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Motion Planning
in continuous spaces

start

goal obstacles

(Basic) Motion Planning 
(in a nutshell):

Given a movable object, find a 
sequence of valid configurations 
that moves the object from the 
start to the goal. 
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Main Steps In Motion Planning

Workspace

Configuration space

Discretization

Search

Path or no solution



CS633

Classical Motion Planning

• Given a point robot and a workspace 
described by polygons

• Roadmap methods
– Visibility graph
– Cell decomposition
– Retraction
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Roadmap Methods

roadmap

Capture the connectivity of  Cfree with a roadmap (graph or 
network) of  one-dimensional curves
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difficult
part

Roadmap Methods

Path Planning with a Roadmap
Input: configurations qinit and qgoal , and B
Output: a path in Cfree connecting qinit and qgoal 

1. Build a roadmap in Cfree (preprocessing)
• roadmap nodes are free configurations (or semi-free)
• two nodes connected by edge if  can (easily) move 
between them

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal

3. Find a path in the roadmap between vinit and vgoal

 - directly gives a path in Cfree
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Visibility Graph

• A visibility graph of C-space for a given C-obstacle is an 
undirected graph G where
– nodes in G correspond to vertices of C-obstacle

– nodes connected by edge in G if
• they are connected by an edge in C-obstacle, or

• the straight line segment connecting them lies entirely in Cfree

– (could add qinit and qgoal as roadmap nodes)
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Visibility Graph

• Brute Force Algorithm
– add all edges in C-obstacle to G
– for each pair of vertices (x, y) of C-obstacle, add the edge (x, y) 

to G if the straight line segment connecting them lies entirely 
in cl(C-free)

• test (x; y) for intersection with all O(n) edges of C-obstacle
• O(n2) pairs to test, each test takes O(n) time

Complexity: O(n3), n is number of  vertices in C-obstacle
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Visibility Graph

• A better algorithm?
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Visibility Graph

• An even better algorithm?
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Visibility Graph

• Visibility graphs (Good news)
– are conceptually simple
– shortest paths (if query cannot see each other)
– we have efficient algorithms if  is polygonal

• O(n2), where n is number of vertices of C-obstacle
• O(k + n log n), where k is number of edges in G

– we can make a 'reduced' visibility graph (don't need all edges)
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Visibility Graph in 3-D

• Visibility graphs don't necessarily contain 
shortest paths in R3

– in fact finding shortest paths in R3 is NP-hard [Canny 1988]

– (1 + ε²) approximation algorithm [Papadimitriou 1985]

Bad news: really only suitable for two-dimensional C
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Reduced Visibility Graph
• we don't really need all the edges in the visibility graph (even if 

we want shortest paths)

• Definition: Let L be the line passing through an edge (x; y) in the 
visibility graph G. The segment (x; y) is a tangent segment iff  L is 
tangent to C-obstacle at both x and y.



CS633

Reduced Visibility Graph

• It turns out we need only keep
– convex vertices of C-obstacle
– non-CB edges that are tangent segments
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Reduced Visibility Graph
• Reduced visibility graphs are easier to build

– construct convex hull of each C-obstacle piece eliminate non-convex 
vertices

– construct pairwise tangents between each convex C-obstacle piece

• easy to construct tangents between two convex polygons
– How?
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Voronoi Diagram for Point Sets

• Voronoi diagram of point set X consists of straight line segments, 
constructed by
– computing lines bisecting each pair of points and their intersections
– computing intersections of these lines
– keeping segments with more than one nearest neighbor

• segments of Vor(X) have largest clearance from X and regions 
identify closest point of X
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Voronoi Diagram for Point Sets

• When C = R2 and polygonal C-obstacle, Vor(Cfree) consists of a finite 
collection of straight line segments and parabolic curve segments (called 
arcs)

