
CS633 Lecture 06
 Linear Programming

Jyh-Ming Lien
Dept of Computer Science

George Mason University

Based on Chapter 4 of the textbook
And Ming Lin’s lecture note at UNC

CS633

Linear Programming

• Reading: Chapter 4 of the Textbook

• Driving Applications
– Casting/Metal Molding

– Collision Detection

• Randomized Algorithms

– Smallest Enclosing Discs

CS633

Casting

• Liquid metal is poured
into a mold, it solidifies,
and then the object
shape is formed and the
object is removed. Mold

CS633

Casting

• Not all objects of different shapes can be removed
– For example, a sphere

castable?

?

CS633

Castability

• Problems: Whether an object can be
manufactured by casting; if so, find the
suitable mold
– Before you learn about this chapter

• Build a mold
• Build an object using the mold
• Find out that you cannot retrieve the object from the mold
• Repeat above until you remove the object from the mold

– After you learn about this chapter
• Scan the object
• Analyze the castability
• Save $1 million

$500
$500

R
e

p
e

at
 1

0
0

0
 t

im
e

s

CS633

Transform to
a Geometric Problem

• The shape of cavity in the mold is determined by the
shape of the object, but different orientation can be
crucial
– The object must have a horizontal top facet

CS633

Transform to
a Geometric Problem

• Let P, object to be casted, be a 3D polyhedron bounded by planar
facets with a designated top facet
– Assume: the mold is rectangular block with a cavity that corresponds

exactly to P.

• Problem: Decide whether a direction d exists s.t. P can be
translated to infinity in direction d without intersecting interior of of
the mold.

Try each top face and answer:
Can we remove the cast using this top face?
If so, what is the direction, d ?

CS633

Problem Analysis

• The polyhedron P can be removed from its mold by
a translation in direction d if and only if d makes an
angle of at least 90° with the outward normal of all
ordinary facets of P.

n(f)

d

CS633

Problem Analysis

d

n(f’)

n(f)

The angle between n(f’) and d

must be larger than 90°

The angle between n(f) and d must
be smaller than 90°

When in collision:

CS633

Problem Analysis

• Let n = (nx , ny , nz) be the outward normal of
an ordinary facet. The direction d = (dx , dy ,

1) makes an angle at least 90° with n if and
only if the dot product of n and d is non-
positive:

nx dx + ny dy + nz ≤ 0

CS633

Problem Analysis

• Representing the direction as d = (dx , dy , 1)

– Unique upward direction

– Using fewer variables
• Reduce the problem from 3D to 2D

x

y

z=1

CS633

Problem Analysis
nx dx + ny dy + nz ≤ 0

• This describes a half-plane on the plane z=1, i.e. the area to
the left or right of a line on the plane.

x

y

z=1

nx dx + ny dy + nz ≤ 0

CS633

Problem Analysis

• Casting problem: given a set of half-planes, find a point in
their common intersection or decide if the common
intersection is empty.

Each half-plane for each
facet of the polyhedron

CS633

Half-Plane Intersection

• Let H = {h1, h2, …, hn} be a set of linear constraints
in two variables, i.e. in the form:

ai x + bi y ≤ ci

 where ai , bi and ci are constants, s.t. at least one of
ai and bi is non-zero.

• Problem: Find the set of all points (x,y)∈ R2 that
satisfy all n constraints at the same time; i.e. find
all the points lying in the common intersection of
the half-planes in H.

CS633

Type of Intersections

• Convex regions bounded by at most n edges (half-planes /
lines)
– Degenerate cases: a line or point

• Unbounded regions

• Empty

Unbounded
regions

convex
regions

Empty

CS633

Half-Plane Intersection

A Divide-n-Conquer approach

Input: A set H of n half-planes in the plane
Output: A convex polygonal region C:= ∩h∈H h

1. if card(H) = 1 (a plate?)

2. then C ← the unique half-plane h ∈ H

3. else Split H into sets H1 and H2 of the size (n/2) and (n/2)

4. C1 ← IntersectHalfPlanes (H1)

5. C2 ← IntersectHalfPlanes (H2)

6. C ← IntersectConvexRegions(C1, C2)

CS633

Intersection of Two Polygons

• How to compute intersection of two
polygons?

– Using line-segment intersection

– Using doubly-connected edge list

– Updating the facets

CS633

Run Time Analysis

• Computing intersections of two overlays takes
O((n+k) log n) time, where k is the number of
intersection points between edges of C1 and

edges of C2 and k ≤ n

• T(n) = O(1), if n = 1
• T(n) = O(n log n) + 2 T(n/2), if n > 1
⇒T(n) = O(n log2 n)

Can we do better?

