CS633 Lecture 06 Linear Programming

Jyh-Ming Lien
Dept of Computer Science
George Mason University

Based on Chapter 4 of the textbook And Ming Lin's lecture note at UNC

Linear Programming

- Reading: Chapter 4 of the Textbook
- Driving Applications
- Casting/Metal Molding
- Collision Detection
- Randomized Algorithms
- Smallest Enclosing Discs

Casting

- Liquid metal is poured into a mold, it solidifies, and then the object shape is formed and the object is removed.

Casting

- Not all objects of different shapes can be removed
- For example, a sphere

castable?

Castability

- Problems: Whether an object can be manufactured by casting; if so, find the suitable mold
$\xrightarrow{\text { - Before you learn about this chapter }}$

- Build a mold
- Build an object using the mold

\$500

- Find out that you cannot retrieve the object from the mold
- Repeat above until you remove the object from the mold
- After you learn about this chapter
- Scan the object
- Analyze the castability
- Save $\$ 1$ million

Transform to a Geometric Problem

- The shape of cavity in the mold is determined by the shape of the object, but different orientation can be crucial
- The object must have a horizontal top facet

Transform to a Geometric Problem

- Let P, object to be casted, be a 3D polyhedron bounded by planar facets with a designated top facet
- Assume: the mold is rectangular block with a cavity that corresponds exactly to P.
- Problem: Decide whether a direction \underline{d} exists s.t. P can be translated to infinity in direction \underline{d} without intersecting interior of of the mold.

Try each top face and answer:
Can we remove the cast using this top face?
If so, what is the direction, \underline{d} ?

Problem Analysis

- The polyhedron P can be removed from its mold by a translation in direction \underline{d} if and only if \underline{d} makes an angle of at least 90° with the outward normal of all ordinary facets of P.

Problem Analysis

When in collision:

The angle between $n\left(f^{\prime}\right)$ and d must be larger than 90°

The angle between $n(f)$ and d must be smaller than 90°

Problem Analysis

- Let $\underline{n}=\left(n_{x}, n_{y}, n_{z}\right)$ be the outward normal of an ordinary facet. The direction $\underline{d}=\left(d_{x}, d_{y}\right.$, 1) makes an angle at least 90° with \underline{n} if and only if the dot product of \underline{n} and \underline{d} is nonpositive:

$$
n_{x} d_{x}+n_{y} d_{y}+n_{z} \leq 0
$$

Problem Analysis

- Representing the direction as $\underline{d}=\left(d_{x}, d_{y}, l\right)$
- Unique upward direction
- Using fewer variables
- Reduce the problem from 3D to 2D

Problem Analysis

$$
n_{x} d_{x}+n_{y} d_{y}+n_{z} \leq 0
$$

- This describes a half-plane on the plane $z=1$, i.e. the area to the left or right of a line on the plane.

Problem Analysis

- Casting problem: given a set of half-planes, find a point in their common intersection or decide if the common intersection is empty.

Each half-plane for each facet of the polyhedron

CS633

Half-Plane Intersection

- Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a set of linear constraints in two variables, i.e. in the form:

$$
a_{i} x+b_{i} y \leq c_{i}
$$

where a_{i}, b_{i} and c_{i} are constants, s.t. at least one of a_{i} and b_{i} is non-zero.

- Problem: Find the set of all points $(x, y) \in R^{2}$ that satisfy all n constraints at the same time; i.e. find all the points lying in the common intersection of the half-planes in H.

Type of Intersections

- Convex regions bounded by at most n edges (half-planes / lines)
- Degenerate cases: a line or point
- Unbounded regions
- Empty

Half-Plane Intersection

A Divide-n-Conquer approach

Input: A set H of n half-planes in the plane
Output: A convex polygonal region $C:=\bigcap_{h \in H} h$

1. if $\operatorname{card}(H)=1$ (a plate?)
2. then $C \leftarrow$ the unique half-plane $h \in H$
3. else Split H into sets H_{1} and H_{2} of the size $(n / 2)$ and $(n / 2)$
4. $\quad C_{l} \leftarrow$ IntersectHalfPlanes $\left(H_{l}\right)$
5. $\quad C_{2} \leftarrow$ IntersectHalfPlanes $\left(H_{2}\right)$
6. $\quad C \leftarrow$ IntersectConvexRegions $\left(C_{1}, C_{2}\right)$

