
CS633 Lecture 05
Orthogonal Range Search

and Geometric Trees
Jyh-Ming Lien

Deptartment of Computer Science

George Mason University

Based on Chapter 5 of the textbook
And Ming Lin’s lecture note at UNC

CS633

Orthogonal Range Searching

• Given a set of k-D points and an orthogonal
range (whose boundaries are parallel to the
coordinate axes), find all points enclosed by
this query range

• Brute force: O(n), is this necessary?
2D space

CS633

Selecting Desktop Icons

CS633

Orthogonal Range Searching

• Driving Applications
– Database

– Geographic Information System
– Simulating group behaviors (bird homing)

CS633

Bob

Interpret DB Queries Geometrically

• Transform records in database into points in
multi-dimensional space.

name age IQ

Bob 12 75

Jessica 21 132

Mary 88 89

Sam 34 180

IQ

age0

Sam

Mary

Jessica

CS633

Bob

Interpret DB Queries Geometrically

• Transform queries on d-fields of records in the database into
queries on this set of points in d-dimensional space

Query: age between 18 and 38, IQ between 70 and 110

name age IQ

Bob 12 75

Jessica 21 132

Mary 88 89

Sam 34 180

IQ

age0

Sam

Mary

Jessica

Query

CS633

1-D Range Searching
• Let’s solve a simple problem first

– Let P := {p1, p2, …, pn} be a given set of points on the real line. A query
asks for the points inside a 1-D query rectangle -- i.e. an interval [x:x’]

x=6 x’=16

-2 -1 10 14 15 21 28 30 36 38 40 47

CS633

1-D Range Searching
• Use a balanced binary search tree T.

– The leaves of T store the points of P
– The internal nodes of T store splitting values to guide the search

• The largest value in the left sub-tree

-2 -1 10 14 15 21 28 30 36 38 40 47

-2 10 15 28 36 40

-1 21 47

14

30

CS633

1-D Range Searching
• To report points in [x:x’], we search with x and x’ in T.

– Let u and u’ be the two leaves where the search ends resp.
– Then the points in [x:x’] are the ones stored in leaves between u and u’, plus possibly points

stored at u & u’.

-2 -1 10 14 15 21 28 30 36 38 40 47

-2 10 15 28 36 40

-1 21 38

14

30Split point

x=6 x’=16

CS633

move to right

move to left

Input: A range tree T and a range [x:x’]
Output: All points that lie in the range.
1. vsplit ← FindSplitNode(T, x, x’)
2. if vsplit is a leaf

3. then Check if the point stored at vsplit must be reported

4. else (* Follow the path to x and report the points in
 subtrees right of the path *)
• v ← lc(vsplit)

6. while v is not a leaf
7. do if x ≤ xv

8. then ReportSubTree(rc(v))
9. v ← lc(v)
10. else v ← rc(v)

11. Check if the point stored at leaf v must be reported
12. Similarly, follow the path to x’

1D Range Query

CS633

Find Split Node

Input: A tree T and two values x and x’ with x ≤ x’

Output: The node v where the paths to x and x’ splits, or the leaf
where both paths end.

1. v ← root (T)

2. while v is not a leaf and (x’ ≤ xv or x > xv)

3. do if x’ ≤ xv

4. then v ← lc(v) (* left child of the node v *)

5. else v ← rc(v) (* right child of the node v *)

6. return v

CS633

1-D Range Searching

split point

When going down to the right,
report all points in the left

When going down
to the left,
report all points in
the right

CS633

1D-Range Search
Algorithm Analysis

• Let P be a set of n points in one-dimensional space

– uses O(n) storage and has O(n log n) construction time

– The points in a query range can be reported
• Time O(k + log n), where k is the number of reported points

– The time spent in “ReportSubtree” is linear in the number of reported
points, i.e. O(k).

– The remaining nodes that are visited on the search path of x or x’. The
length is O(log n) and time spent at each node is O(1), so the total time
spent at these nodes is O(log n).