– straight arcs are defined by two vertices or two edges of C-obstacle, i.e., the 
set of points equally close to two points (or two line segments) is a line
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Voronoi Diagram for Point Sets
• Naive Method of Constucting V or(Cfree)

– compute all arcs (for each vertex-vertex, edge-edge, and vertex-edge 
pair)

– compute all intersection points (dividing arcs into segments)

– keep segments which are closest only to the vertices/edges that 
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Retraction

• Retraction ρ : Cfree → Vor(Cfree)

To find a path:
1. compute Vor(Cfree)
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively
3. search Vor(Cfree) for a set of  arcs connecting ρ(qinit) and ρ(qgoal)
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Cell Decomposition

• Idea: decompose Cfree into a collection K of non-overlapping 
cells such that the union of all the cells exactly equals the free C-
space

• Cell Characteristics:
– geometry of cells should be simple so that it is easy to compute a 

path between any two configurations in a cell
– it should be pretty easy to test the adjacency of two cells, i.e., 

whether they share a boundary
– it should be pretty easy to find a path crossing the portion of the 

boundary shared by two adjacent cells

• Thus, cell boundaries correspond to 'criticalities' in C, i.e., 
something changes when a cell boundary is crossed. No such 
criticalities in C occur within a cell.
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Difficult

• Preprocessing:
– represent Cfree as a collection of cells (connected regions of Cfree )

• planning between configurations in the same cell should be 'easy'

– build connectivity graph representing adjacency relations between cells 
• cells adjacent if can move directly between them

• Query:
– locate cells kinit and kgoal containing start and goal configurations

– search the connectivity graph for a 'channel' or sequence of adjacent cells 
connecting kinit and kgoal 

– find a path that is contained in the channel of cells

• Two major variants of methods:
– exact cell decomposition:

• set of cells exactly covers Cfree 

• complicated cells with irregular boundaries (contact constraints)
• harder to compute

– approximate cell decomposition:
• set of cells approximately covers Cfree 

• simpler cells with more regular boundaries

Cell Decomposition
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Convex Decomposition
• A convex polygonal decomposition K of Cfree is a finite collection of convex 

polygons, called cells, such that the interiors of any two cells do not intersect and 
the union of all cells is Cfree.

– Two cells k and k’ ∈ K are adjacent iff k∩k’ is a line segment of non-zero length (i.e., not 
a single point)

• The connectivity graph associated with a convex polygonal decomposition K of 
Cfree is an undirected graph G where

– nodes in G correspond to cells in K
– nodes connected by edge in G iff corresponding cells adjacent in K
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Convex Decomposition
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Convex Decomposition



CS633

Convex Decomposition

Bad news: Computing convex 
decomposition is not easy nor can be done 
efficiently. In fact the problem is NP hard to 
generate minimum number of  convex 
components for polygon with holes
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Trapezoidal Decomposition

• Basic Idea: at every vertex of C-obstacle, extend a 
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree

trapezoid
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Trapezoidal Decomposition

• Sweep line algorithm
– Add vertical lines as we 

sweep from left to right

– Events need to be handled 
accordingly

trapezoidal decomposition can be built in O(n log n) time
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Approx. Cell Decomposition

• Construct a collection of non-overlapping cells such 
that the union of all the cells approximately covers the 
free C-space!

• Cell characteristics
– Cell should have simple shape
– Easy to test adjacency of two cells 

– Easy to find path across two adjacent cells
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Approx. Cell Decomposition

• Each cell is
– Empty
– Full
– Mixed

• Different resolution
– Different roadmap
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Approx. Cell Decomposition

• Higher resolution around CBs
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Approx. Cell Decomposition

• Hierarchical approach
– Find path using empty and mixed cells
– Further decompose mixed cells into smaller cells
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Approx. Cell Decomposition
• Advantages:

– simple, uniform decomposition
– easy implementation

– adaptive 

• Disadvantages:
– large storage requirement 
– Lose completeness 

• Bottom line 1: We sacrifice exactness for simplicity and efficiency

• Bottom line 2: Approx. cell decomposition methods are 
practically for lower dimension C, i.e., dof <5, b/c they generate 
too many cells, i.e. (Nd) cells in d dimension
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Potential Field Methods

• Approach initially proposed for real-time 
collision avoidance [Khatib, 86].

