C5633 Lecture 06
Linear Programming

Jyh-Ming Lien
Dept of Computer Science
George Mason University

Based on Chapter 4 of the textbook
And Ming Lin’s lecture note at UNC

Linear Programming

e Reading: Chapter 4 of the Textbook

e Driving Applications
— Casting/Metal Molding
— Collision Detection

 Randomized Algorithms
— Smallest Enclosing Discs

Casting

e Liquid metal is poured
into a mold, it solidifies,
and then the object
shape is formed and the

add sand

object is removed.

Mold

Casting

e Not all objects of different shapes can be removed
— For example, a sphere T 0

castable?

Y 3 ,
I

v

CS633

Repeat 1000
times

Castability

Problems: Whether an object can be
manufactured by casting; if so, find the
suitable mold

— Before you learn about this chapter
—> $500
. $500

* Build a mold
e Find out that you cannot retrieve the object from the mold

 Build an object using the mol
e Repeat above until you remove the object from the mold
— After you learn about this chapter

e Scan the object

e Analyze the castability

e Save $1 million

Transform to

a Geometric Problem

e The shape of cavity in the mold is determined by the
shape of the object, but different orientation can be
crucial

— The object must have a horizontal top facet

Transform to
a Geometric Problem

e let P, object to be casted, be a 3D polyhedron bounded by planar
facets with a designated top facet

— Assume: the mold is rectangular block with a cavity that corresponds
exactly to P,

« Problem: Decide whether a direction d exists s.t. P can be
translated to infinity in direction d without intersecting interior of of

R —

Try each top face and answer:
Can we remove the cast using this top face?
If so, what is the direction, d ?

Problem Analysis

e The polyhedron P can be removed from its mold by
a translation in direction d if and only if 4 makes an
angle of at least 90° with the outward normal of all
ordinary facets of P.

Problem Analysis

When in collision:

The angle between n(f’) and d

must be larger than 90°

The angle between n(f) and d must
be smaller than 90°

Problem Analysis

e letn=(n_,n,, n)bethe outward normal of

y

an ordinary facet. The directiond = (d_, d,,

1) makes an angle at least 90° with n if and
only if the dot product of n and d is non-

positive:

n.d, +n,d +n <790

Problem Analysis

 Representing the directionasd =(d,, d,, 1)

— Unique upward direction

— Using fewer variables

e Reduce the problem from 3D to 2D
z=1A

/ /‘/‘/
>/ >V

Problem Analysis

n.d tnd +n=<70

e This describes a half-plane on the plane z=1, i.e. the area to
the left or right of a line on the plane.

// >y
X ‘_—nxdx+nydy+n250

Problem Analysis

« Casting problem: given a set of half-planes, find a point in
their common intersection or decide if the common
Intersection is empty.

Each half-plane for each
facet of the polyhedron

Half-Plane Intersection

e Llet H={h, h, ..., h} be asetof linear constraints
in two variables, i.e. in the form:
a,x+b.ys=s c
where a., b, and ¢, are constants, s.t. at least one of
a.and b, is non-zero.

« Problem: Find the set of all points (x,y)€ R’ that
satisfy all n constraints at the same time; i.e. find
all the points lying in the common intersection of

the half-planes in H.

Type of Intersections

« Convex regions bounded by at most n edges (half-planes /
lines)

— Degenerate cases: a line or point

e Unbounded regions

* Empty

convex
regions
Unbounded Empty
regions

Half-Plane Intersection

A Divide-n-Conquer approach

Input: A set H of n half-planes in the plane
Output: A convex polygonal region C:= N, h

1. if card(H) = 1 (a plate?)
2. then C < the unique half-plane h € H
3. else Split H into sets H, and H, of the size (n/2) and (n/2)

4 C, < IntersectHalfPlanes (H,)
5. C, < IntersectHalfPlanes (H,)
6

C < IntersectConvexRegions(C,, C,)

Intersection of Two Polygons

How to compute intersection of two
nolygons?

— Using line-segment intersection
— Using doubly-connected edge list
— Updating the facets

Run Time Analysis

e Computing intersections of two overlays takes
O((n+k) log n) time, where k is the number of
intersection points between edges of C, and

edges of C, and k= n

« T(n) =0(1),ifn=1
e T(n) =Omlogn)+2TMm/2),1ftn>1
=T(n) = O(n log’n)

Can we do better?

