Probabilistic Motion Planning

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on many people’s lecture notes
Seth Hutchinson at the University of Illinois at Urbana-Champaign, Leo Joskowicz at Hebrew University, Jean-Claude Latombe at Stanford University, Nancy Amato at Texas A&M University, Burchan Bayazit at Washington University in St. Louis
Hard Motion Planning Problems
Hard Motion Planning Problems

The Alpha Puzzle

Swapping Cubes Puzzle
Hard Motion Planning Problems

The Alpha Puzzle

Swapping Cubes Puzzle
Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Paper Folding

Articulated robot

Polyhedron: 25 dof

Line: 30 dof
Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Paper Folding

Articulated robot

Polyhedron: 25 dof

Line: 30 dof
Hard Motion Planning Problems

Highly Articulated (Constrained) Systems

Paper Folding

Articulated robot

Polyhedron: 25 dof

Line: 30 dof
Hard Motion Planning Problems

Highly Articulated (Constrained) Systems

Digital Actors

Reaching and grasping
Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Digital Actors

Collision-free reaching for object manipulation

grasping objects with right or left hand

Reaching and grasping
Hard Motion Planning Problems

Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities
Hard Motion Planning Problems

Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities
Hard Motion Planning Problems

Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities
Hard Motion Planning Problems

Flocking: Covering, Homing, Shepherding

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities
Hard Motion Planning Problems

Deformable Objects

- Find a path for a **deformable object** that can deform to avoid collision with obstacles
 - move a mattress in a house, elastic or air-filled objects, metal sheets or long flexible tubes
 - virtual surgery applications
 - computer animation and games
 - Issue: difficult to find **natural deformation** efficiently
Hard Motion Planning Problems

Deformable Objects

- Find a path for a deformable object that can deform to avoid collision with obstacles
 - move a mattress in a house, elastic or air-filled objects, metal sheets or long flexible tubes
 - virtual surgery applications
 - computer animation and games
 - Issue: difficult to find natural deformation efficiently
Hard Motion Planning Problems

Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints

CS633
Hard Motion Planning Problems

Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints
Hard Motion Planning Problems

Movable Objects

M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints
Hard Motion Planning Problems
Intelligent CAD Applications

- Using Motion Planning to Test Design Requirements
 - Accessibility for servicing/assembly tested on physical “mock ups”
 - Digital testing saves time and money, is more accurate, enables more extensive testing, and is useful for training (VR or e-manuals)
Hard Motion Planning Problems

Intelligent CAD Applications

- **Using Motion Planning to Test Design Requirements**
 - Accessibility for servicing/assembly tested on physical “mock ups”
 - Digital testing saves time and money, is more accurate, enables more extensive testing, and is useful for training (VR or e-manuals)

Maintainability Problems:
Mechanical Designs from GE

- flange
- Airplane engine
Hard Motion Planning Problems
computational biology & chemistry

Motion of molecules

- help understand important interactions - protein structure/function prediction
- diseases such as Alzheimer’s and Mad Cow are related to misfolded proteins
The Complexity of Motion Planning

General motion planning problem is PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]
PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time that is **exponential in the dimension of the robot’s C-space** [Canny 86]

- C-space has high dimension - 6D for rigid body in 3-space
- simple obstacles have complex C-obstacles impractical to compute explicit representation of freespace for more than 4 or 5 dof
General motion planning problem is PSPACE-hard \cite{Reif79, Hopcroft84, Hopcroft86}.

PSPACE-complete \cite{Canny87}.

The best deterministic algorithm known has running time that is exponential in the dimension of the robot's C-space \cite{Canny86}.

- C-space has high dimension - 6D for rigid body in 3-space.
- Simple obstacles have complex C-obstacles, impractical to compute.
 Explicit representation of freespace for more than 4 or 5 dofs.