– Hundreds of papers published on it
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Potential Field Methods



CS633

Potential Field+Grid Search

• Superimpose a grid over C-space

• Each cell has a potential value

• Search from start to goal on the grid 
using best-first search or A* search
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Potential Field Methods

• At each step move an increment in the 
direction that minimizes the energy
+ Good heuristic for high DOF

– Can get trapped in local minima
• use some probabilistic motion to escape

– Oscillations can also occur
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General Motion Planning 
Problems

• Well, most robot is not a point and can 
have arbitrary shape

• What should we do if our robot is not a 
point?



CS633

Configuration Space

• Convert rigid robots, articulated robots, 
etc. into points

• Apply algorithms for moving points
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Configuration Space

Workspace Configuration Space

x
yRobot 

Obstacle C-obstacle

Robot 

 C-obstacle is a polygon.
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Configuration Space

workspace configuration space
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Workspace

α

β

Degree of  freedom (DOF)
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Configuration Space 
C-Space

β=125

α

β

0

180

18055

125

C-Space

α=55
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C-Space

β=100
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β
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C-Space

α=85
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C-Space

α=90
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C-Space

α=110
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C-Space

α=135
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C-Space

C-Space

β=15
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Workspace

(4,5,45)

Workspace

obstacle

Workspace

(x,y)

theta

Configuration  (x,y,theta)

Workspace Obstacle



CS633

Theta

C-Space Obstacle

C-Obstacle

Really look like this???
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Initial

Goal

Finding a Path

Find a path in 
workspace for a 
robot

T
he

ta

Find a path in 
C-space for a point
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robot

obst

obst

obst

obst

x
y

C-obst

C-obstC-obst

C-obst

robot 
Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace
C-spaceSimple workspace obstacle transformed 

Into complicated C-obstacle!!
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C = S1 x S1

φ

ϕ

Topology of the configuration pace

• The topology of C is usually not that of a 
Cartesian space Rn.

0 2π

2π

φ

ϕ
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Example: rigid robot in 2-D workspace

• dim of configuration space = ???
• Topology???

R2 x SO(1)
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Example: articulated robot

• Number of dofs?

• What is the 
topology?

q1

q2

An articulated object is a set of rigid bodies 
connected at the joints.
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Example: Multiple robots

• Given n robots in 2-D

• What are the possible 
representations?

• What is the number of 
dofs?

J.J. Kuffner et al.

ROV, GAMMA group, UNC

5 articulated robots
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Metric in configuration space

• A metric or distance function d in a 
configuration space C is a function  

such that 
– d(q, q’) = 0 if and only if q = q’,
– d(q, q’) = d(q’, q),
–                                              .

aka. Triangle inequality
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Example

• Robot A and a point x on A
• x(q): position of x in the workspace when A 

is at configuration q

• A distance d in C is defined by
 d(q, q’) = maxx∈A || x(q) − x(q’) || 
where ||x - y|| denotes the Euclidean 
distance between points x and y in the 
workspace.

q q’
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Examples

• Maximum distance between the object 
in two configurations

C-Dist, Zhang et al. SPM 2007
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Examples in R2 × S1

• Consider R2 x S1

– q = (x, y,θ), q’ = (x’, y’, θ’) with θ, θ’ ∈ [0,2π)
α = min { |θ − θ’ | , 2π - |θ − θ’| }

• d(q, q’) = sqrt( (x-x’)2 + (y-y’)2 + α2 ) )

• d(q, q’) = sqrt( (x-x’)2 + (y-y’)2 + (αr)2 ), 
where r is the maximal distance between a 
point on the robot and the reference point

