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Linear Programming

• Reading:  Chapter 4 of the Textbook

• Driving Applications
– Casting/Metal Molding

– Collision Detection

• Randomized Algorithms

– Smallest Enclosing Discs
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Casting

• Liquid metal is poured 
into a mold, it solidifies, 
and then the object 
shape is formed and the 
object is removed. Mold
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Casting

• Not all objects of different shapes can be removed
– For example, a sphere

castable?

?



CS633

Castability

• Problems:  Whether an object can be 
manufactured by casting; if so, find the 
suitable mold
– Before you learn about this chapter

• Build a mold 
• Build an object using the mold
• Find out that you cannot retrieve the object from the mold
• Repeat above until you remove the object from the mold

– After you learn about this chapter
• Scan the object
• Analyze the castability
• Save $1 million
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Transform to 
a Geometric Problem

• The shape of cavity in the mold is determined by the 
shape of the object, but different orientation can be 
crucial
– The object must have a horizontal top facet
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Transform to 
a Geometric Problem

• Let P, object to be casted, be a 3D polyhedron bounded by planar 
facets with a designated top facet
– Assume: the mold is rectangular block with a cavity that corresponds 

exactly to P.

• Problem:  Decide whether a direction d exists s.t. P can be 
translated to infinity in direction d  without intersecting interior of of 
the mold.

Try each top face and answer: 
Can we remove the cast using this top face?
If  so, what is the direction, d ?
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Problem Analysis

• The polyhedron P can be removed from its mold by 
a translation in direction d if and only if d makes an 
angle of at least 90° with the outward normal of all 
ordinary facets of P.

 

n(f)

d
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Problem Analysis

d

n(f’)

n(f)

The angle between n(f’) and d 

must be larger than 90°

The angle between n(f) and d must 
be smaller than 90°

When in collision:
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Problem Analysis
 

• Let n = (nx , ny , nz) be the outward normal of 
an ordinary facet.  The direction d = (dx , dy , 

1) makes an angle at least 90° with n if and 
only if the dot product of n and d is non-
positive:

nx dx + ny dy + nz ≤  0
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Problem Analysis
 

• Representing the direction as d = (dx , dy , 1)

– Unique upward direction

– Using fewer variables
• Reduce the problem from 3D to 2D

x

y

z=1
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Problem Analysis
nx dx + ny dy + nz ≤  0

• This describes a half-plane on the plane z=1, i.e. the area to 
the left or right of a line on the plane.

x

y

z=1

nx dx + ny dy + nz ≤  0
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Problem Analysis

• Casting problem:  given a set of half-planes, find a point in 
their common intersection or decide if the common 
intersection is empty.

Each half-plane for each 
facet of  the polyhedron
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Half-Plane Intersection

• Let H = {h1, h2, …, hn} be a set of linear constraints 
in two variables, i.e. in the form:

ai x + bi y ≤  ci

    where ai , bi and ci  are constants, s.t. at least one of 
ai and bi is non-zero.

• Problem:  Find the set of all points (x,y)∈ R2 that 
satisfy all n constraints at the same time; i.e. find 
all  the points lying in the common intersection of 
the half-planes in H.    
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Type of Intersections

• Convex regions bounded by at most n edges (half-planes / 
lines)
– Degenerate cases: a line or point

• Unbounded regions

• Empty

Unbounded
regions

convex
regions

Empty
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Half-Plane Intersection

A Divide-n-Conquer approach

Input: A set H of n half-planes in the plane
Output: A convex polygonal region C:= ∩h∈H h

1.  if card(H) = 1 (a plate?)

2.   then C ←  the unique half-plane h ∈ H

3.  else Split H into sets H1 and H2 of the size (n/2) and (n/2)

4.          C1 ← IntersectHalfPlanes (H1)

5.          C2 ← IntersectHalfPlanes (H2)

6.          C ← IntersectConvexRegions(C1, C2)
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Intersection of Two Polygons

• How to compute intersection of two 
polygons?

– Using line-segment intersection 

– Using doubly-connected edge list

– Updating the facets
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Run Time Analysis

• Computing intersections of two overlays takes 
O( (n+k) log n ) time, where k is the number of 
intersection points between edges of C1 and 

edges of C2   and  k ≤  n

• T(n) = O(1), if n = 1
• T(n) = O(n log n) + 2 T(n/2), if n > 1 
⇒T(n) = O(n log2 n) 

Can we do better?
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Another Plane-Sweep 

• Store left/right boundary of  C  as sorted lists of half-
planes, Lleft(C) & Lright(C), in order from top to 
bottom. topmost point

left boundary

right boundary
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Another Plane-Sweep 

• Plane-Sweep:  maintain edges of C1  & C2  intersecting the 
sweep line.  There are at most four.  Use pointers: l_edge_C1, 
r_edge_C1, l_edge_C2, r_edge_C2.

