Probabilistic Motion Planning

Jyh-Ming Lien

Department of Computer Science George Mason University

Based on many people's lecture notes

Seth Hutchinson at the University of Illinois at Urbana-Champaign, Leo Joskowicz at
Hebrew University, Jean-Claude Latombe at Stanford University, Nancy Amato at Texas A\&M University, Burchan Bayazit at Washington University in St. Louis

Hard Motion Planning Problems

Hard Motion Planning Problems

The Alpha Puzzle

Swapping Cubes Puzzle

Hard Motion Planning Problems

The Alpha Puzzle

Swapping Cubes Puzzle

Hard Motion Planning Problems

 Highly Articulated (Constrained) SystemsPaper Folding

Articulated robot

Polyhedron: 25 dof

Hard Motion Planning Problems

 Highly Articulated (Constrained) SystemsPaper Folding

Articulated robot

Polyhedron: 25 dof
Line: 30 dof

Hard Motion Planning Problems

 Highly Articulated (Constrained) SystemsPaper Folding

Articulated robot

Polyhedron: 25 dof
Line: 30 dof

Hard Motion Planning Problems

 Highly Articulated (Constrained) SystemsDigital Actors

Reaching and grasping

Hard Motion Planning Problems

 Highly Articulated (Constrained) SystemsDigital Actors

Collision-free reaching for object manipulation
 grasping objects with right or left hand

Reaching and grasping

Hard Motion Planning Problems Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Hard Motion Planning Problems Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities

Hard Motion Planning Problems Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities

Hard Motion Planning Problems Flocking: Covering, Homing, Shepherding

Motion for coordinated entities

Interactive Navigation of Multiple Agents in Crowded Environments. Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin, i3D 2008

Control the motion of coordinated entities

Hard Motion Planning Problems Deformable Objects

- Find a path for a deformable object that can deform to avoid collision with obstacles
- move a mattress in a house, elastic or air-filled objects, metal sheets or long flexible tubes
- virtual surgery applications
- computer animation and games
- Issue: difficult to find natural deformation efficiently

Hard Motion Planning Problems Deformable Objects

- Find a path for a deformable object that can deform to avoid collision with obstacles
- move a mattress in a house, elastic or air-filled objects, metal sheets or long flexible tubes
- virtual surgery applications
- computer animation and games
- Issue: difficult to find natural deformation efficiently

CS633

Hard Motion Planning Problems Movable Objects

- M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints Workshop on the Algorithmic Foundations of Robotics, July, 2006

Hard Motion Planning Problems Movable Objects

- M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints Workshop on the Algorithmic Foundations of Robotics, July, 2006

Hard Motion Planning Problems Movable Objects

- M. Stilman and J.J. Kuffner Planning Among Movable Obstacles with Artificial Constraints Workshop on the Algorithmic Foundations of Robotics, July, 2006

Hard Motion Planning Problems Intelligent CAD Applications

- Using Motion Planning to Test Design Requirements
- Accessibility for servicing/assembly tested on physical "mock ups"
- Digital testing saves time and money, is more accurate, enables more extensive testing, and is useful for training (VR or e-manuals)

Hard Motion Planning Problems Intelligent CAD Applications

- Using Motion Planning to Test Design Requirements
- Accessibility for servicing/assembly tested on physical "mock ups"
- Digital testing saves time and money, is more accurate, enables more extensive testing, and is useful for training (VR or e-manuals)

Maintainability Problems:
Mechanical Designs from GE

flange
Airplane engine

Hard Motion Planning Problems computational biology \& chemistry

Motion of molecules

- help understand important interactions - protein structure/function prediction
- diseases such as Alzheimer's and Mad Cow are related to misfolded proteins

prion protein

normal - misfold

The Complexity of Motion Planning

General motion planning problem is PSPACE-hard [Reif 79 , Hopcroft et al. $84 \& 86]$ PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time that is exponential in the dimension of the robot's C -space [Canny 86]

- C-space has high dimension - 6D for rigid body in 3-space
- simple obstacles have complex C-obstacles \quad impractical to compute explicit representation of freespace for more than 4 or 5 dof

The Complexity of Motion Planning

General motion planning problem is PSPACE-hard [Reif 79 , Hopcroft et al. $84 \& 86]$ PSPACE-complete [Canny 87]

The best deterministic algorithm known has running time that is exponential in the dimension of the robot's C -space [Canny 86]

- C-space has high dimension - 6D for rigid body in 3-space
- simple obstacles have complex C-obstacles \quad impractical to compute explicit representation of freespace for more than 4 or 5 dof

So ... attention has turned to randomized algorithms

Probabilistic Methods

- Avoid computing C-obstacles
- Too difficult to compute efficiently
- Idea: Sacrifice completeness to gain simplicity and efficiency
- Probabilistic Methods
- Graph based
- Tree based