θ’

θ

α
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Break

• 10 min break
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Convert Workspace to C-Space

• How?
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Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}

⊕

P

Q
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Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}
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Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}
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Minkowski Sum

• Minkowski sum
– P⊕Q={p+q | p∈P, q∈Q}

⊕ =
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Applications

• Dilation/Offset

kids⊕cube
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Applications

• Sweep volume
pig⊕line
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Applications

• Penetration depth estimation

octopus⊕(-dragon)
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Minkowski sum of convex polygons

• The Minkowski sum of two convex 
polygons P and Q of m and n vertices 
respectively is a convex polygon P + Q of 
m + n vertices.

– The vertices of P + Q are the “sums” of 
vertices of P and Q.

=
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Gauss Map

• Gauss map of a convex polygon 
– Edge  point on the circle defined by the 

normal
– Vertex  arc defined by its adjacent edges
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Compute Minkowski Sum

• Convex object
– Use Gaussian map
– Compute convex hull of Point-based Minkowski sum (slower)

2D

3D
[Fogel and Halperin 06]

P Q
P⊕Q
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Complexity

• Convex-convex MK-sum
– O(n+m) 

• Convex-Nonconvex MK-sum
– O(nm)

• Nonconvex-Nonconvex MK-sum
– O(n2m2)
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Compute 3D Minkowski Sum

• Non-convex object
– Divide-n-conquer [Evans et al. 92, Varadhan,Manocha 04]

• Decomposition, e.g., convex decomposition
• Pairwise Minkowski sums
• Union of pairwise sums

– Trimming
• Compute a superset of Minkowski sum boundary 

[Kaul and Rossignac 91, Ghosh 93]

• Trimming the superset  

– Several others…

trim
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⊕

16 549
convex

components
85 132
convex

components

>1.4 billion pairwise 
Minkowski sums

Compute Minkowski Sum

• Difficulties in implementing Divide-n-conquer
– Degenerate cases in union
– Errors accumulate
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Problem

• Despite the importance of Minkowski sum, no 
practical implementation for 3D models can 
be found in public domain 

• Why?

• What can we do about it?
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Compute Minkowski Sum

– Approximate approach [Varadhan,Manocha PG04]

• Avoid the union step
• Using marching cube

Images from [Varadhan,Manocha PG04]
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Point-Based Minkowski Sum

• Represent Minkowski sum boundary using points only
– Sample points from the surface of P and Q

– Compute the Minkowski sum of the points

– Extract boundary points

⊕⊕

Lien, PG 2007
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Point-Based Minkowski Sum

• Benefits
– We give up exactness to gain simplicity and efficiency

• Avoid convex decomposition

• Avoid computing unions

– Still provide similar functionality as “mesh-based” Minkowski 
sum --- e.g., offset, sweep, penetration estimation, …
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Point-Based Minkowski Sum

• Let SP and SQ be points sampled from δP and δQ

• Let S+ = SP ⊕ SQ 

• Let S = δ(P ⊕ Q) ∩ S+

• Require: S is a d-cover of δ(P ⊕ Q) 
– i.e., any point of δ(P ⊕ Q) has a point in S within distance d

We need two sub-routines:

1. A method to create SP and SQ so S is a d-cover of δ(P ⊕ Q)

2. A method to S = Filter(S+)
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Sample Points

• Goal: create SP and SQ so that S is a d-cover of δ(P ⊕ Q)

Theorem
If SP and SQ are d-cover of P and Q, then S+ = SP ⊕ SQ must 
contain a d-cover of δ(P ⊕ Q)

Facets of Minkowski sum can only come from
• Facets of P
• Facets of Q
• Facets created by one edge of P and one edge of Q
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Extract Boundary Points

• Goal: S = δ(P ⊕ Q) ∩ S+

• We propose 3 filters
– Collision detection filter

• Slow but complete

– Normal filter (Based on ideas in [Kaul and Rossignac 91])