C2

C
1

l_edge_C2

r_edge_C2

r_edge_C1

l_edge_C1
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Another Plane-Sweep 

• Plane-Sweep:  Events are the vertices of the convex polygon 
points

C2

C
1

l_edge_C2

r_edge_C2

r_edge_C1

l_edge_C1
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Another Plane-Sweep 

• Plane-Sweep: Assume l is at the upper endpoint p of an edge 
e of  l_edge_C1

– p will be a vertex of the new convex object

C2

C
1

l_edge_C2

r_edge_C2

r_edge_C1

l_edge_C2

e

p
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e

l_edge_C2

p

r_edge_C2

e

p

e

l_edge_C2

p

e

p

Another Plane-Sweep 

• Plane-Sweep: Assume l is at the upper endpoint p of an edge 
e of  l_edge_C1

– p will be a vertex of the new convex object
– The intersection of edge e and r_edge_C2 

– The intersection of edge e and l_edge_C2

r_edge_C2
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Half-Plane Intersection

• At each event point, some new edge e appears on the 
boundary.  To handle edge e, we first check whether e 
belongs to C1  or C2, and whether it is on the left or right 
boundary, and then call appropriate procedure

• According to the handling of each case, we add the 
appropriate half-planes to the intersection of C1  & C2.  All 
cases can be decided in constant time
– Keep track of left boundary and right boundary in the new convex 

region
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Algorithm Analysis

• It takes constant time to handle an edge.  So, 
the intersection of two convex polygonal 
regions in the plane can be computed in O(n) 
time.  So, now …...
T(n) = O(n) + 2 T(n/2), if n > 1 
⇒ T(n) = O(n log n) 

• The common intersection of a set of n half-
planes in the plane can be computed in 
O(nlogn) time and linear storage.
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Casting Problem: Summary

• Let P be a polyhedron with n facets.  In O(n2 log n) time and 
using O(n) storage it can be decided whether P is castable.  

• Moreover, if P is castable, a mold and a valid direction for 
removing P  from it can be computed in the same amount of 
time.
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Break time

• Take a 10 min break.
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Quiz time



CS633

Casting Problem: Summary

• Let P be a polyhedron with n facets.  In O(n2 
log n) time and using O(n) storage it can be 
decided whether P is castable.  

• Moreover, if P is castable, a mold and a valid 
direction for removing P  from it can be 
computed in the same amount of time.



CS633

Algorithm Analysis

• Can we do better?

– Using convex objects intersection, we find 
all possible answers

– But we only need one answer (one remove 
direction)!
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Linear Programming
• Linear Programming/Optimization:  finding a solution 

to a set of linear constraints

Maximize c1 x1 + c2 x2 + … + cd xd ≤  ci

Subject to a11 x1 + a12 x2 + … + a1d xd ≤  b1

   a21 x1 + a22 x2 + … + a2d xd ≤  b2

     :
     :
   an1 x1 + an2 x2 + … + and xd ≤  bn

    where aij , bi  and ci are real numbers and inputs
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LP Terminology

• Objective Function:  the funct. to be maximized

• Linear Program: the objective functions and the set 
of constraints together

• Dimension:  the number of variables, d

• Feasible Regions:  the set of points satisfying all 
constraints.  Points in this region are called 
“feasible” & points outside “infeasible”.
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2D Linear Programming

• Let H be a set of n linear constraints

• The vector defining the obj. func. is c = (cx, cy)

• The objective function is fc(p) = cx px + cy py
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2D Linear Programming

• Problem:  find a point p∈ R2 s.t. p∈ ∩ H and 
fc(p) is maximized.  Denote the LP by (H, c) 
and its feasible region by C.

c
Solution of  LP
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Types of Solutions to 2D-LP
1. LP is infeasible, i.e. no solution

2. The feasible region is unbounded in direction c.    There is a ray 
p completely contained in feasible region C, s.t. fc takes 
arbitrary large value along p

3. The feasible region has an edge e whose outward normal points 
in the direction c.  The solution to LP is not unique: any point 
on e

4. There is a unique solution: a vertex v of C that is extreme in the 
direction c
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Types of Solutions to 2D-LP

Empty

Unbounded
regions
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Optimal Vertex

• In the case where an edge is a solution, there is an unique 
solution: lexicographically smallest one

 

• With this convention, we define “optimal vertex” as a vertex 
of the feasible region 

coptimal vertex
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Incremental LP
• We can incrementally add one constraint (half-plan or a 

facet) at a time 

• Maintain the optimal vertex of the intermediate feasible 
regions, except in the case of unbounded LP.

