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Hard Motion Planning Problems 
Deformable Objects

• Find a path for a deformable object  that can deform to 
avoid collision with obstacles
• move a mattress in a house, elastic or air-filled objects, metal 

sheets or long flexible tubes 
• virtual surgery applications
• computer animation and games
• Issue: difficult to find natural deformation efficiently
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Hard Motion Planning Problems 
Movable Objects

• M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints 
Workshop on the Algorithmic Foundations of Robotics, July, 2006 

http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf
http://www.cc.gatech.edu/~mstilman/papers/stilman-WAFR06.pdf
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Hard Motion Planning Problems
Intelligent CAD Applications

• Using Motion Planning to Test Design Requirements:

– Accessibility for servicing/assembly tested on physical “mock ups”

– Digital testing saves time and money, is more accurate, enables more extensive testing, and is 
useful for training (VR or e-manuals)
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Hard Motion Planning Problems
Intelligent CAD Applications

• Using Motion Planning to Test Design Requirements:

– Accessibility for servicing/assembly tested on physical “mock ups”

– Digital testing saves time and money, is more accurate, enables more extensive testing, and is 
useful for training (VR or e-manuals)

Maintainability Problems: 
Mechanical Designs from GE

flange Airplane engine
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Hard Motion Planning Problems
computational biology & chemistry

Motion of molecules

– help understand important interactions - protein structure/function prediction

– diseases such as Alzheimer’s and Mad Cow are related to misfolded proteins

normal - misfold

prion protein



CS633

General motion planning problem is 
PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time 
that is exponential in the dimension of the robot’s C-space 
[Canny 86]
• C-space has high dimension - 6D for rigid body in 3-space
• simple obstacles have complex C-obstacles          impractical to compute     
explicit representation of freespace for more than 4 or 5 dof

The Complexity of 
Motion Planning PSPACE

NP

P
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PSPACE-hard [Reif 79, Hopcroft et al. 84 & 86]

PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time 
that is exponential in the dimension of the robot’s C-space 
[Canny 86]
• C-space has high dimension - 6D for rigid body in 3-space
• simple obstacles have complex C-obstacles          impractical to compute     
explicit representation of freespace for more than 4 or 5 dof

So … attention has turned to randomized algorithms

The Complexity of 
Motion Planning PSPACE

NP

P
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Probabilistic Methods

• Avoid computing C-obstacles
– Too difficult to compute efficiently

• Idea: Sacrifice completeness to gain simplicity 
and efficiency

• Probabilistic Methods
– Graph based
– Tree based
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Theta

Probabilistic Roadmap Method
[Kavraki, Svestka, Latombe,Overmars 1996]

unknown
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1. Connect start and goal to roadmap 

Query processing
start

goal

Probabilistic Roadmap Method

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap
     - simple, deterministic local planner (e.g., straightline)
     - discard paths that are invalid

1. Randomly generate robot configurations (nodes)
     - discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal
    - regenerate plans for edges in roadmap
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Probabilistic Roadmap Method

• Important sub-routines
– Generate random configurations
– Local planners

– Distance metrics 
– Selecting k-nearest neighbors (becoming dominant in high 

dimensional space)

– Collision detection (>80% computation)

Note: We don’t store paths in the edges
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PRMs: Pros & Cons
PRMs: The Good News

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously 
unsolved problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

PRMs: The Bad News

1. PRMs don’t work as well for some problems:
– unlikely to sample nodes in narrow passages
– hard to sample/connect nodes on constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst
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Related Work (selected) 

• Probabilistic Roadmap Methods
• Uniform Sampling (original)  [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]

• Obstacle-based PRM (OBPRM) [Amato et al, 98]

• PRM Roadmaps in Dilated Free space [Hsu et al, 98]

• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]

• Bridge test [Hsu et al 03]

• Visibility Roadmaps [Laumond et al 99]

• Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]

• Generating Contact Configurations [Xiao et al 99] 

• Using workspace clues
•…
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An Obstacle-Based PRM

start

goal

C-obst

C-obst

C-obst

C-obst

To Navigate Narrow Passages we must sample in them
• most PRM nodes are where planning is easy (not needed)

PRM Roadmap

start

goal

C-obst

C-obst

C-obst

C-obst

Idea: Can we sample nodes near C-obstacle surfaces?
• we cannot explicitly construct the C-obstacles...
• we do have models of the (workspace) obstacles...

OBPRM Roadmap
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Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S’s C-obstacle
    (robot placement colliding with S)
2.  Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them 
    using binary search (collision checks)

Note: we can use more sophisticated 
heuristics to try to cover C-obstacle

C-obst
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Gaussian Sampling PRM 

1. Find a point in S’s C-obstacle
    (robot placement colliding with S)

2. Find another point that is within 
distance d to the first point, where d is a 
random variable in a Gaussian 
distribution

3. Keep the second point if it is collision 
free

C-obst
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Gaussian Sampling PRM 

1. Find a point in S’s C-obstacle
    (robot placement colliding with S)

2. Find another point that is within 
distance d to the first point, where d is a 
random variable in a Gaussian 
distribution

3. Keep the second point if it is collision 
free

C-obstd

Note 

• Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples

• None of these methods can (be proved to) provide guarantee that the samples in the narrow 
passage will increase!



CS633

Related Work (selected) 

• Probabilistic Roadmap Methods
• Uniform Sampling (original)  [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]

• Obstacle-based PRM (OBPRM) [Amato et al, 98]

• PRM Roadmaps in Dilated Free space [Hsu et al, 98]

• Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]

• Bridge test [Hsu et al 03]

• Visibility Roadmaps [Laumond et al 99]

• Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
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Probabilistic Methods
• Avoid computing C-obstacles

– Too difficult to compute

• Sacrifice completeness to gain simplicity and efficiency - 
probabilistic complete!