Another Plane-Sweep

e Store left/right boundary of C as sorted lists of half-

planes, L (C) & L

bottom.

ight(C), In order from top to

topmost point

left boundary

right boundary

Another Plane-Sweep

« Plane-Sweep: maintain edges of C, & C, intersecting the
sweep line. There are at most four. Use pointers: [edge C,,
r edge C,, | edge C,, r _edge C,.

Another Plane-Sweep

« Plane-Sweep: Events are the vertices of the convex polygon
points

Another Plane-Sweep

« Plane-Sweep: Assume [is at the upper endpoint p of an edge
e of [edge C,

— p will be a vertex of the new convex object

Another Plane-Sweep

« Plane-Sweep: Assume [is at the upper endpoint p of an edge
e of [edge C,
— p will be a vertex of the new convex object

— The intersection of edge e and r_edge C,
[edge C,

— The intersection of edge e and /_edge C,
D /\ P P /(p

[edge C,
r edge C,

Half-Plane Intersection

e At each event point, some new edge e appears on the
boundary. To handle edge e, we first check whether e
belongs to C, or C,, and whether it is on the left or right

boundary, and then call appropriate procedure

e According to the handling of each case, we add the
appropriate half-planes to the intersection of C, & C,. All

cases can be decided in constant time
— Keep track of left boundary and right boundary in the new convex

region

Algorithm Analysis

e |t takes constant time to handle an edge. So,

the intersection of two convex polygonal
regions in the plane can be computed in O(n)

time. So, now
I(n) =0m) +2T(n/2),1tn>1
= T(n) = O(n logn)

e The common intersection of a set of n half-
planes in the plane can be computed in

O(nlogn) time and linear storage.

Casting Problem: Summary

e Let P be a polyhedron with n facets. In O(n’ log n) time and
using O(n) storage it can be decided whether P is castable.

e Moreover, if P is castable, a mold and a valid direction for
removing P from it can be computed in the same amount of

time.

Break time

e Take a 10 min break.

Quiz time

Casting Problem: Summary

e Let P be a polyhedron with n facets. In O’
log n) time and using O(n) storage it can be
decided whether P is castable.

e Moreover, if P is castable, a mold and a valid
direction for removing P from it can be
computed in the same amount of time.

Algorithm Analysis

e Can we do better?

— Using convex objects intersection, we find
all possible answers

— But we only need one answer (one remove
direction)!

Linear Programming

e Linear Programming/Optimization: finding a solution
to a set of linear constraints

Maximize c¢;x, +c,x,+ ... tc;x,< ¢

l

Subjectto a,; x, +a,,x,+ .. +a, x,;< b,

a, x;, ta,x,+..+a,x,< b,

a,x, +a,x,+..+a x,<b,

where a;;, b; andc; are real numbers and inputs

CS633

LP Terminology

Objective Function: the funct. to be maximized

Linear Program: the objective functions and the set
of constraints together

Dimension: the number of variables, d

Feasible Regions: the set of points satisfying all
constraints. Points in this region are called
“feasible” & points outside “infeasible” .

2D Linear Programming

e | et H be a set of n linear constraints

e The vector defining the obj. func.isc¢ = (c, c)

e The objective function is f,(p) = c,p, + ¢,p,

2D Linear Programming

« Problem: find a point p&€ R’ s.t. p€ N H and
f.(p) is maximized. Denote the LP by (#, ¢)

and its feasible region by C.

L

\solution of LP

1

Types of Solutions to 2D-LP

1. LP is infeasible, i.e. no solution

2. The feasible region is unbounded in direction ¢. There is a ray
p completely contained in feasible region C, s.t. f, takes

arbitrary large value along p

3. The feasible region has an edge ¢ whose outward normal points
in the direction ¢. The solution to LP is not unique: any point
on e

4. There is a unique solution: a vertex v of C that is extreme in the
direction ¢

Types of Solutions to 2D-LP

Optimal Vertex

* In the case where an edge is a solution, there is an unique
solution: lexicographically smallest one

e With this convention, we define “optimal vertex” as a vertex
of the feasible region

optimal verte>§

|

Incremental LP

We can incrementally add one constraint (half-plan or a
facet) at a time

Maintain the optimal vertex of the intermediate feasible
regions, except in the case of unbounded LP.