Intersection of Two Polygons

- How to compute intersection of two polygons?
- Using line-segment intersection
- Using doubly-connected edge list
- Updating the facets

Run Time Analysis

- Computing intersections of two overlays takes $O((n+k) \log n)$ time, where k is the number of intersection points between edges of C_{l} and edges of C_{2} and $k \leq n$
- $T(n)=O(1)$, if $n=1$
- $T(n)=O(n \log n)+2 T(n / 2)$, if $n>1$
$\Rightarrow T(n)=O\left(n \log ^{2} n\right)$
Can we do better?

Another Plane-Sweep

- Store left/right boundary of C as sorted lists of halfplanes, $\mathrm{L}_{\text {left }}(C) \& \mathrm{~L}_{\text {right }}(C)$, in order from top to bottom.
left boundary

CS633

Another Plane-Sweep

- Plane-Sweep: maintain edges of $C_{1} \& C_{2}$ intersecting the sweep line. There are at most four. Use pointers: l_edge_C l_{1}, $r_{-} e d g e _C_{1}, l _e d g e _C_{2}, r_{-} e d g e _C_{2}$.

Another Plane-Sweep

- Plane-Sweep: Events are the vertices of the convex polygon points

Another Plane-Sweep

- Plane-Sweep: Assume l is at the upper endpoint p of an edge e of l_edge_C ${ }_{l}$
- p will be a vertex of the new convex object

Another Plane-Sweep

- Plane-Sweep: Assume l is at the upper endpoint p of an edge e of l_edge_C C_{1}
- p will be a vertex of the new convex object
- The intersection of edge e and r_{-}edge_C2
- The intersection of edge e and l_{-}edge_ C_{2}

Half-Plane Intersection

- At each event point, some new edge e appears on the boundary. To handle edge e, we first check whether e belongs to C_{1} or C_{2}, and whether it is on the left or right boundary, and then call appropriate procedure
- According to the handling of each case, we add the appropriate half-planes to the intersection of $C_{1} \& C_{2}$. All cases can be decided in constant time
- Keep track of left boundary and right boundary in the new convex region

Algorithm Analysis

- It takes constant time to handle an edge. So, the intersection of two convex polygonal regions in the plane can be computed in $O(n)$ time. So, now

$$
\begin{aligned}
& T(n)=O(n)+2 T(n / 2) \text {, if } n>1 \\
& \Rightarrow T(n)=O(n \log n)
\end{aligned}
$$

- The common intersection of a set of n halfplanes in the plane can be computed in $O(n \operatorname{logn})$ time and linear storage.

Casting Problem: Summary

- Let P be a polyhedron with n facets. In $O\left(n^{2} \log n\right)$ time and using $O(n)$ storage it can be decided whether P is castable.
- Moreover, if P is castable, a mold and a valid direction for removing P from it can be computed in the same amount of time.

Break time

- Take a 10 min break.

Quiz time

Casting Problem: Summary

- Let P be a polyhedron with n facets. In $O\left(n^{2}\right.$ $\log n$) time and using $O(n)$ storage it can be decided whether P is castable.
- Moreover, if P is castable, a mold and a valid direction for removing P from it can be computed in the same amount of time.

Algorithm Analysis

- Can we do better?
- Using convex objects intersection, we find all possible answers
- But we only need one answer (one remove direction)!

Linear Programming

- Linear Programming/Optimization: finding a solution to a set of linear constraints

$$
\text { Maximize } \quad c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{d} x_{d} \leq c_{i}
$$

Subject to $\quad a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 d} x_{d} \leq b_{1}$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 d} x_{d} \leq b_{2}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n d} x_{d} \leq b_{n}
$$

where $a_{i j}, b_{i}$ and c_{i} are real numbers and inputs

LP Terminology

- Objective Function: the funct. to be maximized
- Linear Program: the objective functions and the set of constraints together
- Dimension: the number of variables, d
- Feasible Regions: the set of points satisfying all constraints. Points in this region are called "feasible" \& points outside "infeasible".