• Probabilistic Methods
– Graph based

–Tree based - single-shot 
planners!
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Rapidly-Exploring Random Tree (RRT)

• RRTs: Rapidly-exploring Random Trees
        Rapidly-exploring random trees: Progress and prospects. S. M. LaValle and J. J. Kuffner. In 

Proceedings Workshop on the Algorithmic Foundations of Robotics, 2000.)

– Incrementally builds the roadmap tree

• Extends to more advanced planning techniques
– Integrates the control inputs to ensure that the kinodynamic 

constraints are satisfied
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How it Works

• Build a rapidly-exploring random tree in state space 
(X), starting at sstart

• Stop when tree gets sufficiently close to sgoal

Goal
Start
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Building an RRT

• To extend an RRT:
– Pick a random point a in 

X
– Find b, the node of the 

tree closest to a
– Find control inputs u to 

steer the robot from b to 
a a

b
u
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Building an RRT

• To extend an RRT (cont.)
– Apply control inputs u 

for time δ, so robot 
reaches c

– If no collisions occur in 
getting from a to c, add c 
to RRT and record u with 
new edge

a

b
u

c
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Executing the Path

Once the RRT reaches sgoal

– Backtrack along tree to identify edges that 
lead from sstart to sgoal

– Drive robot using control inputs stored 
along edges in the tree
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Principle Advantage

• RRT quickly explores the 
state space:
– Nodes most likely to be 

expanded are those with 
largest Voronoi regions
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Problem of Simple RRT Planner 

• Problem: ordinary RRT explores X uniformly
→  slow convergence

• Solution: bias distribution towards the goal
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Bidirectional Planners

• Build two RRTs, from start and goal state

• Complication: need to connect two RRTs
– local planner will not work (dynamic constraints)

– bias the distribution, so that the trees meet
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Bidirectional RRT Example
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Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.

2. Randomly sample nodes around existing nodes.

3. Connect a node in the tree rooted at Init to a node in the tree 
rooted at the Goal.

Init Goal

Path Planning in Expansive Configuration Spaces, D. Hsu, J.C. Latombe, & R. Motwani, 1999.
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Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.

2. Randomly sample nodes around existing nodes.

3. Connect a node in the tree rooted at Init to a node in the tree 
rooted at the Goal.

Init Goal

Expansion + Connection

Path Planning in Expansive Configuration Spaces, D. Hsu, J.C. Latombe, & R. Motwani, 1999.
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Expansion

root
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1. Pick a node x with probability 1/w(x).

Disk with radius d, w(x)=3

Expansion

root
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1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives 
probability 1/w(y).

1 2

3

1/w(y1)=1/5



CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives 
probability 1/w(y).

1 2

3

1/w(y2)=1/2
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1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives 
probability 1/w(y).

1 2

3

1/w(y3)=1/3



CS633

1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives 
probability 1/w(y). If y

1 2

3
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1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives 
probability 1/w(y). If y

1 2

3

 (a) has higher probability; (b) collision free; (c) can sees x
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1. Pick a node x with probability 1/w(x).

Expansion

root

2. Randomly sample k points around x.

3. For each sample y, calculate w(y), which gives 
probability 1/w(y). If y

1 2

3

 (a) has higher probability; (b) collision free; (c) can sees x

 then add y into the tree.
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Computed example
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More Problems with Probabilistic 
Methods 

• ??
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Conclusion

• Motion planning is difficult 
(intractable)

• Roadmap methods
– Probabilistic Motion Planners
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What is not covered?

• C-space
– Minkowski sum computation (end of the semester)

• Deterministic Roadmap methods
– Visibility graph, cell, decomposition,…
– Algorithms of visibility graph, trapezoidation
– Schwartz and Sharir’s critical curve method
– Canny’s Silhouette methods
– Voronoi diagram computation

• Probabilistic Roadmap methods
– Analysis of PRM, RRT, EST, OBPRM, MAPRM…
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What is not covered?

• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko

http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
http://www.crunchgear.com/2008/09/24/little-seiko-japanese-company-develops-creepy-kindergarten-girl-robot/
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• Other types of motion planning
– With constraints

• Close-chain constraint
• Nonholonomic constraint
• Differential constraints

– Manipulate planning
– Assembly planning
– Planning with uncertainty
– Planning for multiple robots, dynamic env
– Planning for highly articulated objects
– Planning for deformable objects
– …

Little Seiko

These will require another 
semester…
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Homework Assignment

• TBD
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Programming Assignment

• Programming assignment #2 will be given out 
soon (by the end of this week)
– Probabilistic motion planning implementation (in C/C++)

– Implement at least two planning strategies
• Papers is posted on the discussion board

– Design an interesting motion planning problem
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Additional Readings
• Gross motion planning—a survey, Y. K. Hwang and N. 

Ahuja, ACM Computing Surveys, 1992 (survey paper)

• Robot Motion Planning. J.C. Latombe. Kluwer Academic 
Publishers, Boston, MA, 1991. 

• Motion Planning: A Journey of Robots, Molecules, 
Digital Actors, and Other Artifacts. Jean-Claude 
Latombe, IJRR, 1999 (survey paper)

• Planning Algorithms, Steven LaValle, 2006, Cambridge 
University Pres, (Free download at http://
planning.cs.uiuc.edu/)


