
Motion Planning

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on many people’s lecture notes
Seth Hutchinson at the University of Illinois at Urbana-Champaign, Leo Joskowicz at
Hebrew University, Jean-Claude Latombe at Stanford University, Nancy Amato at Texas
A&M University, Burchan Bayazit at Washington University in St. Louis

CS633

Motion Planning
in continuous spaces

start

goal obstacles

(Basic) Motion Planning
(in a nutshell):

Given a movable object, find a
sequence of valid configurations
that moves the object from the
start to the goal.

CS633

Main Steps In Motion Planning

Workspace

Configuration space

Discretization

Search

Path or no solution

CS633

Classical Motion Planning

• Given a point robot and a workspace
described by polygons

• Roadmap methods
– Visibility graph
– Cell decomposition
– Retraction

CS633

Roadmap Methods

roadmap

Capture the connectivity of Cfree with a roadmap (graph or
network) of one-dimensional curves

CS633

difficult
part

Roadmap Methods

Path Planning with a Roadmap
Input: configurations qinit and qgoal , and B
Output: a path in Cfree connecting qinit and qgoal

1. Build a roadmap in Cfree (preprocessing)
• roadmap nodes are free configurations (or semi-free)
• two nodes connected by edge if can (easily) move
between them

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal

3. Find a path in the roadmap between vinit and vgoal

 - directly gives a path in Cfree

CS633

Visibility Graph

• A visibility graph of C-space for a given C-obstacle is an
undirected graph G where
– nodes in G correspond to vertices of C-obstacle

– nodes connected by edge in G if
• they are connected by an edge in C-obstacle, or

• the straight line segment connecting them lies entirely in Cfree

– (could add qinit and qgoal as roadmap nodes)

CS633

Visibility Graph

• Brute Force Algorithm
– add all edges in C-obstacle to G
– for each pair of vertices (x, y) of C-obstacle, add the edge (x, y)

to G if the straight line segment connecting them lies entirely
in cl(C-free)

• test (x; y) for intersection with all O(n) edges of C-obstacle
• O(n2) pairs to test, each test takes O(n) time

Complexity: O(n3), n is number of vertices in C-obstacle

CS633

Visibility Graph

• A better algorithm?

CS633

Visibility Graph

• An even better algorithm?

CS633

Visibility Graph

• Visibility graphs (Good news)
– are conceptually simple
– shortest paths (if query cannot see each other)
– we have efficient algorithms if is polygonal

• O(n2), where n is number of vertices of C-obstacle
• O(k + n log n), where k is number of edges in G

– we can make a 'reduced' visibility graph (don't need all edges)

CS633

Visibility Graph in 3-D

• Visibility graphs don't necessarily contain
shortest paths in R3

– in fact finding shortest paths in R3 is NP-hard [Canny 1988]

– (1 + ε²) approximation algorithm [Papadimitriou 1985]

Bad news: really only suitable for two-dimensional C

CS633

Reduced Visibility Graph
• we don't really need all the edges in the visibility graph (even if

we want shortest paths)

• Definition: Let L be the line passing through an edge (x; y) in the
visibility graph G. The segment (x; y) is a tangent segment iff L is
tangent to C-obstacle at both x and y.

CS633

Reduced Visibility Graph

• It turns out we need only keep
– convex vertices of C-obstacle
– non-CB edges that are tangent segments

CS633

Reduced Visibility Graph
• Reduced visibility graphs are easier to build

– construct convex hull of each C-obstacle piece eliminate non-convex
vertices

– construct pairwise tangents between each convex C-obstacle piece

• easy to construct tangents between two convex polygons
– How?