• Fast but incomplete

– Octree filter
• Fast but incomplete

– These filters can be combined
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Put It All Together
1.  Sample SP and SQ as d-cover from ∂P and ∂Q

2.  Compute S+ = SP ⊕ SQ 

3.  S = filter(S+ )

1. Normal filter

2. Octree filter

3. Collision Detection (CD) filter

4.  S is a d-cover of ∂(P⊕Q)

Step 1 Step 2 Step 3 Step 4
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Back to Motion Planning

Minkowski sum allows us to solve 
problems with translational robots
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C-Space Obstacle

O      -R
Obstacle

O
Robot
R

C-obstacle

C-obstacle is O      -R
Classic result by Lozano-Perez and Wesley 1979
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Polygonal robot translating in 2-D 
workspace

workspace configuration 
space

The complexity of  the Minkowski sum is O(n2)  in 2D
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Robot with Rotations

• If a robot is allowed rotation in addition 
to translation in 2D then it has 3 DOF

• The configuration space is 3D: (x,y,φ) 
where φ is in the range [0:360)
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Polygonal robot translating & rotating 
in 2-D workspace

workspace configuration 
space
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Polygonal robot translating & rotating 
in 2-D workspace

x

y

θ
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Mapping to C-Space

• The obstacles map to “twisted pillars” in 
C-Space

• They are no longer polygonal but are 
composed of curved faces and edges
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Computing Free Space

• Exact cell decomposition in 3D is really 
hard

• Compute z: a finite number of slices for 
discrete angular values

• Each slice will be the representation of 
the free space for a purely translational 
problem

• Robot will either move within a slice 
(translating) or between slices (rotating)
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Computing the Road Map

• Each slice has a road map like before
• But how do we move between slices?
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Moving Between Slices

• To find graph edges between two slices:

1. compute the overlay of the trapezoidal maps of the      
 two slices to get all pairs of trapezoids that 
  intersect (one trapezoid from each 
slice)
2. for each pair
3.   find a point (x,y) in their intersection and 
make      one new vertex in each slice at this (x,y) 
4.     connect the two new vertices
5.     connect the each of the two new vertices to the 
     vertex at the center of their respective 
trapezoids



CS633

Slice Problems (Aliasing)

• Start and/or goal position may be in the 
free space whereas the start/goal position 
in the nearest slice may not

• May have an undetected collision when 
moving between slices

• Increasing the number of slices reduces 
problems but does not solve them
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Dealing with the Problems

• Enlarge the robot by sweeping out some 
additional area (180o/z) in each direction

• Introduces yet another way to incorrectly 
determine that there is no path
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2D Translation and Rotation

Obstacles

Robot
From Gokul and Varadhan at UNC
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Free Space Approximation

x

θ
y

3,929
contact surfaces Free space boundary

approximation
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• Deterministic Roadmap Methods

• Visibility graph (2D)

•Retraction approach (2, 3D)

• Exact cell decomposition (2&3D)
• convex decomposition
• trapezoidal decomposition

• Approximate decomposition (2,3,4 D)

Summary
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General motion planning problem is 
PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

PSPACE-complete [Canny 87]

The best deterministic algorithm known has running 
time that is exponential in the dimension of the robot’s 
C-space [Canny 86]
• C-space has high dimension - 6D for rigid body in 3-space
• simple obstacles have complex C-obstacles          impractical to compute     
explicit representation of freespace for more than 4 or 5 dof

So … attention has turned to randomized algorithms

The Complexity of 
PSPACE

NP

P
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Hard Motion Planning Problems 

• What if  we can to consider other kinematic 
constraints or the dynamics of  the robot 
(moving object)?

• The problem is even harder
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Next Week

• Probabilistic Roadmap Methods
– A set of methods that can solve practical 

motion planning problems, including those 
with kinematic or dynamic constraints  