CS633

Another Plane-Sweep

• Store left/right boundary of C as sorted lists of half-
planes, Lleft(C) & Lright(C), in order from top to
bottom. topmost point

left boundary

right boundary

CS633

Another Plane-Sweep

• Plane-Sweep: maintain edges of C1 & C2 intersecting the
sweep line. There are at most four. Use pointers: l_edge_C1,
r_edge_C1, l_edge_C2, r_edge_C2.

C2

C
1

l_edge_C2

r_edge_C2

r_edge_C1

l_edge_C1

CS633

Another Plane-Sweep

• Plane-Sweep: Events are the vertices of the convex polygon
points

C2

C
1

l_edge_C2

r_edge_C2

r_edge_C1

l_edge_C1

CS633

Another Plane-Sweep

• Plane-Sweep: Assume l is at the upper endpoint p of an edge
e of l_edge_C1

– p will be a vertex of the new convex object

C2

C
1

l_edge_C2

r_edge_C2

r_edge_C1

l_edge_C2

e

p

CS633

e

l_edge_C2

p

r_edge_C2

e

p

e

l_edge_C2

p

e

p

Another Plane-Sweep

• Plane-Sweep: Assume l is at the upper endpoint p of an edge
e of l_edge_C1

– p will be a vertex of the new convex object
– The intersection of edge e and r_edge_C2

– The intersection of edge e and l_edge_C2

r_edge_C2

CS633

Half-Plane Intersection

• At each event point, some new edge e appears on the
boundary. To handle edge e, we first check whether e
belongs to C1 or C2, and whether it is on the left or right
boundary, and then call appropriate procedure

• According to the handling of each case, we add the
appropriate half-planes to the intersection of C1 & C2. All
cases can be decided in constant time
– Keep track of left boundary and right boundary in the new convex

region

CS633

Algorithm Analysis

• It takes constant time to handle an edge. So,
the intersection of two convex polygonal
regions in the plane can be computed in O(n)
time. So, now …...
T(n) = O(n) + 2 T(n/2), if n > 1
⇒ T(n) = O(n log n)

• The common intersection of a set of n half-
planes in the plane can be computed in
O(nlogn) time and linear storage.

CS633

Casting Problem: Summary

• Let P be a polyhedron with n facets. In O(n2 log n) time and
using O(n) storage it can be decided whether P is castable.

• Moreover, if P is castable, a mold and a valid direction for
removing P from it can be computed in the same amount of
time.

CS633

Break time

• Take a 10 min break.

CS633

Quiz time

CS633

Casting Problem: Summary

• Let P be a polyhedron with n facets. In O(n2
log n) time and using O(n) storage it can be
decided whether P is castable.

• Moreover, if P is castable, a mold and a valid
direction for removing P from it can be
computed in the same amount of time.

CS633

Algorithm Analysis

• Can we do better?

– Using convex objects intersection, we find
all possible answers

– But we only need one answer (one remove
direction)!

CS633

Linear Programming
• Linear Programming/Optimization: finding a solution

to a set of linear constraints

Maximize c1 x1 + c2 x2 + … + cd xd ≤ ci

Subject to a11 x1 + a12 x2 + … + a1d xd ≤ b1

 a21 x1 + a22 x2 + … + a2d xd ≤ b2

 :
 :
 an1 x1 + an2 x2 + … + and xd ≤ bn

 where aij , bi and ci are real numbers and inputs

CS633

LP Terminology

• Objective Function: the funct. to be maximized

• Linear Program: the objective functions and the set
of constraints together

• Dimension: the number of variables, d

• Feasible Regions: the set of points satisfying all
constraints. Points in this region are called
“feasible” & points outside “infeasible”.

CS633

2D Linear Programming

• Let H be a set of n linear constraints

• The vector defining the obj. func. is c = (cx, cy)

• The objective function is fc(p) = cx px + cy py

CS633

2D Linear Programming

• Problem: find a point p∈ R2 s.t. p∈ ∩ H and
fc(p) is maximized. Denote the LP by (H, c)
and its feasible region by C.

c
Solution of LP

CS633

Types of Solutions to 2D-LP
1. LP is infeasible, i.e. no solution

2. The feasible region is unbounded in direction c. There is a ray
p completely contained in feasible region C, s.t. fc takes
arbitrary large value along p

3. The feasible region has an edge e whose outward normal points
in the direction c. The solution to LP is not unique: any point
on e

4. There is a unique solution: a vertex v of C that is extreme in the
direction c

CS633

Types of Solutions to 2D-LP

Empty

Unbounded
regions

CS633

Optimal Vertex

• In the case where an edge is a solution, there is an unique
solution: lexicographically smallest one

• With this convention, we define “optimal vertex” as a vertex
of the feasible region

coptimal vertex

CS633

Incremental LP
• We can incrementally add one constraint (half-plan or a

facet) at a time

• Maintain the optimal vertex of the intermediate feasible
regions, except in the case of unbounded LP.