2D Linear Programming

- Let H be a set of n linear constraints
- The vector defining the obj. func. is $\underline{c}=\left(c_{x}, c_{y}\right)$
- The objective function is $f_{c}(p)=c_{x} p_{x}+c_{y} p_{y}$

2D Linear Programming

- Problem: find a point $p \in R^{2}$ s.t. $p \in \cap H$ and $f_{\underline{c}}(p)$ is maximized. Denote the LP by (H, \underline{c}) and its feasible region by C.

CS633

Types of Solutions to 2D-LP

1. LP is infeasible, i.e. no solution
2. The feasible region is unbounded in direction \underline{c}. There is a ray p completely contained in feasible region C, s.t. $f_{\underline{c}}$ takes arbitrary large value along p
3. The feasible region has an edge e whose outward normal points in the direction \underline{c}. The solution to LP is not unique: any point on e
4. There is a unique solution: a vertex v of C that is extreme in the direction \underline{c}

Types of Solutions to 2D-LP

Optimal Vertex

- In the case where an edge is a solution, there is an unique solution: lexicographically smallest one
- With this convention, we define "optimal vertex" as a vertex of the feasible region

Incremental LP

- We can incrementally add one constraint (half-plan or a facet) at a time
- Maintain the optimal vertex of the intermediate feasible regions, except in the case of unbounded LP.
- Constraints considered so far-- $H_{i}=\left\{h_{1}, h_{2}, \ldots, h_{i}\right\}$
- Feasible region so far-- $C_{i}:=h_{1} \cap h_{2} \cap \ldots \cap h_{i}$

Incremental LP

- Denote the optimal vertex of C_{i} by $v_{i,}$, clearly we have:

$$
C_{2} \supseteq C_{3} \supseteq C_{4} \quad \ldots \supseteq C_{n}=C
$$

- If $C_{i}=\phi$ for some i, then $C_{j}=0$ for $\forall j \geq i \& \mathrm{LP}$ infeasible

Incremental LP

- We keep 2 half-planes, h_{1} and h_{2} from H, s.t. $\left(\left\{h_{1}, h_{2}\right\}, \underline{c}\right)$ is bounded. These half-planes are called certificates that proves (H, \underline{c}) is really bounded.

How Optimal Vertex Changes

- Let $2<i \leq n$, let C_{i} and v_{i} be defined as above.
- If $v_{i-1} \in h_{i}$, then $v_{i}=v_{i-1}$
- If $v_{i-l} \notin h_{i}$, then either $C_{i}=0$ or $v_{i} \in l_{i}$ where l_{i} is the line bounding h_{i}

How Optimal Vertex Changes

- How do we find the new optimal vertex?
- Such a point must be on l_{i}

New 1D LP:

Find the point p on l_{i} that maximizes $f_{c}(p)$, subject to the constraints $p \in h_{j}$, for $l \leq j \leq I$

Simplifying to 1D-LP

Maximize $\quad f_{\underline{c}}((x, 0))$
Subject to $x \geq x_{j}, 1 \leq j<i$ and $l_{i} \cap h_{j}$ bounded to left

$$
x \leq x_{k}, 1 \leq k<i \text { and } l_{i} \cap h_{k} \text { bounded to right }
$$

- This is a 1D-LP. Let

$$
\begin{aligned}
& x_{\text {left }}=\max 1 \leq j<i\left\{x_{j}: l_{i} \cap h_{j} \text { is bounded to the left }\right\} \text { and } \\
& x_{\text {right }}=\min 1 \leq k<i\left\{x_{k}: l_{i} \cap h_{k} \text { is bounded to the right }\right\}
\end{aligned}
$$

The interval $\left[x_{\text {left }}: x_{\text {right }}\right]$ is the feasible region of the 1DLP. Hence, the LP is infeasible if $x_{\text {left }}>x_{\text {right }}$ and otherwise the optimal point is either $x_{\text {left }}$ or $x_{\text {right }}$ depending on the objective function.

