > 180°

CS633

Types of Turn Vertices

split

merge

start

end

CS633

Turn Vertex

• To partition a polygon
into y-monotone pieces,
get rid of split and merge
vertices by adding
diagonals

CS633

Property Summary

• The split and merge vertices are sources
of local non-monotonicity

• A polygon is y-monotone if it has no
split or merge vertices

• Use the plane-sweep method to remove
split & merge vertices

CS633

Plane Sweep

• Input: A simple polygon P
– v1 … vn: a counter-clockwise

enumeration of vertices of P

– e1 … en: a set of edges of P, where
ei = segment (vi , vi+1)

• Events (places where the sweep
line status changes)
– Polygon vertices

– Sorted from top to bottom vi

vi+1
ei

CS633

Plane Sweep

• Status of the sweep line
– Intersecting edges

• Ordered from left to right

• Only store edges that P is on the
right (Should be clear later)

– Helper of the edge

• The helper of edge ei

– Is a vertex

– The lowest vertex above l that
can see ei

ei

Helper of ei

CS633

Remove Split Point

• If the sweep line stops at a
split point
– add a diagonal

– from the split point

– To the lowest point (above l)
between its left and right
segment (in the status)

– this is exactly the helper of
the segment

ei

CS633

Remove Merge Point

• If the sweep line stops at a
merge point
– add a diagonal

– from the merge point

– To the highest point (below l)
between its left and right
segment (in the status)

ei

CS633

Remove Merge Point

• Merge point can be also
handled using helper!
– When the sweep line is at q, the

helper of ei is p

– After at q, the helper of ei is q

– When a merge point is replaced
we add a diagonal

ei

qp

CS633

BREAK TIME!

• Take a 10 min break

CS633

Make Monotone: Algorithm

Input: A simple polygon P

Output: A partitioning of P into monotone subpolygons

1. Construct a priority queue Q on the vertices of P, using their y-
coordinates as priority. If two points have the same y-coordinates,
the one with smaller x has higher priority

2. Initialize an empty sweep line status T

3. while Q is not empty

4. do Remove vi with the highest priority from Q

5. Call the appropriate procedure to handle the vertex,

 depending on its type

CS633

Start Vertex

(Insert ei)

Insert ei in T and set helper(ei) to vi

ei

vi

CS633

End Vertex

(Delete ei-1)
1. if helper(ei-1) is a merge vertex

 then Insert diagonal connecting vi
to helper(ei-1) in D

2. Delete ei-1 from T

ei-1

vi

ei

CS633

Split Vertex

(Update ej)
Search in T to find the edge ej directly

left of vi

Insert diagonal connecting vi to
helper(ej) in D

helper(ej) ← vi

(Insert ei)
Insert ei in T and set helper(ei) to vi

ej vi

Helper of ej

ei

CS633

Merge Vertex

(Delete ei-1)
if helper(ei-1) is a merge vertex
 then Insert diagonal connecting vi to

helper(ei-1) in D

Delete ei-1 from T

(Update ej)
Search in T to find the edge ej directly left

of vi

if helper(ej) is a merge vertex
 then Insert diagonal connecting vi to

helper(ej) in D
helper(ej) ← vi

ej

vi Helper of ej

ei ei-1

CS633

Regular Vertex

• the interior of P lies to the right of vi
 (Delete ei-1)

 if helper(ei-1) is a merge vertex
 then Insert diag. connect vi to helper(ei-1) in D
 Delete ei-1 from T

 (Insert ei)
 Insert ei in T and set helper(ei) to vi

• the interior of P lies to the left of vi
 (Update ej)

 Search in T to find the edge ej directly left of vi

 if helper(ej) is a merge vertex
 then Insert diag. connect vi to helper(ej) in D

 helper(ej) ← vi

CS633

Regular Vertex

• the interior of P
lies to the right
of vi

vi

ei

ei-1

(Delete ei-1)

 (Insert ei)

CS633

Regular Vertex

• the interior of P
lies to the left of
vi

vi ei

ei-1

(Update ej)

ej

CS633

Partitioning Analysis

• Construct priority queue: O(nlogn)
• Initialize T: O(1)
• Handle an event: O(log n)

– one operation on Q: O(logn)
– at most 1 query, 1 insertion & 1 deletion on T: O(logn)

• Total run time: O(n log n)
• Storage: O(n)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e12, v12)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v1) (e12, v12)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v1) (e12, v11)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v13)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e1, v10)