CS633

Voronoi Diagram for Point Sets

• Voronoi diagram of point set X consists of straight line segments,
constructed by
– computing lines bisecting each pair of points and their intersections
– computing intersections of these lines
– keeping segments with more than one nearest neighbor

• segments of Vor(X) have largest clearance from X and regions
identify closest point of X

CS633

Voronoi Diagram for Point Sets

• When C = R2 and polygonal C-obstacle, Vor(Cfree) consists of a finite
collection of straight line segments and parabolic curve segments (called
arcs)

– straight arcs are defined by two vertices or two edges of C-obstacle, i.e., the
set of points equally close to two points (or two line segments) is a line

CS633

Voronoi Diagram for Point Sets
• Naive Method of Constucting V or(Cfree)

– compute all arcs (for each vertex-vertex, edge-edge, and vertex-edge
pair)

– compute all intersection points (dividing arcs into segments)

– keep segments which are closest only to the vertices/edges that

CS633

Retraction

• Retraction ρ : Cfree → Vor(Cfree)

To find a path:
1. compute Vor(Cfree)
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively
3. search Vor(Cfree) for a set of arcs connecting ρ(qinit) and ρ(qgoal)

CS633

Cell Decomposition

• Idea: decompose Cfree into a collection K of non-overlapping
cells such that the union of all the cells exactly equals the free C-
space

• Cell Characteristics:
– geometry of cells should be simple so that it is easy to compute a

path between any two configurations in a cell
– it should be pretty easy to test the adjacency of two cells, i.e.,

whether they share a boundary
– it should be pretty easy to find a path crossing the portion of the

boundary shared by two adjacent cells

• Thus, cell boundaries correspond to 'criticalities' in C, i.e.,
something changes when a cell boundary is crossed. No such
criticalities in C occur within a cell.

CS633

Difficult

• Preprocessing:
– represent Cfree as a collection of cells (connected regions of Cfree)

• planning between configurations in the same cell should be 'easy'

– build connectivity graph representing adjacency relations between cells
• cells adjacent if can move directly between them

• Query:
– locate cells kinit and kgoal containing start and goal configurations

– search the connectivity graph for a 'channel' or sequence of adjacent cells
connecting kinit and kgoal

– find a path that is contained in the channel of cells

• Two major variants of methods:
– exact cell decomposition:

• set of cells exactly covers Cfree

• complicated cells with irregular boundaries (contact constraints)
• harder to compute

– approximate cell decomposition:
• set of cells approximately covers Cfree

• simpler cells with more regular boundaries

Cell Decomposition

CS633

Convex Decomposition
• A convex polygonal decomposition K of Cfree is a finite collection of convex

polygons, called cells, such that the interiors of any two cells do not intersect and
the union of all cells is Cfree.

– Two cells k and k’ ∈ K are adjacent iff k∩k’ is a line segment of non-zero length (i.e., not
a single point)

• The connectivity graph associated with a convex polygonal decomposition K of
Cfree is an undirected graph G where

– nodes in G correspond to cells in K
– nodes connected by edge in G iff corresponding cells adjacent in K

CS633

Convex Decomposition

CS633

Convex Decomposition

CS633

Convex Decomposition

Bad news: Computing convex
decomposition is not easy nor can be done
efficiently. In fact the problem is NP hard to
generate minimum number of convex
components for polygon with holes

CS633

Trapezoidal Decomposition

• Basic Idea: at every vertex of C-obstacle, extend a
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree

trapezoid

CS633

Trapezoidal Decomposition

• Sweep line algorithm
– Add vertical lines as we

sweep from left to right

– Events need to be handled
accordingly

trapezoidal decomposition can be built in O(n log n) time

CS633

Approx. Cell Decomposition

• Construct a collection of non-overlapping cells such
that the union of all the cells approximately covers the
free C-space!

• Cell characteristics
– Cell should have simple shape
– Easy to test adjacency of two cells

– Easy to find path across two adjacent cells

CS633

Approx. Cell Decomposition

• Each cell is
– Empty
– Full
– Mixed

• Different resolution
– Different roadmap

CS633

Approx. Cell Decomposition

• Higher resolution around CBs

CS633

Approx. Cell Decomposition

• Hierarchical approach
– Find path using empty and mixed cells
– Further decompose mixed cells into smaller cells

CS633

Approx. Cell Decomposition
• Advantages:

– simple, uniform decomposition
– easy implementation

– adaptive

• Disadvantages:
– large storage requirement
– Lose completeness

• Bottom line 1: We sacrifice exactness for simplicity and efficiency

• Bottom line 2: Approx. cell decomposition methods are
practically for lower dimension C, i.e., dof <5, b/c they generate
too many cells, i.e. (Nd) cells in d dimension

CS633

Potential Field Methods

• Approach initially proposed for real-time
collision avoidance [Khatib, 86].