• Constraints considered so far-- Hi = {h1 , h2 ,…, hi }

• Feasible region so far-- Ci := h1 ∩ h2 ∩ … ∩ hi
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Incremental LP
• Denote the optimal vertex of Ci by vi, clearly we have:   

C2  ⊇ C3  ⊇ C4  … ⊇ Cn = C

• If Ci = φ  for some i, then Cj = 0 for ∀ j ≥ i & LP infeasible

coptimal vertex

hi

vi

Ci-1 Ci
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Incremental LP
• We keep 2 half-planes, h1 and h2 from H, s.t. ({h1 , h2}, c) is 

bounded.  These half-planes are called certificates that 
proves (H, c) is really bounded.
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How Optimal Vertex Changes
• Let 2 < i ≤ n, let Ci and vi be defined as above.

– If vi-1 ∈ hi , then vi = vi-1

– If vi-1 ∉ hi , then either Ci = 0  or  vi ∈ li  where li is the line bounding 
hi

vi

Ci

vi-1

Ci

vi-1 = vic

Ci-1

vi
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How Optimal Vertex Changes

• How do we find the new optimal vertex?
– Such a point must be on li

vi

Ci

vi-1

New 1D LP: 
Find the point p on li that maximizes fc(p), 
subject to the constraints p∈ hj, for 1≤ j≤ I
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Simplifying to 1D-LP
Maximize   fc((x,0)) 

Subject to   x≥ xj , 1≤ j< i and li ∩ hj bounded to left
    x≤ xk , 1≤ k< i and li ∩  hk bounded to right

• This is a 1D-LP.  Let
 xleft = max 1≤ j< i {xj : li ∩ hj is bounded to the left} and
xright = min 1≤ k< i {xk : li ∩ hk is bounded to the right}

    The interval [xleft : xright] is the feasible region of the 1D-
LP.  Hence, the LP is infeasible if xleft > xright, and 
otherwise the optimal point is either xleft or xright, 
depending on the objective function.
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2D-LP
Input: A line program (H, c) where H is set of n half-planes, c ∈ R2 

1. Let h1 , h2 ∈ H be the 2 certificate half-planes

2. Let v2 be the intersection point of l1 & l2 

3.  Let h3  , … , hn be the remaining half-planes of H 

4.             for i ← 3 to n do

5.      if vi-1∈ hi 

6.            then vi ← vi-1

7.   else vi ←  the point p on li that maximizes fc(p),

             subject to the constraints, h1  , … , hi-1 

8.              if p does not exist
9.                      then Report that LP is infeasible & quit.
10.  Return vn 
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2D-LP Algorithm Analysis

• This algorithm computes the solution to a linear 
program with n constraints and two variables in 
O(n2) time and linear storage
– The time spent in Stage i is dominated by solving 1D-

LP in Step 8, which takes O(i) time
∑3≤ i ≤ n O(i) = O(n2) 

• Observation:  if we could bound the number of 
times the optimal vertex changes, then we may 
be able to get better running time.
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Algorithm Analysis

• Worst case for LP: O(n2)
 

…

c v1

v2

v3

vn

Best case?
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Randomized LP

• For any set of H of half-planes, there is a good 
order to treat them.  

• There is no good way to determining an ordering 
of H, so simply pick a random ordering.

• Worst case for RLP: O(n2), but maybe better!
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Random Permutation

Input: An array  A[1…n]
Output:  The array A[1…n] with the same elements, but 

rearranged into a random permutation.

1.  for k ← n downto 2
2.   do rndindex ← RANDOM(k)
3.        Exchange A[k] and A[rndindex] 

• RANDOM() takes k as input & generate a random 
integer btw 1 and k in constant time
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R-LP Algorithm Analysis

• The average expected running time over all 
possibilities is:

E[∑1≤ i ≤ n O(i)·Xi] = ∑1≤ i ≤ n O(i)·E[Xi] 
= ∑1≤ i ≤ n O(i)·[2/i] = O(n)

• Xi is a random variable. 
– Xi =1 if new optimal vertex is needed 

– Otherwise: Xi =0

⇒The 2D-LP problem with n constraints can be 
solved in O(n) randomized expected time using 
worst-case linear storage.
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What is E[Xi]?

• Backward analysis
– Instead of analyze how vertices are created
– We analyze how vertices can be destroyed!
– These two have same probability

vn

From n constraints, pick one constraint, what is the 

probability that vn pick will be destroyed?