Probabilistic Roadmap Method

[Kavraki, Svestka, Latombe,Overmars 1996]

unknown

Probabilistic Roadmap Method

C-space

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap

- simple, deterministic local planner (e.g., straightline)
- discard paths that are invalid

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap

- simple, deterministic local planner (e.g., straightline)
- discard paths that are invalid

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap

- simple, deterministic local planner (e.g., straightline)
- discard paths that are invalid

Query processing

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap

- simple, deterministic local planner (e.g., straightline)
- discard paths that are invalid

Query processing

1. Connect start and goal to roadmap

Probabilistic Roadmap Method

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap

- simple, deterministic local planner (e.g., straightline)
- discard paths that are invalid

Query processing

1. Connect start and goal to roadmap
2. Find path in roadmap between start and goal - regenerate plans for edges in roadmap

Probabilistic Roadmap Method

- Important sub-routines
- Generate random configurations
- Local planners
- Distance metrics
- Selecting k-nearest neighbors (becoming dominant in high dimensional space)
- Collision detection (>80\% computation)

Note: We don't store paths in the edges

PRMs: Pros \& Cons

PRMs: The Good News

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously unsolved problems

PRMs: The Bad News

1. PRMs don't work as well for some problems:

- unlikely to sample nodes in narrow passages
- hard to sample/connect nodes on constraint surfaces

Related Work (selected)

- Probabilistic Roadmap Methods
- Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]
- Obstacle-based PRM (OBPRM) [Amato et al, 98]
- PRM Roadmaps in Dilated Free space [Hsu et al, 98]
- Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
- Bridge test [Hsu et al 03]
- Visibility Roadmaps [Laumond et al 99]
- Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
- Generating Contact Configurations [Xiao et al 99]
- Using workspace clues
-...

Related Work (selected)

- Probabilistic Roadmap Methods
- Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]
- Obstacle-based PRM (OBPRM) [Amato et al, 98]
- PRM Roadmaps in Dilated Free space [Hsu et al, 98]
- Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
- Bridge test [Hsu et al 03]
- Visibility Roadmaps [Laumond et al 99]
- Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
- Generating Contact Configurations [Xiao et al 99]
- Using workspace clues
-...

An Obstacle-Based PRM

To Navigate Narrow Passages we must sample in them

- most PRM nodes are where planning is easy (not needed)

PRM Roadmap

OBPRM Roadmap

Idea: Can we sample nodes near C-obstacle surfaces?

- we cannot explicitly construct the C-obstacles...
- we do have models of the (workspace) obstacles...

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in $\mathrm{S}^{\prime} \mathrm{s}$ C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in $\mathrm{S}^{\prime} \mathrm{s}$ C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Finding Points on C-obstacles

Basic Idea (for workspace obstacle S)

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Select a random direction in C-space
3. Find a free point in that direction
4. Find boundary point between them using binary search (collision checks)

Note: we can use more sophisticated heuristics to try to cover C-obstacle

Gaussian Sampling PRM

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution
3. Keep the second point if it is collision free

Gaussian Sampling PRM

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution
3. Keep the second point if it is collision free

Gaussian Sampling PRM

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution
3. Keep the second point if it is collision free

Gaussian Sampling PRM

1. Find a point in S's C-obstacle (robot placement colliding with S)
2. Find another point that is within distance d to the first point, where d is a random variable in a Gaussian distribution
3. Keep the second point if it is collision free

Note

- Two paradigms: (1) OBPRM: Fix the samples (2) Gaussian PRM: Filter the samples
- None of these methods can (be proved to) provide guarantee that the samples in the narrow passage will increase!

Related Work (selected)

- Probabilistic Roadmap Methods

- Uniform Sampling (original) [Kavraki, Latombe, Overmars, Svestka, 92, 94, 96]
- Obstacle-based PRM (OBPRM) [Amato et al, 98]
- PRM Roadmaps in Dilated Free space [Hsu et al, 98]
- Gaussian Sampling PRMs [Boor/Overmars/van der Steppen 99]
- Bridge test [Hsu et al 03]
- Visibility Roadmaps [Laumond et al 99]
- Using Medial Axis [Kavraki et al 99, Lien/Thomas/Wilmarth/Amato/Stiller 99, 03, Lin et al 00]
- Generating Contact Configurations [Xiao et al 99]
- Using workspace clues

Probabilistic Methods

- Avoid computing C-obstacles
- Too difficult to compute
- Sacrifice completeness to gain simplicity and efficiency probabilistic complete!
- Probabilistic Methods
- Graph based
-Tree based - single-shot
planners!

Rapidly-Exploring Random Tree (RRT)

- RRTs: Rapidly-exploring Random Trees

Rapidly-exploring random trees: Progress and prospects. S. M. LaValle and J. J. Kuffner. In Proceedings Workshop on the Algorithmic Foundations of Robotics, 2000.)