– Hundreds of papers published on it

CS633

Potential Field Methods

CS633

Potential Field+Grid Search

• Superimpose a grid over C-space

• Each cell has a potential value

• Search from start to goal on the grid
using best-first search or A* search

CS633

Potential Field Methods

• At each step move an increment in the
direction that minimizes the energy
+ Good heuristic for high DOF

– Can get trapped in local minima
• use some probabilistic motion to escape

– Oscillations can also occur

CS633

General Motion Planning
Problems

• Well, most robot is not a point and can
have arbitrary shape

• What should we do if our robot is not a
point?

CS633

Configuration Space

• Convert rigid robots, articulated robots,
etc. into points

• Apply algorithms for moving points

CS633

Configuration Space

Workspace Configuration Space

x
yRobot

Obstacle C-obstacle

Robot

 C-obstacle is a polygon.

CS633

Configuration Space

workspace configuration space

CS633

Workspace

α

β

Degree of freedom (DOF)

CS633

Configuration Space
C-Space

β=125

α

β

0

180

18055

125

C-Space

α=55

CS633

C-Space

β=100

α

β

0

180

18075

10
0

C-Space

α=75

CS633

C-Space

α=85

α

β

0

180

18085

80

C-Space

β=80

CS633

C-Space

α=90

α

β

0

180

18090

55

C-Space

β=55

CS633

C-Space

α=110

α

β

0

180

180110

30

C-Space

β=30

CS633

C-Space

α=135

α

β

0

180

18055

 15

C-Space

C-Space

β=15

CS633

Workspace

(4,5,45)

Workspace

obstacle

Workspace

(x,y)

theta

Configuration (x,y,theta)

Workspace Obstacle

CS633

Theta

C-Space Obstacle

C-Obstacle

Really look like this???

CS633

Initial

Goal

Finding a Path

Find a path in
workspace for a
robot

T
he

ta

Find a path in
C-space for a point

CS633

robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

robot
Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace
C-spaceSimple workspace obstacle transformed

Into complicated C-obstacle!!

CS633

C = S1 x S1

φ

ϕ

Topology of the configuration pace

• The topology of C is usually not that of a
Cartesian space Rn.

0 2π

2π

φ

ϕ

CS633

Example: rigid robot in 2-D workspace

• dim of configuration space = ???
• Topology???

R2 x SO(1)

CS633

Example: articulated robot

• Number of dofs?

• What is the
topology?

q1

q2

An articulated object is a set of rigid bodies
connected at the joints.

CS633

Example: Multiple robots

• Given n robots in 2-D

• What are the possible
representations?

• What is the number of
dofs?

J.J. Kuffner et al.

ROV, GAMMA group, UNC

5 articulated robots

CS633

Metric in configuration space

• A metric or distance function d in a
configuration space C is a function

such that
– d(q, q’) = 0 if and only if q = q’,
– d(q, q’) = d(q’, q),
– .

aka. Triangle inequality

CS633

Example

• Robot A and a point x on A
• x(q): position of x in the workspace when A

is at configuration q

• A distance d in C is defined by
 d(q, q’) = maxx∈A || x(q) − x(q’) ||
where ||x - y|| denotes the Euclidean
distance between points x and y in the
workspace.

q q’

CS633

Examples

• Maximum distance between the object
in two configurations

C-Dist, Zhang et al. SPM 2007

CS633

Examples in R2 × S1

• Consider R2 x S1

– q = (x, y,θ), q’ = (x’, y’, θ’) with θ, θ’ ∈ [0,2π)
α = min { |θ − θ’ | , 2π - |θ − θ’| }

• d(q, q’) = sqrt((x-x’)2 + (y-y’)2 + α2))

• d(q, q’) = sqrt((x-x’)2 + (y-y’)2 + (αr)2),
where r is the maximal distance between a
point on the robot and the reference point

θ’

θ

α

CS633

Break

• 10 min break

CS633

Convert Workspace to C-Space

• How?