2D-LP

Input: A line program (H, \underline{c}) where H is set of n half-planes, $\underline{c} \in R^{2}$

1. Let $h_{1}, h_{2} \in H$ be the 2 certificate half-planes
2. Let v_{2} be the intersection point of $l_{1} \& l_{2}$
3. Let h_{3}, \ldots, h_{n} be the remaining half-planes of H
4. for $i \leftarrow 3$ to n do
5. if $v_{i-1} \in h_{i}$
6. then $v_{i} \leftarrow v_{i-1}$
7.

else $v_{i} \leftarrow$ the point p on l_{i} that maximizes $f_{\underline{c}}(p)$, subject to the constraints, h_{1}, \ldots, h_{i-l}
8.
9. if p does not exist then Report that LP is infeasible \& quit.
10. Return v_{n}

2D-LP Algorithm Analysis

- This algorithm computes the solution to a linear program with n constraints and two variables in $O\left(n^{2}\right)$ time and linear storage
- The time spent in Stage i is dominated by solving 1DLP in Step 8, which takes $O(i)$ time

$$
\sum_{3 \leq i \leq n} O(i)=O\left(n^{2}\right)
$$

- Observation: if we could bound the number of times the optimal vertex changes, then we may be able to get better running time.

Algorithm Analysis

- Worst case for LP: $O\left(n^{2}\right)$

Randomized LP

- For any set of H of half-planes, there is a good order to treat them.
- There is no good way to determining an ordering of H, so simply pick a random ordering.
- Worst case for RLP: $O\left(n^{2}\right)$, but maybe better!

Random Permutation

Input: An array $A[1 \ldots \mathrm{n}]$
Output: The array $A[1 \ldots . . n]$ with the same elements, but rearranged into a random permutation.

1. for $k \leftarrow n$ downto 2
2. do rndindex $\leftarrow \operatorname{RANDOM}(k)$
3. Exchange $A[k]$ and $A[r n d i n d e x]$

- RANDOM() takes k as input \& generate a random integer btw 1 and k in constant time

R-LP Algorithm Analysis

- The average expected running time over all possibilities is:

$$
\begin{gathered}
\mathrm{E}\left[\sum_{1 \leq i \leq n} O(i) \cdot X_{i}\right]=\sum_{1 \leq i \leq n} O(i) \cdot \mathrm{E}\left[X_{i}\right] \\
\quad=\sum_{1 \leq i \leq n} O(i) \cdot[2 / i]=O(n)
\end{gathered}
$$

- X_{i} is a random variable.
- $X_{i}=1$ if new optimal vertex is needed
- Otherwise: $X_{i}=0$
\Rightarrow The 2D-LP problem with n constraints can be solved in $O(n)$ randomized expected time using worst-case linear storage.

What is $\mathrm{E}\left[X_{i}\right]$?

- Backward analysis
- Instead of analyze how vertices are created
- We analyze how vertices can be destroyed!
- These two have same probability

From n constraints, pick one constraint, what is the probability that v_{n} pick will be destroyed?

$$
E\left[X_{n}\right] \leq 2 / n
$$

Similarly to destroy $v_{n} \mathbf{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right] \leq \mathbf{2 / i}$

Unbounded LP

- When we only want to know if there is a feasible point
- We have a priori bound A on the absolute value of the solution. In such a case, we can add $2 d$ constraints of the form $x_{i} \leq A$, and $A \leq x_{i}$, for $1 \leq i \leq d$.

Unbounded LP

- How to find out the unbounded direction d ?
- Convert the problem to 1D LP

Casting Problem Summary

- Let P be a polyhedron with n facets. In $O\left(n^{2}\right)$ expected time and using $O(n)$ storage it can be decided whether P is castable.
- Moreover, if P is castable, a mold and a valid direction for removing P from it can be computed in the same amount of time.

LP in Higher Dimensions

- The 3D-LP w/ n constraints can be solved in $O(n)$ expected time using linear storage.
- The d-dimensional LP problem with n constraints can be solved in $O(d!n)$ expected time using linear storage.
\Rightarrow RLP is only useful for lower dimensional problems. Other LP techniques, such as the simplex algorithm, are preferred for higher dimensions.