• Constraints considered so far-- Hi = {h1 , h2 ,…, hi }

• Feasible region so far-- Ci := h1 ∩ h2 ∩ … ∩ hi

CS633

Incremental LP
• Denote the optimal vertex of Ci by vi, clearly we have:

C2 ⊇ C3 ⊇ C4 … ⊇ Cn = C

• If Ci = φ for some i, then Cj = 0 for ∀ j ≥ i & LP infeasible

coptimal vertex

hi

vi

Ci-1 Ci

CS633

Incremental LP
• We keep 2 half-planes, h1 and h2 from H, s.t. ({h1 , h2}, c) is

bounded. These half-planes are called certificates that
proves (H, c) is really bounded.

CS633

How Optimal Vertex Changes
• Let 2 < i ≤ n, let Ci and vi be defined as above.

– If vi-1 ∈ hi , then vi = vi-1

– If vi-1 ∉ hi , then either Ci = 0 or vi ∈ li where li is the line bounding
hi

vi

Ci

vi-1

Ci

vi-1 = vic

Ci-1

vi

CS633

How Optimal Vertex Changes

• How do we find the new optimal vertex?
– Such a point must be on li

vi

Ci

vi-1

New 1D LP:
Find the point p on li that maximizes fc(p),
subject to the constraints p∈ hj, for 1≤ j≤ I

CS633

Simplifying to 1D-LP
Maximize fc((x,0))

Subject to x≥ xj , 1≤ j< i and li ∩ hj bounded to left
 x≤ xk , 1≤ k< i and li ∩ hk bounded to right

• This is a 1D-LP. Let
 xleft = max 1≤ j< i {xj : li ∩ hj is bounded to the left} and
xright = min 1≤ k< i {xk : li ∩ hk is bounded to the right}

 The interval [xleft : xright] is the feasible region of the 1D-
LP. Hence, the LP is infeasible if xleft > xright, and
otherwise the optimal point is either xleft or xright,
depending on the objective function.

CS633

2D-LP
Input: A line program (H, c) where H is set of n half-planes, c ∈ R2

1. Let h1 , h2 ∈ H be the 2 certificate half-planes

2. Let v2 be the intersection point of l1 & l2

3. Let h3 , … , hn be the remaining half-planes of H

4. for i ← 3 to n do

5. if vi-1∈ hi

6. then vi ← vi-1

7. else vi ← the point p on li that maximizes fc(p),

 subject to the constraints, h1 , … , hi-1

8. if p does not exist
9. then Report that LP is infeasible & quit.
10. Return vn

CS633

2D-LP Algorithm Analysis

• This algorithm computes the solution to a linear
program with n constraints and two variables in
O(n2) time and linear storage
– The time spent in Stage i is dominated by solving 1D-

LP in Step 8, which takes O(i) time
∑3≤ i ≤ n O(i) = O(n2)

• Observation: if we could bound the number of
times the optimal vertex changes, then we may
be able to get better running time.

CS633

Algorithm Analysis

• Worst case for LP: O(n2)

…

c v1

v2

v3

vn

Best case?

CS633

Randomized LP

• For any set of H of half-planes, there is a good
order to treat them.

• There is no good way to determining an ordering
of H, so simply pick a random ordering.

• Worst case for RLP: O(n2), but maybe better!

CS633

Random Permutation

Input: An array A[1…n]
Output: The array A[1…n] with the same elements, but

rearranged into a random permutation.

1. for k ← n downto 2
2. do rndindex ← RANDOM(k)
3. Exchange A[k] and A[rndindex]

• RANDOM() takes k as input & generate a random
integer btw 1 and k in constant time

CS633

R-LP Algorithm Analysis

• The average expected running time over all
possibilities is:

E[∑1≤ i ≤ n O(i)·Xi] = ∑1≤ i ≤ n O(i)·E[Xi]
= ∑1≤ i ≤ n O(i)·[2/i] = O(n)

• Xi is a random variable.
– Xi =1 if new optimal vertex is needed

– Otherwise: Xi =0

⇒The 2D-LP problem with n constraints can be
solved in O(n) randomized expected time using
worst-case linear storage.

CS633

What is E[Xi]?

• Backward analysis
– Instead of analyze how vertices are created
– We analyze how vertices can be destroyed!
– These two have same probability

vn

From n constraints, pick one constraint, what is the

probability that vn pick will be destroyed?