CS633

K-D-Range Search

• Extending binary search tree
– K-D tree

• Stack different dimensions in a tree
• Require less memory
• Slower

– Range tree
• Hierarchical structure of trees
• Require more memory
• Faster

CS633

Kd-Trees
• Let’s look at 2-D problems

– A 2d rectangular query on P asks for points from P lying inside a query
rectangle [x:x’] x [y:y’]. A point p:= (px, py) lies inside this rectangle iff px ∈
[x:x’] and py ∈ [y:y’]

– At the root, we split P with l into 2 sets and store l. Each set is then split into 2
subsets and stores its splitting line. We proceed recursively as such

– In general, we split with vertical lines at nodes whose depth is even, and split
with horizontal lines at nodes whose depth is odd

CS633

Kd-Trees

L1: split x

L1

CS633

Kd-Trees

L2: split y L3: split y

L1

L2 L3

CS633

Kd-Trees

L1

L2 L3

L4 L5 L6 L7

L4

L5
L6

L7

CS633

BuildKDTree(P, depth)
Input: A set P of points and the current depth, depth.
Output: The root of kd-tree storing P.
1. if P contains only 1 point
2. then return a leaf storing at this point
3. else if depth is even
4. then Split P into 2 subsets with a vertical line l thru median
 x-coordinate of points in P. Let P1 and P2 be the sets of
 points to the left or on and to the right of l respectively.
5. else Split P into 2 subsets with a horizontal line l thru median
 y-coordinate of points in P. Let P1 and P2 be the sets of
 points below or on l and above l respectively.

5. vleft ← BuildKDTree(P1, depth + 1)
6. vright ← BuildKDTree(P2, depth + 1)

CS633

Construction Time Analysis

• The most expensive step is median finding,
which can be done in linear time.

• T(n) = O(1), if n = 1
• T(n) = O(n) + 2 T(n/2), if n > 1
⇒ T(n) = O(n log n)

• A kd-tree for a set of n points uses O(n)
storage and can be constructed in O(nlogn)
time.

CS633

Querying on a kd-Tree

L1

L2 L3

L4 L5 L6 L7

Every node indicates a region
(may be unbounded)!
- Denoted as region(v)

query

CS633

Querying on a kd-Tree

• We traverse the kd-tree

– Visit only nodes whose region is intersected by the query rectangle.

– When a region is fully contained in the query rectangle, we report all
points stored in its sub-trees.

– When the traversal reaches a leaf, we have to check whether the point
stored at the leaf is contained in the query region

CS633

Querying on a kd-Tree

L1: split x

L1

L2 L3

L4 L5 L6 L7

CS633

Querying on a kd-Tree

L1

L2 L3

L4 L5 L6 L7

CS633

Querying on a kd-Tree

L1

L2 L3

L4 L5 L6 L7

CS633

SearchKDTree(v, R)

Input: The root of a (subtree of a) kd-tree and a range R.
Output: All points at leaves below v that lie in the range.

1. if v is a leaf
2. then Report the point stored at v if it lies in R.
3. else if region(lc(v)) is fully contained in R
4. then ReportSubtree(lc(v))
5. else if region(lc(v)) intersects R
6. then SearchKDTree(lc(v), R)
7. If region(rc(v)) is fully contained in R
8. then ReportSubtree(rc(v))
9. else if region(rc(v)) intersects R
10. then SearchKDTree(rc(v), R)

CS633

2D KD-Tree Query
Time Analysis

• Query time = # of vertices visited + time to report K points
– See the grey nodes below

• How many vertices will be visited?
– How many regions intersecting the query range?

– How many regions intersecting a orthogonal line?
• which times 4 is be the upper bound of the grey nodes below

CS633

2D KD-Tree Query
Time Analysis

• How many regions intersecting a orthogonal line?
– T(n) = 1+T(n/2) = log n

CS633

2D KD-Tree Query
Time Analysis

• We count intersection in 3-sub-trees!

 Q(n) = O(1), if n = 1
 Q(n) = 2 + 2 Q(n/4), if n > 1

 ⇒ Q(n) = O(nlog42) = O(n1/2)

CS633

• A d-dimensional kd-tree for a set of n points
takes O(d·n) storage and O(d ·nlogn) time to
construct. The query time is bounded by
O(n1-1/d + k).