Add diagonal v13v10

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e2, v2)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e2, v2) (e8,v8)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e3, v3) (e8,v8)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e3, v9)

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

(e3, v6) (e6,v6)

Add diagonal v6v9

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

CS633

Example

T=

e1

e2

e3

e4 e5

e6
e7

e8
e9

e10

e11
e12

e13

v13

v12

v11

v10

v9 v8
v6

v7

v5

v4

v3

v2

v1

CS633

Polygon Triangulation

• Decompose a simply polygon into a monotone
polygon: O(nlogn)
– Plane sweep algorithm

• Triangulation of a monotone polygon: O(n)

Total time to compute a triangulation: O(nlogn)

CS633

Triangulate a Monotone Polygon

• Walk from top to bottom on both chains
(Sweep line, again)

• Greedy algorithm. Add as many
diagonals as possible from each vertex

CS633

Triangulate a Monotone Polygon

• Assuming all vertices
are one the same side

• We maintain a stack S

• S contains vertices
– Above the sweep line

– Not be triangulated

– Forms an upside-down
funnel

CS633

Triangulate a Monotone Polygon

• Now there is a vertex
on the other side of the
chain

• Maintain the same stack
S

• When the sweep line
stops at this new vertex,
add diagonals from it to
all the vertices in S

CS633

Triangulate a Monotone Polygon

• This funnel is an invariant of the algorithm
– consisted of a singe edge & a chain of reflex vertices
– only the highest vertex (at the bottom of S) is convex

CS633

Summary
When the sweep line is at a vertex Vj

On the single edge side
– must be the lower end point of the edge: add diagonals to

all reflex edges, except last one.
– This vertex and first are pushed back to stack

On the chain of reflex vertices
– pop one; this one is already connected to Vj

– pop vertices from stack till not possible

CS633

Triangulate a Monotone Polygon
Input: A strictly y-monotone polygon P stored in a d.-c. e. list D
Output: A triangulation of P stored in doubly-connected edge list D
1. Merge the vertices on the left and right chains of P into one sequence, sorted

on decreasing y-coordinate, with the leftmost comes first. Let u1 ...un
denote sorted sequence

2. Push u1 and u2 onto the stack S

3. for j ← 3 to n ← 1
4. if uj and vertex on top of S are on different chains

5. Add diagonals from uj to all vertices in S

6. if uj and vertex on top of S are on same chains

7. Add diagonals from uj to vertices in S until you cannot do so

8. Add diagonals from un to all stack vertices except the

CS633

Triangulation Algorithm Analysis

• A strictly y-monotone polygon with n
vertices can be triangulated in linear
time

• A simple polygon with n vertices can be
triangulated in O(n log n) time with an
algorithm that uses O(n) storage

CS633

Art Gallery Problem

• We can guard a gallery by n-2 cameras

• We can do better by placing cameras at the
diagonals, then we only need n/2

• Even better by placing cameras at vertices of the
polygons => n/3 needed by using 3-coloring
scheme of a triangulated polygon (ex) comb-
shape like polygon
– 3-coloring of a polygon always exists

CS633

Art Gallery Problem

9 cameras

11 vertices
9 triangles

5 cameras

CS633

Art Gallery Problem

Dual graph

? Traverse the
dual graph in
DFS order

? cameras

How many cameras are really
Needed?

3-coloring

CS633

Art Gallery Theorem

• For a simple polygon with n vertices, n/3 cameras are
occasionally necessary and always sufficient to have
every point in the polygon visible from at least one of
the cameras

Chvátal's Comb

CS633

Conclusion

• Triangulation in O(nlogn) time
– n is the number of vertices
– Decompose a polygon into monotone subpolygons: O(nlogn)

time (plane-sweep algorithm)
– Triangulate each subpolygons: O(n) time

• Art gallery problem
– Represent the floor plan as a polygon
– Triangulate the polygon
– 3 coloring the vertices of the “graph of the triangulation”
– Place cameras at the color with fewest vertices
– Art gallery theorem: n/3 cameras is always sufficient but

sometime necessary

CS633

Assignment

• Exercises 3.6 & 3.13.

• Check the discussion board on Friday
night (9/18)
– I will send out a programming assignment
– Written in C or C++

– Art gallery problem
– Due by midnight 11:59pm EDT Sep 27

• Detailed instructions will be posted as well