E[Xn] ≤ 2/n

Similarly to destroy vn E[Xi] ≤ 2/i

CS633

Unbounded LP

• When we only want to know if there is a feasible point

• We have a priori bound A on the absolute value of the solution.
In such a case, we can add 2d constraints of the form xi ≤ A, and -
A≤ xi , for 1≤ i≤ d.

Create artificial bounds

CS633

Unbounded LP

• How to find out the unbounded direction d?

– Convert the problem to 1D LP

c

d=(x,1)

CS633

Casting Problem
Summary

• Let P be a polyhedron with n facets. In O(n2) expected time
and using O(n) storage it can be decided whether P is
castable.

• Moreover, if P is castable, a mold and a valid direction for
removing P from it can be computed in the same amount of
time.

CS633

LP in Higher Dimensions

• The 3D-LP w/ n constraints can be solved in O(n)
expected time using linear storage.

• The d-dimensional LP problem with n constraints can
be solved in O(d!n) expected time using linear storage.

⇒ RLP is only useful for lower dimensional problems. Other LP
techniques, such as the simplex algorithm, are preferred for
higher dimensions.

CS633

Collision Detection
of Convex Polyhedra

• The problem in 3D can be posed as:
Maximize 1
Subject to a11 x + a12 y + a13 z ≤ b1

 :

 am1 x + am2 y + am3 z ≤ bm
 c11 x + c12 y + c13 z ≤ d1

 :
 cn1 x + cn2 y + cn3 z ≤ dn

 where (ai1, ai2, ai3, bi) and (ck1, ck2, ck3, dk) represent the
outward normals of the faces of convex polyhedra A & B.
If the LP is feasible, then A&B’ve collided.

CS633

Smallest Enclosing Discs

• A robot arm whose base is fixed and
has to pick up items at various points
and locate them at other points.

• Problem: what would be a good
position for the base of the arm?

⇒ A good position is at the center of the
smallest disc that encloses all the
points.

CS633

Transform to a
Randomized Algorithm

• Generate a random permutation p1 , … , pn of P

• Let Pi = {p1 , … , pi}. We add points one by one, while
maintaining Di , the smallest enclosing disc of Pi .

• Let 2 < i < n , Pi and Di be defined as above, we have:
– if pi ∈ Di-1, then Di = Di-1

– if pi ∉ Di-1, else pi lies on the boundary of Di

CS633

MiniDisc(P)

Input: A set P of n points in the plane
Output: The smallest enclosing disc for P

1. Compute a random permutation p1 , … , pn of P
2. Let D2 be the smallest enclosing disc for {p1 , p2}
3. for i ← 3 to n
4. do if pi∈ Di-1
5. then Di ← Di-1

6. else Di ← MiniDiscWithPoint ({p1 , … , pi-1 }, pi)
7. return Dn

CS633

MiniDiscWithPoint(P,q)

Input: A set P of n points in the plane, and a point q s.t. there
 exists an enclosing disc for P with q on its boundary
Output: The smallest enclosing disc for P with q on its boundary

1. Compute a random permutation p1 , … , pn of P
2. Let D1 be smallest enclosing disc w/ q & p1 on its boundary
3. for j ← 2 to n
4. do if pj∈ Dj-1
5. then Dj ← Dj-1

6. else Dj ← MiniDiscWith2Point({p1 , … , pj-1 }, pj, q)
7. return Dn

CS633

MiniDiscWith2DPoint(P,q1,q2)
Input: A set P of n points in the plane, and two points q1 & q2 s.t. there

exists an enclosing disc for P with q1 & q2 on boundary

Output: The smallest enclosing disc for P with q1 & q2 on bndary

1. Let D0 be smallest enclosing disc w/ q1 & q2 on boundary
2. for k ← 1 to n
3. do if pk∈ Dk-1
4. then Dk ← Dk-1

5. else Dk ← the disc w/ q1, q2 and pk on its boundary
6. return Dn

CS633

Algorithm Analysis

• The running time of MiniDiscWithPoint is O(n)
without call to MiniDiscWith2Points. The probability
of making such a call is 2/i. The total expect run
time of MiniDiscWithPoint is

O(n) + ∑2≤ i ≤ n O(i)·(2/i) = O(n)

• Applying the same argument once more. We have:
the smallest enclosing disc for a set of n points in
the plane can be computed in O(n) expected time
using worst-case O(n) storage

CS633

Conclusion

• Castability problem
– Compute remove direction

• Half-plane intersection problem
• Convex intersection problem
• Linear programming
• Randomized linear programming

• Collision detection of two convex
polyhedra

• Smallest enclosing disc of points

CS633

Next time

• Range search
– Database query