• Let’s try d = 3
• Extend to d-D

 Q(n) = 2d-1 + 2d-1 Q(n/2d), if n > 1

 ⇒ Q(n) = O(nlog(2^d)2^(d-1)) = O(n(log22^(d-1)/log22^(d)))
 ⇒ Q(n) = O(n(d-1)/d)

KD KD-Tree Query
Time Analysis

CS633

K-D-Range Search

• Extending binary search tree
– K-D tree

• Stack different dimensions in a tree
• Require less memory
• Slower

– Range tree
• Hierarchical structure of trees
• Require more memory
• Faster

CS633

Basics of Range Trees
• Range tree is more efficient but requires more space (store the

same data in multiple copies!)

• 2D Range tree has two levels
– First level is a 1D BST on x-axis (x-BST)
– For each node v of x-BST, we build a 1D BST on y-axis for values in the

sub-tree of v
• Canonical subset of v

CS633

Basics of Range Trees

x

y

yx

First level tree
Second level tree

CS633

Build2DRangeTree(P)
Input: A set P of points in the plane.

Output: The root of 2-dimensional tree.
1. Build a binary search tree Tassoc on the set Py of y-coordinates of the points

in P. Store at leaves of Tassoc the points themselves.
2. if P contains only 1 point
3. then Create a leaf v storing this point and make Tassoc
 the associated structure of v.
4. else Split P into 2 subsets: Pleft containing points with
 x-coordinate ≤ xmid, the median x-coordinate, and
 Pright containing points with x-coordinate ≥ xmid

5. vleft ← Build2DRangeTree(Pleft)
6. vright ← Build2DRangeTree(Pright)
7. Create a node v storing xmid, make vleft left child of v & vright
 right child of v, and make Tassoc the associated structure of v
8. return v

CS633

Size of Range Trees

• Given a set of n points in 2D, the size of the
range tree is:

 Size(n)=n+2×Size(n/2)

• Time of building the range tree:

Time(n)=O(nlogn)+2×Time(n/2) = O(nlogn)

CS633

Query Range Trees
• Similar to 1D, to report points in [x:x’] x [y:y’], we search with

x and x’ in T. Let u and u’ be the two leaves where the search
ends resp. Then the points in [x:x’] are the ones stored in
leaves between u and u’, plus possibly points stored at u & u’.

• We can perform the 2D range query similarly by only visiting
the associated binary search tree on y-coordinate of the
canonical subset of v, whose x-coordinate lies in the x-interval
of the query rectangle.

CS633

Query Range Trees

split point

Search using x and x’
Search using y and y’

CS633

move to left

Input: A 2D range tree T and a range [x:x’] x [y:y’]

Output: All points in T that lie in the range.

1. vsplit ← FindSplitNode(T, x, x’)
2. if vsplit is a leaf

3. then Check if the point stored at vsplit must be reported

4. else (* Follow the path to x and call 1DRangeQuery on
 the subtrees right of the path *)
• v ← lc(vsplit)
6. while v is not a leaf
7. do if x ≤ xv
8. then 1DRangeQuery(Tassoc(rc(v)), [y:y’])
9. v ← lc(v)
10. else v ← rc(v)
11. Check if the point stored at leaf v must be reported
12. Similar procedure for x’

move to right

2DRangeQuery

CS633

Range Tree Query
Algorithm Analysis

• By querying this range tree, one can report the
points in P that lie in a rectangular query range
in O(log2n + k) time, where k is the number of
reported points.

Time(n) = Sumi(1D BST of node i)

 < Sumi(O(log n)) < (log n)(log n)

 = O(log2 n)

CS633

Higher-D Range Trees

• Let P be a set of n points in d-dimensional space,
where d≥ 2. A range tree for P uses O(nlogd-1n) storage
and it can be constructed in O(nlogd-1n) time. One can
report the points in P that lies in a rectangular query
range in O(logdn + k) time, where k is the number of
reported points.

1D Range
tree

3D Range
tree 2D Range

tree

log nlog2nlog3n

…..

logdn

d-D Range
tree

CS633

Range Trees

• Degenerate Cases
– Same x or same y coordinate

– This can also apply to K-d tree

• Can we do better than O(log2n + k)?
– Fractional Cascading

CS633

General Sets of Points
• Replace the coordinates, which are real numbers, by

elements of the so-called composite-number space.
The elements of this space are pair of reals, denoted by
(a|b). We denote the order by:

(a|b) < (a’|b’) ⇔ a < a’ or (a=a’ and b<b’)

• Many points are distinct. But for the ones with same x-
or y-coordinate, replace each point

p := (px, py) by p’ := ((px| py), (py| px))

• Replace R := [x:x’] x [y:y’] by
R’ := [(x| -∞) : (x’| +∞)] x [(y| -∞) : (y’| +∞)]

CS633

General Sets of Points
• Points (5,10) (5,21) in the range [4:8]×[2:50]

– Convert points to (5|10,10|5), (5|21,21|5)

– Convert range to [4| -∞ :8| +∞]×[2| -∞ :50|+∞]
– Is the converted points in the converted range?