Collision Detection of Convex Polyhedra

- The problem in 3D can be posed as:

Maximize
Subject to

$$
\begin{gathered}
a_{11} x+a_{12} y+a_{13} z \leq b_{1} \\
: \\
a_{m 1} x+a_{m 2} y+a_{m 3} z \leq b_{m} \\
c_{11} x+c_{12} y+c_{13} z \leq d_{1} \\
: \\
c_{n 1} x+c_{n 2} y+c_{n 3} z \leq d_{n}
\end{gathered}
$$

where $\left(a_{i 1}, a_{i 2}, a_{i 3}, b_{i}\right)$ and $\left(c_{k 1}, c_{k 2^{\prime}}, c_{k 3^{\prime}}, d_{k}\right)$ represent the outward normals of the faces of convex polyhedra A \& B. If the LP is feasible, then A\&B've collided.

Smallest Enclosing Discs

- A robot arm whose base is fixed and has to pick up items at various points and locate them at other points.
- Problem: what would be a good position for the base of the arm?
\Rightarrow A good position is at the center of the smallest disc that encloses all the points.

Transform to a Randomized Algorithm

- Generate a random permutation p_{1}, \ldots, p_{n} of P
- Let $P_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$. We add points one by one, while maintaining D_{i}, the smallest enclosing disc of P_{i}.
- Let $2<i<n, P_{i}$ and D_{i} be defined as above, we have:
- if $p_{i} \in D_{i-1}$, then $D_{i}=D_{i-1}$
- if $p_{i} \notin D_{i-1}$ else p_{i} lies on the boundary of D_{i}

$\underline{\operatorname{MiniDisc}(P)}$

Input: A set P of n points in the plane
Output: The smallest enclosing disc for P

1. Compute a random permutation p_{1}, \ldots, p_{n} of P
2. Let D_{2} be the smallest enclosing disc for $\left\{p_{1}, p_{2}\right\}$
3. for $i \leftarrow 3$ to n
4. do if $p_{i} \in D_{i-1}$
5. then $D_{i} \leftarrow D_{i-1}$
6. else $D_{i} \leftarrow \operatorname{MiniDiscWithPoint~}\left(\left\{p_{1}, \ldots, p_{i-1}\right\}, p_{i}\right)$
7. return D_{n}

MiniDiscWithPoint (P, q)

Input: A set P of n points in the plane, and a point q s.t. there exists an enclosing disc for P with q on its boundary
Output: The smallest enclosing disc for P with q on its boundary

1. Compute a random permutation p_{1}, \ldots, p_{n} of P
2. Let D_{l} be smallest enclosing disc $\mathrm{w} / q \& p_{1}$ on its boundary
3. for $j \leftarrow 2$ to n
4. do if $p_{j} \in D_{j-1}$
5. then $D_{j} \leftarrow D_{j-1}$
6. else $D_{j} \leftarrow \operatorname{MiniDiscWith} 2 \operatorname{Point}\left(\left\{p_{1}, \ldots, p_{j-1}\right\}, p_{j}, q\right)$
7. return D_{n}

MiniDiscWith2DPoint $\left(P, q_{1}, q_{2}\right)$

Input: A set P of n points in the plane, and two points $q_{1} \& q_{2}$ s.t. there exists an enclosing disc for P with $q_{1} \& q_{2}$ on boundary
Output: The smallest enclosing disc for P with $q_{1} \& q_{2}$ on bndary

1. Let D_{0} be smallest enclosing disc $\mathrm{w} / q_{1} \& q_{2}$ on boundary
2. for $k \leftarrow 1$ to n
3. do if $p_{k} \in D_{k-1}$
4. then $D_{k} \leftarrow D_{k-1}$
5. else $D_{k} \leftarrow$ the disc w/ q_{1}, q_{2} and p_{k} on its boundary
6. return D_{n}

Algorithm Analysis

- The running time of MiniDiscWithPoint is $O(n)$ without call to MiniDiscWith2Points. The probability of making such a call is $2 / i$. The total expect run time of MiniDiscWithPoint is

$$
O(n)+\sum_{2 s i \leq n} O(i) \cdot(2 / i)=O(n)
$$

- Applying the same argument once more. We have: the smallest enclosing disc for a set of n points in the plane can be computed in $O(n)$ expected time using worst-case $O(n)$ storage

Conclusion

- Castability problem
- Compute remove direction
- Half-plane intersection problem
- Convex intersection problem
- Linear programming
- Randomized linear programming
- Collision detection of two convex polyhedra
- Smallest enclosing disc of points

Next time

-

Range search
 Database query