So ... attention has turned to randomized algorithms.
Probabilistic Methods

• Avoid computing C-obstacles
 – Too difficult to compute efficiently

• **Idea:** Sacrifice completeness to gain simplicity and efficiency

• **Probabilistic Methods**
 – Graph based
 – Tree based
Probabilistic Roadmap Method

[Kavraki, Svestka, Latombe, Overmars 1996]
Probabilistic Roadmap Method

C-space

C-obst

C-obst

C-obst

C-obst

C-obst
Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)
Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid
Probabilistic Roadmap Method

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

2. Connect pairs of nodes to form **roadmap**
 - simple, deterministic *local planner* (e.g., straightline)
 - discard paths that are invalid

C-space

![C-space diagram with obstacles and nodes connected by roadmap](image)
Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid
2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid
Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid
2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

Query processing
Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid
2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

Query processing
1. Connect start and goal to roadmap
Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid
2. Connect pairs of nodes to form roadmap
 - simple, deterministic *local planner* (e.g., straightline)
 - discard paths that are invalid

Query processing
1. Connect *start* and *goal* to roadmap
2. Find path in roadmap between *start* and *goal*
 - regenerate plans for edges in roadmap

CS633
Probabilistic Roadmap Method

• Important sub-routines
 – Generate random configurations
 – Local planners
 – Distance metrics
 – Selecting k-nearest neighbors (becoming dominant in high dimensional space)
 – Collision detection (>80% computation)

Note: We don’t store paths in the edges
PRMs: Pros & Cons

PRMs: The Good News

1. PRMs are *probabilistically complete*
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously unsolved problems

PRMs: The Bad News

1. PRMs don’t work as well for some problems:
 – unlikely to sample nodes in *narrow passages*
 – hard to sample/connect nodes on constraint surfaces
Related Work (selected)

• Probabilistic Roadmap Methods
 • Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]
 • Obstacle-based PRM (OBPRM) [Amato et al, 98]
 • PRM Roadmaps in Dilated Free space [Hsu et al, 98]
 • Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
 • Bridge test [Hsu et al 03]
 • Visibility Roadmaps [Laumond et al 99]
 • Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
 • Generating Contact Configurations [Xiao et al 99]
 • Using workspace clues
 •…
Related Work (selected)

• Probabilistic Roadmap Methods
 • Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]
 • Obstacle-based PRM (OBPRM) [Amato et al, 98]
 • PRM Roadmaps in Dilated Free space [Hsu et al, 98]
 • Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
 • Bridge test [Hsu et al 03]
 • Visibility Roadmaps [Laumond et al 99]
 • Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
 • Generating Contact Configurations [Xiao et al 99]
 • Using workspace clues
 •...
An Obstacle-Based PRM

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

Idea: Can we sample nodes near C-obstacle surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)
1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle
Gaussian Sampling PRM

1. Find a point in S’s C-obstacle (robot placement colliding with S)

2. Find another point that is within distance \(d \) to the first point, where \(d \) is a random variable in a Gaussian distribution

3. Keep the second point if it is collision free
Gaussian Sampling PRM

1. Find a point in S’s C-obstacle (robot placement colliding with S)

2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution

3. Keep the second point if it is collision free
Gaussian Sampling PRM

1. Find a point in S’s C-obstacle (robot placement colliding with S)

2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution

3. Keep the second point if it is collision free
Gaussian Sampling PRM

1. Find a point in S’s C-obstacle (robot placement colliding with S)

2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution

3. Keep the second point if it is collision free

Note

- Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples
- None of these methods can (be proved to) provide guarantee that the samples in the narrow passage will increase!
Related Work (selected)

- Probabilistic Roadmap Methods
 - Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]
 - Obstacle-based PRM (OBPRM) [Amato et al, 98]
 - PRM Roadmaps in Dilated Free space [Hsu et al, 98]
 - Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
 - Bridge test [Hsu et al 03]
 - Visibility Roadmaps [Laumond et al 99]
 - Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
 - Generating Contact Configurations [Xiao et al 99]
 - Using workspace clues
Problematic Methods

- Avoid computing C-obstacles
 - Too difficult to compute

- Sacrifice completeness to gain simplicity and efficiency - probabilistic complete!

- Probabilistic Methods
 - Graph based
 - Tree based - single-shot planners!
Rapidly-Exploring Random Tree (RRT)

• RRTs: Rapidly-exploring Random Trees

 – Incrementally builds the roadmap tree

• Extends to more advanced planning techniques

 – Integrates the control inputs to ensure that the kinodynamic constraints are satisfied
How it Works

- Build a rapidly-exploring random tree in state space \((X)\), starting at \(s_{start}\)
- Stop when tree gets sufficiently close to \(s_{goal}\)
Building an RRT

To extend an RRT:

- Pick a random point a in X
- Find b, the node of the tree closest to a
- Find control inputs u to steer the robot from b to a
Building an RRT