• Points (9,51) (4,51) NOT in the range [4:8×2:50]
– Convert points to (9|51,51|9), (4|51,51|4)

– Convert range to [4| -∞ :8| +∞]×[2| -∞ :50|+∞]
– Is the converted points in the converted range?

CS633

Search in Subsets
• Given: Two ordered arrays A1 and A2. key(A2) ⊂ key(A1),

query [x, x’]

• Search: All elements e in A1 and A2 with x<key(e)<x’.

• Idea: pointers between A1 and A2
– Each element in A1 points to the smallest larger element in A2

CS633

Example: (7,80) (67,99) (3,19) (11,37) (21,3) (8,10) (99,62)
Seach [6:30 × 8:40]

Fractional Cascading

11

7 67

99213 8

2183 7 6711

First level tree
Second level treeS

CS633

Fractional Cascading
Algorithm Analysis

• Time complexity
– Each node will take constant time to find values to report
– O(log(n)+k)

• Yeah, we get rid of one “log”!! Same for d-D range Tree
– Let P be a set of n points in d-dimensional space, with d≥ 2. A

layered range tree for P uses O(nlogd-1n) storage and it can be
constructed in O(nlogd-1n) time. With this range tree, one can
report the points in P that lies in a rectangular query range in
O(logd-1n + k) time, where k is the number of reported points.

CS633

More Trees

• Binary space partitioning
• Quad/Oct-tree (Chapter 14, a very

simple data structure)
– Compute distance field

– Motion planning
– Texturing

– Fill holes
– …..many many more

CS633

Drawing the Visible Objects

We want to generate the image that the eye
would see, given the objects in our space

How do we draw the correct object at each
pixel, given that some objects may obscure
others in the scene?

Hidden surface removal

CS633

A Simple Solution:

• Keep a buffer that holds the z-depth of the
pixel currently at each point on screen

• Draw each polygon: for each pixel, test its
depth versus current screen depth to decide if
we draw it or not

Z-buffer

CS633

Drawbacks to Z-buffering

This used to be a very expensive solution!
• Requires memory for the z-buffer

– extra hardware cost was prohibitive

• Requires extra z-test for every pixel

So, a software solution was developed …

CS633

1

The Painter's Algorithm

Avoid extra z-test & space costs by scan
converting polygons in back-to-front order

Is there always a correct
back-to-front order?

From wikipedia

2 3

CS633

How Do We Deal With Cycles?

In 3 dimensions, polygons can overlap, creating
cycles in which no depth ordering would draw
correctly

How do we deal
with these cases?

CS633

How Do We Deal With Cycles?

We can break one polygon into two and
order them separately
– Which polygon?
– Where?

View dependent

CS633

BSP Trees

Having a pre-built BSP tree will allow us to
get a correct depth order of polygons in
our scene for any point in space.

We will build a data structure based on the
polygons in our scene, that can be
queried with any point input to return an
ordering of those polygons.

CS633

The Big Picture

Assume that no objects in our space overlap

Use planes to
recursively split our
object space, keeping
a tree structure of
these recursive splits.

CS633

Choose a Splitting Line

Choose a splitting plane, dividing our objects
into three sets – those on each side of the
plane, and those fully contained on the
plane.

CS633

Choose More Splitting Lines

What do we do when an object (like object 1)
is divided by a splitting plane?

It is divided into two objects, one on each side
of the plane.

CS633

Split Recursively Until Done

When we reach a convex space containing
exactly zero or one objects, that is a leaf
node.

CS633

Continue

CS633

Continue

CS633

Finished

Once the tree is constructed, every root-to-
leaf path describes a single convex
subspace.