E[Xn] ≤ 2/n

Similarly to destroy vn E[Xi] ≤ 2/i
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Unbounded LP

• When we only want to know if there is a feasible point

• We have a priori bound A on the absolute value of the solution.  
In such a case, we can add 2d constraints of the form xi ≤ A, and -
A≤ xi , for 1≤ i≤ d.

Create artificial bounds
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Unbounded LP

• How to find out the unbounded direction d?

– Convert the problem to 1D LP

c

d=(x,1)
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Casting Problem
Summary

• Let P be a polyhedron with n facets.  In O(n2) expected time 
and using O(n) storage it can be decided whether P is 
castable.  

• Moreover, if P is castable, a mold and a valid direction for 
removing P  from it can be computed in the same amount of 
time.
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LP in Higher Dimensions

• The 3D-LP w/ n constraints can be solved in O(n) 
expected time using linear storage.

• The d-dimensional LP problem with n constraints can 
be solved in O(d!n) expected time using linear storage.

⇒ RLP is only useful for lower dimensional problems.  Other LP 
techniques, such as the simplex algorithm, are preferred for 
higher dimensions.
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Collision Detection 
of Convex Polyhedra

• The problem in 3D can be posed as:
Maximize 1
Subject to a11 x + a12 y +  a13 z ≤  b1

     :

   am1 x + am2 y + am3 z ≤  bm 
   c11 x + c12 y + c13 z ≤  d1

  :
   cn1 x + cn2 y + cn3 z ≤  dn

   where (ai1, ai2, ai3, bi) and (ck1, ck2, ck3, dk) represent the 
outward normals of the faces of convex polyhedra A & B.  
If the LP is feasible, then A&B’ve collided.
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Smallest Enclosing Discs

• A robot arm whose base is fixed and 
has to pick up items at various points 
and locate them at other points.

• Problem:  what would be a good 
position for the base of the arm?

⇒ A good position is at the center of the 
smallest disc that encloses all the 
points.
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Transform to a 
Randomized Algorithm

• Generate a random permutation p1  , … , pn of P 

• Let Pi = {p1  , … , pi}.  We add points one by one, while 
maintaining Di , the smallest enclosing disc of Pi .

• Let 2 < i < n , Pi and Di  be defined as above, we have:
– if pi ∈ Di-1, then Di = Di-1

– if pi ∉ Di-1, else pi  lies on the boundary of Di
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MiniDisc(P)

Input:  A set P of n points in the plane
Output:  The smallest enclosing disc for P 

1.  Compute a random permutation p1  , … , pn of P
2.  Let D2 be the smallest enclosing disc for {p1  , p2}
3.  for i ← 3 to n
4.   do if pi∈ Di-1 
5.          then Di ← Di-1

6.          else Di ←  MiniDiscWithPoint ({p1  , … , pi-1 }, pi)
7.  return Dn 
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MiniDiscWithPoint(P,q)

Input:  A set P of n points in the plane, and a point q  s.t. there
            exists an enclosing disc for P with q on its boundary
Output:  The smallest enclosing disc for P with q on its boundary

1.  Compute a random permutation p1  , … , pn of P
2.  Let D1 be smallest enclosing disc w/ q & p1 on its boundary
3.  for j ← 2 to n
4.   do if pj∈ Dj-1 
5.          then Dj ← Dj-1

6.          else Dj ←  MiniDiscWith2Point({p1  , … , pj-1 }, pj, q)
7.  return Dn 
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MiniDiscWith2DPoint(P,q1,q2)
Input:  A set P of n points in the plane, and two points q1 & q2 s.t.    there 

exists an enclosing disc for P with q1 & q2 on boundary

Output:  The smallest enclosing disc for P with q1 & q2 on bndary

1.  Let D0 be smallest enclosing disc w/ q1 & q2 on boundary
2.  for k ← 1 to n
3.   do if pk∈ Dk-1 
4.          then Dk ← Dk-1

5.          else Dk ←  the disc w/ q1, q2 and pk on its boundary
6.  return Dn
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Algorithm Analysis

• The running time of MiniDiscWithPoint is O(n) 
without call to MiniDiscWith2Points.  The probability 
of making such a call is 2/i.  The total expect run 
time of MiniDiscWithPoint is

O(n) + ∑2≤ i ≤ n O(i)·(2/i) = O(n) 

• Applying the same argument once more.  We have: 
the smallest enclosing disc for a set of n points in 
the plane can be computed in O(n) expected time 
using worst-case O(n) storage
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Conclusion

• Castability problem
– Compute remove direction

• Half-plane intersection problem
• Convex intersection problem
• Linear programming 
• Randomized linear programming

• Collision detection of two convex 
polyhedra

• Smallest enclosing disc of points
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Next time

• Range search
– Database query