- Incrementally builds the roadmap tree
- Extends to more advanced planning techniques
- Integrates the control inputs to ensure that the kinodynamic constraints are satisfied

How it Works

- Build a rapidly-exploring random tree in state space (X), starting at $S_{\text {start }}$
- Stop when tree gets sufficiently close to $s_{\text {goal }}$

Building an RRT

- To extend an RRT:
- Pick a random point a in X
- Find b, the node of the tree closest to a
- Find control inputs u to steer the robot from b to a

Building an RRT

- To extend an RRT (cont.)
- Apply control inputs u for time δ, so robot reaches c
- If no collisions occur in getting from a to c, add c to RRT and record u with new edge

Executing the Path

Once the RRT reaches $s_{\text {goal }}$

- Backtrack along tree to identify edges that lead from $s_{\text {start }}$ to $s_{\text {goal }}$
- Drive robot using control inputs stored along edges in the tree

Principle Advantage

- RRT quickly explores the state space:
- Nodes most likely to be expanded are those with largest Voronoi regions

Principle Advantage

- RRT quickly explores the state space:
- Nodes most likely to be expanded are those with largest Voronoi regions

Problem of Simple RRT Planner

Problem of Simple RRT Planner

Problem of Simple RRT Planner

Problem of Simple RRT Planner

Problem of Simple RRT Planner

Problem of Simple RRT Planner

Problem of Simple RRT Planner

- Problem: ordinary RRT explores X uniformly
\rightarrow slow convergence
- Solution: bias distribution towards the goal

Bidirectional Planners

- Build two RRTs, from start and goal state

- Complication: need to connect two RRTs
- local planner will not work (dynamic constraints)
- bias the distribution, so that the trees meet

Bidirectional RRT Example

Bidirectional RRT Example

Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.
2. Randomly sample nodes around existing nodes.
3. Connect a node in the tree rooted at Init to a node in the tree rooted at the Goal.

Expansion Space Tree (EST)

1. Grow two trees from Init position and Goal configurations.
2. Randomly sample nodes around existing nodes.
3. Connect a node in the tree rooted at Init to a node in the tree rooted at the Goal.

Expansion + Connection

Expansion

Expansion

1. Pick a node x with probability $1 / w(x)$.

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / \mathrm{w}(\mathrm{y})$.

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / \mathrm{w}(\mathrm{y})$.

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / \mathrm{w}(\mathrm{y})$.

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / \mathrm{w}(\mathrm{y})$.

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / w(y)$. If y

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / w(y)$. If y
(a) has higher probability; (b) collision free; (c) can sees x

Expansion

1. Pick a node x with probability $1 / w(x)$.
2. Randomly sample k points around x.
3. For each sample y, calculate $w(y)$, which gives probability $1 / w(y)$. If y
(a) has higher probability; (b) collision free; (c) can sees x then add y into the tree.

Computed example

(a)

(d)

(b)

(f)

(c)

(g)

More Problems with Probabilistic Methods

- ??

Conclusion

- Motion planning is difficult (intractable)
- Roadmap methods
- Probabilistic Motion Planners

What is not covered?

- C-space
- Minkowski sum computation (end of the semester)
- Deterministic Roadmap methods
- Visibility graph, cell, decomposition,...
- Algorithms of visibility graph, trapezoidation
- Schwartz and Sharir's critical curve method
- Canny's Silhouette methods
- Voronoi diagram computation
- Probabilistic Roadmap methods
- Analysis of PRM, RRT, EST, OBPRM, MAPRM...

What is not covered?

- Other types of motion planning
- With constraints
- Close-chain constraint
- Nonholonomic constraint
- Differential constraints
- Manipulate planning
- Assembly planning
- Planning with uncertainty
- Planning for multiple robots, dynamic env
- Planning for highly articulated objects
- Planning for deformable objects
- ...

Little Seiko

What is not covered?

- Other types of motion planning
- With constraints
- Close-chain constraint
- Nonholonomic constraint

Little Seiko

Homework Assignment

- TBD

Programming Assignment

- Programming assignment \#2 will be given out soon (by the end of this week)
- Probabilistic motion planning implementation (in C/C++)
- Implement at least two planning strategies
- Papers is posted on the discussion board
- Design an interesting motion planning problem

Additional Readings

- Gross motion planning-a survey, Y. K. Hwang and N. Ahuja, ACM Computing Surveys, 1992 (survey paper)
- Robot Motion Planning. J.C. Latombe. Kluwer Academic Publishers, Boston, MA, 1991.

- Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts. Jean-Claude Latombe, IJRR, 1999 (survey paper)
- Planning Algorithms, Steven LaValle, 2006, Cambridge University Pres, (Free download at http:// planning.cs.uiuc.edu/)