CS633

Querying the Tree

If a point is in the positive half-space of a
plane,
– everything in the negative half-space is farther

away -- so draw it first, using this algorithm
recursively

– draw objects on the splitting plane

– draw objects into the positive half-space,
recursively

CS633

What Order Is Generated
From This Eye Point?

How much time does it take to query
the BSP tree, asymptotically?

CS633

Structure of a BSP Tree
• Each internal node has a +half space, a -half space, and a list of

objects contained entirely within that plane (if any exist).

• Each leaf has a list of zero or one objects inside it, and no
subtrees

• The size of a BSP tree is the total number of objects stored in the
leaves & nodes of the tree
– This can be larger than the number of objects in our scene because of

splitting

K-d tree and Octree are special cases of BSP

CS633

Building a BSP Tree

• How do we pick splitting lines/planes?

CS633

Building a BSP Tree
From Line Segments in the Plane
We’ll now deal with a formal algorithm for

building a BSP tree for line segments in the 2D
plane.

This will generalize for building trees of D-1
dimensional objects within D-dimensional
spaces.

CS633

Auto-Partitioning

Auto-partitioning: splitting only along
planes coincident on objects in our
space

CS633

Algorithm for the 2d Case
• If we only have one segment 's', return a leaf node containing s.
• Otherwise, choose a line segment 's' along which to split

• For all other line segments, one of four cases will be true:
 1) The segment is in the +half space of s
 2) The segment is in the -half space of s
 3) The segment crosses the line through s
 4) The segment is entirely contained within the line through s

• Split all segments who cross 's' into two new segments -- one in the +half
space, and one in the -half space

• Create a new BSP tree from the set of segments in the +half space of s, and
another on the set of segments in the -half space

• Return a new node whose children are these +/- half space BSP’s, and
which contains the list of segments entirely contained along the line
through s.

CS633

• Different orderings result in different trees

• Greedy approach?
– pick the line with fewest intersections
– doesn't always work -- sometimes it does very badly
– it is costly to find

How Small Is the BSP

CS633

Random Approach Works Well

If we randomly order segments before
building the tree, then we do well in the
average case

– Expected number of fragments, i.e., size of leaves
O(n log n)

– Expected running time: O(n2 log n)

CS633

Expected Number of Fragments

• dist(si, sj)

– number of segments between si, and sj

– The probability that sj is split by l(si) depends on
dist(si, sj)

si
0 0

1
2

3

1
2

l(si)

CS633

Expected Number of Fragments

l(si) splits sj if no segment between sj and sj is selected
as a splitting line before si

si
0 0

1
2

3

1
2

Not split by l(si)
l(si)

CS633

Expected Number of Fragments

∴si needs to be the first to be selected among the
(dist(si, sj)+2) segments to cut sj

⇒Pr[l(si) cuts sj]≤ 1/(dist(si, sj)+2)

∴number of segments generated by si

 ≤ sumj(1/(dist(si, sj)+2))

 ≤ 2×sumk(1/(k+2))

 ≤2 ln n = O(log n)

∴number of fragments is O(n log n)

CS633

Expected Running Time

• Each split will take O(n) or shorter time

• There can be O(n log n) splits

• Total time to build a BSP: O(n2 log n)

CS633

Optimization: Free Splits

• Sometimes a segment will entirely cross a
convex region described by some interior node
-- if we choose that segment to split on next,
we get a "free split" -- no splitting needs to
occur on the other segments since it crosses
the region.

CS633

Our Building Algorithm
Extends to 3D!

The same procedure we used to build a
tree from two-dimensional objects can
be used in the 3D case – we merely use
polygonal faces as splitting planes, rather
than line segments.

CS633

• There are sets of triangles in 3-space for
which auto-partitions guarantee Ω(n2)
fragments

• Can we do better by not using auto-
partitions?

More analysis:
How good are auto-partitions?

CS633

Sometimes, No

There are actually sets of triangles for
which any BSP will have Ω(n2)
fragments!

Fortunately, these cases are artificial and rarely seen…
BSP usually performs well in practice

CS633

More applications

• Querying a point to find
out what convex space it
exists within

• Shadows

• Visibility

• Blending
– Opengl stuff

CS633

Conclusion

• Range search
– K-D tree

• Interleave dimensions

– Range tree
• Hierarchical dimensions
• Fractional cascade

• Other popular trees
– Binary space partitioning
– Quad/Oct-tree