CS633

Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}

⊕

P

Q

CS633

Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}

CS633

Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}

CS633

Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}

⊕ =

CS633

Applications

• Dilation/Offset

kids⊕cube

CS633

Applications

• Sweep volume
pig⊕line

CS633

Applications

• Penetration depth estimation

octopus⊕(-dragon)

CS633

Minkowski sum of convex polygons

• The Minkowski sum of two convex
polygons P and Q of m and n vertices
respectively is a convex polygon P + Q of
m + n vertices.

– The vertices of P + Q are the “sums” of
vertices of P and Q.

=

CS633

Gauss Map

• Gauss map of a convex polygon
– Edge  point on the circle defined by the

normal
– Vertex  arc defined by its adjacent edges

CS633

Compute Minkowski Sum

• Convex object
– Use Gaussian map
– Compute convex hull of Point-based Minkowski sum (slower)

2D

3D
[Fogel and Halperin 06]

P Q
P⊕Q

CS633

Complexity

• Convex-convex MK-sum
– O(n+m)

• Convex-Nonconvex MK-sum
– O(nm)

• Nonconvex-Nonconvex MK-sum
– O(n2m2)

CS633

Compute 3D Minkowski Sum

• Non-convex object
– Divide-n-conquer [Evans et al. 92, Varadhan,Manocha 04]

• Decomposition, e.g., convex decomposition
• Pairwise Minkowski sums
• Union of pairwise sums

– Trimming
• Compute a superset of Minkowski sum boundary

[Kaul and Rossignac 91, Ghosh 93]

• Trimming the superset

– Several others…

trim

CS633

⊕

16 549
convex

components
85 132
convex

components

>1.4 billion pairwise
Minkowski sums

Compute Minkowski Sum

• Difficulties in implementing Divide-n-conquer
– Degenerate cases in union
– Errors accumulate

CS633

Problem

• Despite the importance of Minkowski sum, no
practical implementation for 3D models can
be found in public domain

• Why?

• What can we do about it?

CS633

Compute Minkowski Sum

– Approximate approach [Varadhan,Manocha PG04]

• Avoid the union step
• Using marching cube

Images from [Varadhan,Manocha PG04]

CS633

Point-Based Minkowski Sum

• Represent Minkowski sum boundary using points only
– Sample points from the surface of P and Q

– Compute the Minkowski sum of the points

– Extract boundary points

⊕⊕

Lien, PG 2007

CS633

Point-Based Minkowski Sum

• Benefits
– We give up exactness to gain simplicity and efficiency

• Avoid convex decomposition

• Avoid computing unions

– Still provide similar functionality as “mesh-based” Minkowski
sum --- e.g., offset, sweep, penetration estimation, …

CS633

Point-Based Minkowski Sum

• Let SP and SQ be points sampled from δP and δQ

• Let S+ = SP ⊕ SQ

• Let S = δ(P ⊕ Q) ∩ S+

• Require: S is a d-cover of δ(P ⊕ Q)
– i.e., any point of δ(P ⊕ Q) has a point in S within distance d

We need two sub-routines:

1. A method to create SP and SQ so S is a d-cover of δ(P ⊕ Q)

2. A method to S = Filter(S+)

CS633

Sample Points

• Goal: create SP and SQ so that S is a d-cover of δ(P ⊕ Q)

Theorem
If SP and SQ are d-cover of P and Q, then S+ = SP ⊕ SQ must
contain a d-cover of δ(P ⊕ Q)

Facets of Minkowski sum can only come from
• Facets of P
• Facets of Q
• Facets created by one edge of P and one edge of Q

