
Probabilistic Motion Planning

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on many people’s lecture notes
Seth Hutchinson at the University of Illinois at Urbana-Champaign, Leo Joskowicz at
Hebrew University, Jean-Claude Latombe at Stanford University, Nancy Amato at Texas
A&M University, Burchan Bayazit at Washington University in St. Louis

CS633

Hard Motion Planning Problems

CS633

The Alpha Puzzle

Hard Motion Planning Problems

 Swapping Cubes Puzzle

CS633

The Alpha Puzzle

Hard Motion Planning Problems

 Swapping Cubes Puzzle

CS633

Polyhedron: 25 dof

Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Paper Folding Articulated robot

Line: 30 dof

CS633

Polyhedron: 25 dof

Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Paper Folding Articulated robot

Line: 30 dof

CS633

Polyhedron: 25 dof

Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Paper Folding Articulated robot

Line: 30 dof

CS633

Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Digital Actors

Reaching and grasping

CS633

Hard Motion Planning Problems
Highly Articulated (Constrained) Systems

Digital Actors

Reaching and grasping

CS633

Hard Motion Planning Problems
Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Control the motion of
 coordinated entities

Interactive Navigation of Multiple Agents in Crowded
Environments. Jur van den Berg, Sachin Patil, Jason
Sewall, Dinesh Manocha, Ming Lin, i3D 2008

CS633

Hard Motion Planning Problems
Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Control the motion of
 coordinated entities

Interactive Navigation of Multiple Agents in Crowded
Environments. Jur van den Berg, Sachin Patil, Jason
Sewall, Dinesh Manocha, Ming Lin, i3D 2008

CS633

Hard Motion Planning Problems
Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Control the motion of
 coordinated entities

Interactive Navigation of Multiple Agents in Crowded
Environments. Jur van den Berg, Sachin Patil, Jason
Sewall, Dinesh Manocha, Ming Lin, i3D 2008

CS633

Hard Motion Planning Problems
Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Control the motion of
 coordinated entities

Interactive Navigation of Multiple Agents in Crowded
Environments. Jur van den Berg, Sachin Patil, Jason
Sewall, Dinesh Manocha, Ming Lin, i3D 2008

CS633

Hard Motion Planning Problems
Deformable Objects

• Find a path for a deformable object that can deform to
avoid collision with obstacles
• move a mattress in a house, elastic or air-filled objects, metal

sheets or long flexible tubes
• virtual surgery applications
• computer animation and games
• Issue: difficult to find natural deformation efficiently

CS633

Hard Motion Planning Problems
Deformable Objects

• Find a path for a deformable object that can deform to
avoid collision with obstacles
• move a mattress in a house, elastic or air-filled objects, metal

sheets or long flexible tubes
• virtual surgery applications
• computer animation and games
• Issue: difficult to find natural deformation efficiently

CS633

Hard Motion Planning Problems
Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints
Workshop on the Algorithmic Foundations of Robotics, July, 2006

http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf
http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf

CS633

Hard Motion Planning Problems
Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints
Workshop on the Algorithmic Foundations of Robotics, July, 2006

http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf
http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf

CS633

Hard Motion Planning Problems
Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints
Workshop on the Algorithmic Foundations of Robotics, July, 2006

http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf
http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf

CS633

Hard Motion Planning Problems
Intelligent CAD Applications

• Using Motion Planning to Test Design Requirements:

– Accessibility for servicing/assembly tested on physical “mock ups”

– Digital testing saves time and money, is more accurate, enables more extensive testing, and is
useful for training (VR or e-manuals)

CS633

Hard Motion Planning Problems
Intelligent CAD Applications

• Using Motion Planning to Test Design Requirements:

– Accessibility for servicing/assembly tested on physical “mock ups”

– Digital testing saves time and money, is more accurate, enables more extensive testing, and is
useful for training (VR or e-manuals)

Maintainability Problems:
Mechanical Designs from GE

flange Airplane engine

CS633

Hard Motion Planning Problems
computational biology & chemistry

Motion of molecules

– help understand important interactions - protein structure/function prediction

– diseases such as Alzheimer’s and Mad Cow are related to misfolded proteins

normal - misfold

prion protein

CS633

General motion planning problem is
PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time
that is exponential in the dimension of the robot’s C-space
[Canny 86]
• C-space has high dimension - 6D for rigid body in 3-space
• simple obstacles have complex C-obstacles impractical to compute
explicit representation of freespace for more than 4 or 5 dof