Constraints considered so far-- H,.={h,, h,,..., h,}

Feasible region so far-- C, := h, N h,N ... N A,

l

Incremental LP

e Denote the optimal vertex of C; by v, clearly we have:
c,2C;,2¢C, ..2C =C

o If C;=¢ forsome i, then C;=0for Vj=zi& LP infeasible

optimal verte>§

|

Incremental LP

e We keep 2 half-planes, /#,and &, from H, s.t. ({#,, h,}, ¢) is

bounded. These half-planes are called certificates that
proves (H, ¢) is really bounded.

How Optimal Vertex Changes

e let2<i=<n, let C.and v, be defined as above.
— Ifv_,Eh;, thenv,=v
— Ifv_, €& h,, then either C,=0 or v,E [, where /. is the line bounding
h.

l

|

How Optimal Vertex Changes

e How do we find the new optimal vertex?
— Such a point must be on /,

New 1D LP:
Find the point p on /, that maximizes /, (p),

subject to the constraints p& 7, for /< j< 1

Simplifying to 1D-LP

Maximize f.((x,0))

Subject to xzx;, I<j<iandl;N h; bounded to left
x<x,, Isk<iandl N h,bounded to right

e Thisisa 1D-LP. Let
Xjon = max 1= j<i{x;: [, M h;1s bounded to the left} and
X0 = min 1< k<i{x, :[. M h, 1s bounded to the right}

right
The interval [x, : x,;,,] is the feasible region of the 1D-
LP. Hence, the LP is infeasible if x,; > x,,.,,, and
otherwise the optimal point is either x,,; or x
depending on the objective function.

right!

2D-LP

Input: A line program (H, ¢) where H is set of n half-planes, ¢ € R?

Let &, h, € H be the 2 certificate half-planes
. Let v, be the intersection point of /, & [,

. Let iy, ..., h, Dbe the remaining half-planes of H

1.

2

3

4. fori<— 3tondo

5 ifv, ,Eh,

6 then v,< v,

7 else v, < the point p on /; that maximizes f(p),
subject to the constraints, 4, , ..., &,

8. if p does not exist
9. then Report that LP is infeasible & quit.
10. Return v,

2D-LP Algorithm Analysis

e This algorithm computes the solution to a linear
program with n constraints and two variables in
O(n?) time and linear storage

— The time spent in Stage i is dominated by solving 1D-
LP in Step 8, which takes O(i) time

Ssei2n O(i) = O(n?)

e Observation: if we could bound the number of
times the optimal vertex changes, then we may
be able to get better running time.

Algorithm Analysis

e Worst case for LP: O(n?)

Best case?

Randomized LP

e For any set of H of half-planes, there is a good
order to treat them.

* There is no good way to determining an ordering
of H, so simply pick a random ordering.

e Worst case for RLP: O(r?), but maybe better!

Random Permutation

Input: An array A[1...n]

Output: The array A[1...n] with the same elements, but
rearranged into a random permutation.

1. for k < n downto 2
2. do rndindex < RANDOM(k)

3. Exchange A[k] and A[rndindex]

e RANDOM() takes k as input & generate a random
integer btw [and k in constant time

R-LP Algorithm Analysis

e The average expected running time over all
possibilities is:
E[Y1<i<n O(i)-X] = D1<i<n O(i)- E[X]
= Y1=i<n O(i):[2/i] = O(n)
e X is a random variable.

— X, =1 if new optimal vertex is needed
— Otherwise: X;=0

=The 2D-LP problem with n constraints can be
solved in O(n) randomized expected time using
worst-case linear storage.

CS633

What is E[X]?

e Backward analysis

— Instead of analyze how vertices are created
— We analyze how vertices can be destroyed!
— These two have same probability

From n constraints, pick one constraint, what is the
probability that IV pick will be destroyed?