- To extend an RRT (cont.)
 - Apply control inputs u for time δ, so robot reaches c
 - If no collisions occur in getting from a to c, add c to RRT and record u with new edge
Executing the Path

Once the RRT reaches s_{goal}

- Backtrack along tree to identify edges that lead from s_{start} to s_{goal}

- Drive robot using control inputs stored along edges in the tree
Principle Advantage

- RRT quickly explores the state space:
 - Nodes most likely to be expanded are those with largest Voronoi regions
Principle Advantage

- RRT quickly explores the state space:
 - Nodes most likely to be expanded are those with largest Voronoi regions
Problem of Simple RRT Planner

- Problem: ordinary RRT explores X uniformly
 \rightarrow slow convergence
- Solution: bias distribution towards the goal
Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
 – local planner will not work (dynamic constraints)
 – bias the distribution, so that the trees meet
Bidirectional RRT Example
Bidirectional RRT Example
Expansion Space Tree (EST)

1. Grow two trees from *Init* position and *Goal* configurations.

2. Randomly sample nodes around existing existing nodes.

3. Connect a node in the tree rooted at *Init* to a node in the tree rooted at the *Goal*.
1. Grow two trees from Init position and Goal configurations.

2. Randomly sample nodes around existing nodes.

3. Connect a node in the tree rooted at Init to a node in the tree rooted at the Goal.
Expansion
1. Pick a node x with probability $1/w(x)$.

Disk with radius d, $w(x)=3$
Expansion

1. Pick a node x with probability $1/w(x)$.
2. Randomly sample k points around x.

Disk with radius d, $w(x)=3$
Expansion

1. Pick a node x with probability $1/w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$.
Expansion

1. Pick a node x with probability $1/w(x)$.

2. Randomly sample k points around x.

3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$.

$1/w(y_1) = 1/5$
1. Pick a node x with probability $1/w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$.

$1/w(y_2) = 1/2$
1. Pick a node x with probability $1/w(x)$.

2. Randomly sample k points around x.

3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$.
1. Pick a node x with probability $1/w(x)$.

2. Randomly sample k points around x.

3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$. If y
Expansion

1. Pick a node x with probability $1/w(x)$.

2. Randomly sample k points around x.

3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$. If y
 (a) has higher probability; (b) collision free; (c) can see x
1. Pick a node x with probability $1/w(x)$.

2. Randomly sample k points around x.

3. For each sample y, calculate $w(y)$, which gives probability $1/w(y)$. If y
 (a) has higher probability; (b) collision free; (c) can sees x then add y into the tree.
Computed example
More Problems with Probabilistic Methods

• ??
Conclusion

• Motion planning is difficult (intractable)

• Roadmap methods
 – Probabilistic Motion Planners
What is not covered?

• C-space
 – Minkowski sum computation (end of the semester)

• Deterministic Roadmap methods
 – Visibility graph, cell, decomposition,…
 – Algorithms of visibility graph, trapezoidation
 – Schwartz and Sharir’s critical curve method
 – Canny’s Silhouette methods
 – Voronoi diagram computation

• Probabilistic Roadmap methods
 – Analysis of PRM, RRT, EST, OBPRM, MAPRM…
What is not covered?

• Other types of motion planning
 – With constraints
 • Close-chain constraint
 • Nonholonomic constraint
 • Differential constraints
 – Manipulate planning
 – Assembly planning
 – Planning with uncertainty
 – Planning for multiple robots, dynamic env
 – Planning for highly articulated objects
 – Planning for deformable objects
 – …
What is not covered?

• Other types of motion planning
 – With constraints
 • Close-chain constraint
 • Nonholonomic constraint
 • Differential constraints
 – Manipulate planning
 – Assembly planning
 – Planning with uncertainty
 – Planning for multiple robots, dynamic env
 – Planning for highly articulated objects
 – Planning for deformable objects
 – …

These will require another semester…
Homework Assignment

• TBD
Programming Assignment

• Programming assignment #2 will be given out soon (by the end of this week)
 – Probabilistic motion planning implementation (in C/C++)

 – Implement at least two planning strategies
 • Papers is posted on the discussion board

 – Design an interesting motion planning problem
Additional Readings

- **Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts**, Jean-Claude Latombe, IJRR, 1999 (survey paper)