The Complexity of
Motion Planning PSPACE

NP

P

CS633

General motion planning problem is
PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time
that is exponential in the dimension of the robot’s C-space
[Canny 86]
• C-space has high dimension - 6D for rigid body in 3-space
• simple obstacles have complex C-obstacles impractical to compute
explicit representation of freespace for more than 4 or 5 dof

So … attention has turned to randomized algorithms

The Complexity of
Motion Planning PSPACE

NP

P

CS633

Probabilistic Methods

• Avoid computing C-obstacles
– Too difficult to compute efficiently

• Idea: Sacrifice completeness to gain simplicity
and efficiency

• Probabilistic Methods
– Graph based
– Tree based

CS633

Theta

Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

unknown

CS633

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

C-obst

C-space

CS633

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

C-obst

C-space

CS633

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)
1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

CS633

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

CS633

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

CS633

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

CS633

1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

CS633

1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
 - simple, deterministic local planner (e.g., straightline)
 - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
 - discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
 - regenerate plans for edges in roadmap

CS633

Probabilistic Roadmap Method

• Important sub-routines
– Generate random configurations
– Local planners

– Distance metrics
– Selecting k-nearest neighbors (becoming dominant in high

dimensional space)

– Collision detection (>80% computation)

Note: We don’t store paths in the edges

CS633

PRMs: Pros & Cons
PRMs: The Good News

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

PRMs: The Bad News

1. PRMs don’t work as well for some problems:
– unlikely to sample nodes in narrow passages
– hard to sample/connect nodes on constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst

CS633

Related Work (selected)

• Probabilistic Roadmap Methods
• Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]

• Obstacle-based PRM (OBPRM) [Amato et al, 98]

• PRM Roadmaps in Dilated Free space [Hsu et al, 98]

• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]

• Bridge test [Hsu et al 03]

• Visibility Roadmaps [Laumond et al 99]

• Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]

• Generating Contact Configurations [Xiao et al 99]

• Using workspace clues
•…

CS633

Related Work (selected)

• Probabilistic Roadmap Methods
• Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]

• Obstacle-based PRM (OBPRM) [Amato et al, 98]

• PRM Roadmaps in Dilated Free space [Hsu et al, 98]

• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]

• Bridge test [Hsu et al 03]

• Visibility Roadmaps [Laumond et al 99]

• Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]

• Generating Contact Configurations [Xiao et al 99]

• Using workspace clues
•…

CS633

An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap

CS633

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

2

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

3

2

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

3

2

4

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

3

2

4
5

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

1

3

2

4
5

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them
 using binary search (collision checks)

Note: we can use more sophisticated
heuristics to try to cover C-obstacle

C-obst

CS633

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d is a
random variable in a Gaussian
distribution

3. Keep the second point if it is collision
free

C-obst

CS633

1

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d is a
random variable in a Gaussian
distribution

3. Keep the second point if it is collision
free

C-obst

CS633

1

2

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d is a
random variable in a Gaussian
distribution

3. Keep the second point if it is collision
free

C-obstd

CS633

1

2

Gaussian Sampling PRM

1. Find a point in S’s C-obstacle
 (robot placement colliding with S)

2. Find another point that is within
distance d to the first point, where d is a
random variable in a Gaussian
distribution

3. Keep the second point if it is collision
free

C-obstd

Note

• Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples

• None of these methods can (be proved to) provide guarantee that the samples in the narrow
passage will increase!

CS633

Related Work (selected)

• Probabilistic Roadmap Methods
• Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]

• Obstacle-based PRM (OBPRM) [Amato et al, 98]

• PRM Roadmaps in Dilated Free space [Hsu et al, 98]

• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]

• Bridge test [Hsu et al 03]

• Visibility Roadmaps [Laumond et al 99]

• Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]

• Generating Contact Configurations [Xiao et al 99]

• Using workspace clues

CS633

Probabilistic Methods
• Avoid computing C-obstacles

– Too difficult to compute

• Sacrifice completeness to gain simplicity and efficiency -
probabilistic complete!

• Probabilistic Methods
– Graph based

–Tree based - single-shot
planners!

CS633

Rapidly-Exploring Random Tree (RRT)

• RRTs: Rapidly-exploring Random Trees
 Rapidly-exploring random trees: Progress and prospects. S. M. LaValle and J. J. Kuffner. In

Proceedings Workshop on the Algorithmic Foundations of Robotics, 2000.)