E[X,] < 2/n

Similarly to destroy v, |, [AX;] < 2/

Unbounded LP

e When we only want to know if there is a feasible point

e We have a priori bound A on the absolute value of the solution.
In such a case, we can add 2d constraints of the form x; < 4, and -

A= x,, for Isi=d.

Create artificial bounds

Unbounded LP

e How to find out the unbounded direction d?

— Convert the problem to 1D LP

1

d=(x,1)

Casting Problem
Summary

e Let P be a polyhedron with n facets. In O(n?) expected time
and using O(n) storage it can be decided whether P is

castable.

e Moreover, if P is castable, a mold and a valid direction for
removing P from it can be computed in the same amount of

time.

LP in Higher Dimensions

e The 3D-LP w/ n constraints can be solved in O(n)
expected time using linear storage.

e The d-dimensional LP problem with n constraints can
be solved in O(d/n) expected time using linear storage.

=> RLP is only useful for lower dimensional problems. Other LP
techniques, such as the simplex algorithm, are preferred for
higher dimensions.

CS633

Collision Detection
of Convex Polyhedra

e The problem in 3D can be posed as:
Maximize 1

Subject to a;x+a,y+ a;z=< b,

a X+ am2y + am3 Z= b

mli m

cyxtc,yte;z=<d,

Cn] X+ 0172.)/ + Cl73 zZs dn

where (a;,, a,,, a.;, b,) and (¢, ¢;,, ¢,3, d,) represent the
outward normals of the faces of convex polyhedra A & B.
If the LP is feasible, then A&B’ve collided.

e A robot arm whose base is fixed and

has to pick up items at various points
and locate them at other points.

e Problem: what would be a good
position for the base of the arm?

Smallest Enclosing Discs

= A good position is at the center of the A

smallest disc that encloses all the

points.

Transform to a
Randomized Algorithm

e Generate a random permutation p, , ..., p, of P

e LletP,={p,, ..., p;}. We add points one by one, while
maintaining D;, the smallest enclosing disc of P;.

e Llet2<i<n,P;and D, be defined as above, we have:
— ifp,€D,, then D,= D,
— if p,& D, ,, else p, lies on the boundary of D,

MiniDisc(P)

Input: A set P of n points in the plane
Output: The smallest enclosing disc for P

1. Compute a random permutation p, , ..., p, of P

2. Let D, be the smallest enclosing disc for {p, , p,}

3. fori<=3ton

4. doif p€ D,

5 then D, < D,

6 else D, <= MiniDiscWithPoint ({p,, ..., p.; }, p)
/. return D,

MiniDiscWithPoint(P.q)

Input: A set P of n points in the plane, and a point ¢ s.t. there
exists an enclosing disc for P with g on its boundary

Output: The smallest enclosing disc for P with ¢ on its boundary

1. Compute a random permutation p, , ..., p, of P

2. Let D, be smallest enclosing disc w/ ¢ & p,on its boundary
3. forj<2ton

4, doifpE D,

5 then D; <= D,

6 else D, < MiniDiscWith2Point({p, , Di1 b Dy Q)
/. return D,

MiniDiscWith2DPoint(F,q,,q,)

Input: A set P of n points in the plane, and two points ¢, & ¢, s.t. there
exists an enclosing disc for P with ¢, & ¢, on boundary

Output: The smallest enclosing disc for P with ¢, & ¢, on bndary

1. Let D, be smallest enclosing disc w/ g, & g,on boundary

2. fork<I1ton

3. do if p,€ D, ,

4. then D, <= D, ,

5. else D, < the disc W/ ¢q,, ¢, and p, on its boundary
6. return D,

Algorithm Analysis

e The running time of MiniDiscWithPoint is O(n)
without call to MiniDiscWith2Points. The probability
of making such a call is 2/i. The total expect run
time of MiniDiscWithPoint is

O(n) + So=i=n O(i)-(2/i) = O(n)

e Applying the same argument once more. We have:
the smallest enclosing disc for a set of n points in
the plane can be computed in O(n) expected time
using worst-case O(n) storage

Conclusion

e Castability problem

— Compute remove direction
e Half-plane intersection problem
e Convex intersection problem
* Linear programming
e Randomized linear programming
 Collision detection of two convex

polyhedra
e Smallest enclosing disc of points

Next time

Range search
Database query