CS633

Extract Boundary Points

• Goal: S = δ(P ⊕ Q) ∩ S+

• We propose 3 filters
– Collision detection filter

• Slow but complete

– Normal filter (Based on ideas in [Kaul and Rossignac 91])

• Fast but incomplete

– Octree filter
• Fast but incomplete

– These filters can be combined

CS633

Put It All Together
1. Sample SP and SQ as d-cover from ∂P and ∂Q

2. Compute S+ = SP ⊕ SQ

3. S = filter(S+)

1. Normal filter

2. Octree filter

3. Collision Detection (CD) filter

4. S is a d-cover of ∂(P⊕Q)

Step 1 Step 2 Step 3 Step 4

CS633

Back to Motion Planning

Minkowski sum allows us to solve
problems with translational robots

CS633

C-Space Obstacle

O -R
Obstacle

O
Robot
R

C-obstacle

C-obstacle is O -R
Classic result by Lozano-Perez and Wesley 1979

CS633

Polygonal robot translating in 2-D
workspace

workspace configuration
space

The complexity of the Minkowski sum is O(n2) in 2D

CS633

Robot with Rotations

• If a robot is allowed rotation in addition
to translation in 2D then it has 3 DOF

• The configuration space is 3D: (x,y,φ)
where φ is in the range [0:360)

CS633

Polygonal robot translating & rotating
in 2-D workspace

workspace configuration
space

CS633

Polygonal robot translating & rotating
in 2-D workspace

x

y

θ

CS633

Mapping to C-Space

• The obstacles map to “twisted pillars” in
C-Space

• They are no longer polygonal but are
composed of curved faces and edges

CS633

Computing Free Space

• Exact cell decomposition in 3D is really
hard

• Compute z: a finite number of slices for
discrete angular values

• Each slice will be the representation of
the free space for a purely translational
problem

• Robot will either move within a slice
(translating) or between slices (rotating)

CS633

Computing the Road Map

• Each slice has a road map like before
• But how do we move between slices?

CS633

Moving Between Slices

• To find graph edges between two slices:

1. compute the overlay of the trapezoidal maps of the
 two slices to get all pairs of trapezoids that
 intersect (one trapezoid from each
slice)
2. for each pair
3. find a point (x,y) in their intersection and
make one new vertex in each slice at this (x,y)
4. connect the two new vertices
5. connect the each of the two new vertices to the
 vertex at the center of their respective
trapezoids

CS633

Slice Problems (Aliasing)

• Start and/or goal position may be in the
free space whereas the start/goal position
in the nearest slice may not

• May have an undetected collision when
moving between slices

• Increasing the number of slices reduces
problems but does not solve them

CS633

Dealing with the Problems

• Enlarge the robot by sweeping out some
additional area (180o/z) in each direction

• Introduces yet another way to incorrectly
determine that there is no path

CS633

2D Translation and Rotation

Obstacles

Robot
From Gokul and Varadhan at UNC

CS633

Free Space Approximation

x

θ
y

3,929
contact surfaces Free space boundary

approximation

CS633

• Deterministic Roadmap Methods

• Visibility graph (2D)

•Retraction approach (2, 3D)

• Exact cell decomposition (2&3D)
• convex decomposition
• trapezoidal decomposition

• Approximate decomposition (2,3,4 D)

Summary

CS633

General motion planning problem is
PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

PSPACE-complete [Canny 87]

The best deterministic algorithm known has running
time that is exponential in the dimension of the robot’s
C-space [Canny 86]
• C-space has high dimension - 6D for rigid body in 3-space
• simple obstacles have complex C-obstacles impractical to compute
explicit representation of freespace for more than 4 or 5 dof

So … attention has turned to randomized algorithms

The Complexity of
PSPACE

NP

P

CS633

Hard Motion Planning Problems

• What if we can to consider other kinematic
constraints or the dynamics of the robot
(moving object)?

• The problem is even harder

CS633

Next Week

• Probabilistic Roadmap Methods
– A set of methods that can solve practical

motion planning problems, including those
with kinematic or dynamic constraints