– Incrementally builds the roadmap tree

• Extends to more advanced planning techniques
– Integrates the control inputs to ensure that the kinodynamic

constraints are satisfied

CS633

How it Works

• Build a rapidly-exploring random tree in state space
(X), starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal
Start

CS633

Building an RRT

• To extend an RRT:
– Pick a random point a in

X
– Find b, the node of the

tree closest to a
– Find control inputs u to

steer the robot from b to
a a

b
u

CS633

Building an RRT

• To extend an RRT (cont.)
– Apply control inputs u

for time δ, so robot
reaches c

– If no collisions occur in
getting from a to c, add c
to RRT and record u with
new edge

a

b
u

c

CS633

Executing the Path

Once the RRT reaches sgoal

– Backtrack along tree to identify edges that
lead from sstart to sgoal

– Drive robot using control inputs stored
along edges in the tree

CS633

Principle Advantage

• RRT quickly explores the
state space:
– Nodes most likely to be

expanded are those with
largest Voronoi regions

CS633

Principle Advantage

• RRT quickly explores the
state space:
– Nodes most likely to be

expanded are those with
largest Voronoi regions

CS633

Problem of Simple RRT Planner

CS633

Problem of Simple RRT Planner

CS633

Problem of Simple RRT Planner

CS633

Problem of Simple RRT Planner

CS633

Problem of Simple RRT Planner

CS633

Problem of Simple RRT Planner

CS633

Problem of Simple RRT Planner

• Problem: ordinary RRT explores X uniformly
→ slow convergence

• Solution: bias distribution towards the goal

CS633

Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
– local planner will not work (dynamic constraints)

– bias the distribution, so that the trees meet

CS633

Bidirectional RRT Example

CS633

Bidirectional RRT Example

CS633

Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.

2. Randomly sample nodes around existing nodes.

3. Connect a node in the tree rooted at Init to a node in the tree
rooted at the Goal.

Init Goal

Path Planning in Expansive Configuration Spaces, D. Hsu, J.C. Latombe, & R. Motwani, 1999.

CS633

Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.

2. Randomly sample nodes around existing nodes.

3. Connect a node in the tree rooted at Init to a node in the tree
rooted at the Goal.

Init Goal

Expansion + Connection

Path Planning in Expansive Configuration Spaces, D. Hsu, J.C. Latombe, & R. Motwani, 1999.

CS633

Expansion

root

CS633

1. Pick a node x with probability 1/w(x).

Disk with radius d, w(x)=3

Expansion

root

CS633

1. Pick a node x with probability 1/w(x).

Disk with radius d, w(x)=3

Expansion

root

2. Randomly sample k points around x.

CS633

1. Pick a node x with probability 1/w(x).

Disk with radius d, w(x)=3

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y).

CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y).

1 2

3

1/w(y1)=1/5

CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y).

1 2

3

1/w(y2)=1/2

CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y).

1 2

3

1/w(y3)=1/3

CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y). If y

1 2

3

CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y). If y

1 2

3

 (a) has higher probability; (b) collision free; (c) can sees x

CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives
probability 1/w(y). If y

1 2

3

 (a) has higher probability; (b) collision free; (c) can sees x

 then add y into the tree.

CS633

Computed example

CS633

More Problems with Probabilistic
Methods

• ??

CS633

Conclusion

• Motion planning is difficult
(intractable)

• Roadmap methods
– Probabilistic Motion Planners

CS633

What is not covered?

• C-space
– Minkowski sum computation (end of the semester)

• Deterministic Roadmap methods
– Visibility graph, cell, decomposition,…
– Algorithms of visibility graph, trapezoidation
– Schwartz and Sharir’s critical curve method
– Canny’s Silhouette methods
– Voronoi diagram computation

• Probabilistic Roadmap methods
– Analysis of PRM, RRT, EST, OBPRM, MAPRM…

CS633

What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko

http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/

CS633

What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko

These will require another
semester…

http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/

CS633

Homework Assignment

• TBD

CS633

Programming Assignment

• Programming assignment #2 will be given out
soon (by the end of this week)
– Probabilistic motion planning implementation (in C/C++)

– Implement at least two planning strategies
• Papers is posted on the discussion board

– Design an interesting motion planning problem

CS633

Additional Readings
• Gross motion planning—a survey, Y. K. Hwang and N.

Ahuja, ACM Computing Surveys, 1992 (survey paper)

• Robot Motion Planning. J.C. Latombe. Kluwer Academic
Publishers, Boston, MA, 1991.

• Motion Planning: A Journey of Robots, Molecules,
Digital Actors, and Other Artifacts. Jean-Claude
Latombe, IJRR, 1999 (survey paper)

• Planning Algorithms, Steven LaValle, 2006, Cambridge
University Pres, (Free download at http://
planning.cs.uiuc.edu/)

