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Orthogonal Range Searching

• Given a set of k-D points and an orthogonal 
range (whose boundaries are parallel to the 
coordinate axes), find all points enclosed by 
this query range

• Brute force: O(n), is this necessary?
2D space
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Selecting Desktop Icons
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Orthogonal Range Searching

• Driving Applications
– Database

– Geographic Information System
– Simulating group behaviors (bird homing)
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Bob

Interpret DB Queries Geometrically

• Transform records in database into points in 
multi-dimensional space.

name age IQ

Bob 12 75

Jessica 21 132

Mary 88 89

Sam 34 180

IQ

age0

Sam

Mary

Jessica
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Bob

Interpret DB Queries Geometrically

• Transform queries on d-fields of records in the database into 
queries on this set of points in d-dimensional space

Query: age between 18 and 38, IQ between 70 and 110 

name age IQ

Bob 12 75

Jessica 21 132

Mary 88 89

Sam 34 180

IQ

age0

Sam

Mary

Jessica

Query
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1-D Range Searching
• Let’s solve a simple problem first

– Let P := {p1, p2, …, pn} be a given set of points on the real line.  A query 
asks for the points inside a 1-D query rectangle -- i.e. an interval [x:x’]

x=6 x’=16

-2 -1 10 14 15 21 28 30 36 38 40 47
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1-D Range Searching
• Use a balanced binary search tree T.  

– The leaves of T store the points of P 
– The internal nodes of T store splitting values to guide the search

• The largest value in the left sub-tree

-2 -1 10 14 15 21 28 30 36 38 40 47

-2 10 15 28 36 40

-1 21 47

14

30
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1-D Range Searching
• To report points in [ x:x’ ], we search with x and x’ in T.  

– Let u and u’ be the two leaves where the search ends resp. 
– Then the points in [ x:x’ ] are the ones stored in leaves between u and u’, plus possibly points 

stored at u & u’. 

-2 -1 10 14 15 21 28 30 36 38 40 47

-2 10 15 28 36 40

-1 21 38

14

30Split point

x=6 x’=16
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move to right

move to left

Input: A range tree T and a range [x:x’]
Output: All points that lie in the range.
1.  vsplit ← FindSplitNode(T, x, x’)
2.  if vsplit is a leaf

3.     then Check if the point stored at vsplit  must be reported

4.     else (* Follow the path to x and report the points in      
                    subtrees right of the path *)
• v ← lc(vsplit)

6.             while v is not a leaf
7.     do if x ≤  xv 

8.         then ReportSubTree(rc(v))
9.           v ← lc(v)
10.         else v ← rc(v)           

11.   Check if the point stored at leaf v must be reported
12.  Similarly, follow the path to x’

1D Range Query
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Find Split Node

Input: A tree T  and two values x and  x’ with x ≤  x’

Output:  The node v  where the paths to x and x’ splits, or the leaf 
where both paths end.

1.  v ← root (T)

2.  while v is not a leaf and (x’ ≤  xv or x > xv) 

3.   do if x’ ≤  xv 

4.           then v ← lc(v)  (* left child of the node v *)

5.           else v ← rc(v)  (* right child of the node v *)

6.  return v
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1-D Range Searching

split point

When going down to the right,
report all points in the left

When going down 
to the left,
report all points in 
the right
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1D-Range Search 
Algorithm Analysis

• Let P be a set of n points in one-dimensional space

– uses O(n) storage and has O(n log n) construction time

– The points in a query range can be reported 
• Time O(k + log n), where k is the number of reported points

– The time spent in “ReportSubtree” is linear in the number of reported 
points, i.e. O(k).

– The remaining nodes that are visited on the search path of x or x’.  The 
length is O(log n) and time spent at each node is O(1), so the total time 
spent at these nodes is O(log n). 



CS633

K-D-Range Search 

• Extending binary search tree
– K-D tree

• Stack different dimensions in a tree
• Require less memory
• Slower

– Range tree
• Hierarchical structure of trees
• Require more memory
• Faster
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Kd-Trees
• Let’s look at 2-D problems

– A 2d rectangular query on P asks for points from P lying inside a query 
rectangle [x:x’] x [y:y’].  A point p:= (px, py) lies inside this rectangle iff px ∈ 
[x:x’] and py ∈ [y:y’]

– At the root, we split P with l into 2 sets and store l.  Each set is then split into 2 
subsets and stores its splitting line.  We proceed recursively as such

– In general, we split with vertical lines at nodes whose depth is even, and split 
with horizontal lines at nodes whose depth is odd
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Kd-Trees

L1: split x

L1
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Kd-Trees

L2: split y L3: split y

L1

L2 L3
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Kd-Trees

L1

L2 L3

L4 L5 L6 L7

L4

L5
L6

L7
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BuildKDTree(P, depth)
Input: A set P of points and the current depth, depth.
Output:  The root of kd-tree storing P.
1.  if P contains only 1 point
2.     then return a leaf storing at this point
3.     else if depth is even
4.        then Split P into 2 subsets with a vertical line l thru median  
                               x-coordinate of points in P.  Let P1 and P2 be the sets of 
                            points to the left or on and to the right of l respectively.
5.                  else Split P into 2 subsets with a horizontal line l thru median  
                               y-coordinate of points in P.  Let P1 and P2 be the sets of 
                            points below or on l  and above l respectively.

5.     vleft ← BuildKDTree(P1, depth + 1)
6.      vright ← BuildKDTree(P2, depth + 1)
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Construction Time Analysis

• The most expensive step is median finding, 
which can be done in linear time.

• T(n) = O(1), if n = 1
• T(n) = O(n) + 2 T(n/2), if n > 1 
⇒ T(n) = O(n log n) 

• A kd-tree for a set of n points uses O(n) 
storage and can be constructed in O(nlogn) 
time.
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Querying on a kd-Tree

L1

L2 L3

L4 L5 L6 L7

Every node indicates a region 
(may be unbounded)!
- Denoted as region(v)

query
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Querying on a kd-Tree

• We traverse the kd-tree

– Visit only nodes whose region is intersected by the query rectangle.  

– When a region is fully contained in the query rectangle, we report all 
points stored in its sub-trees.  

– When the traversal reaches a leaf, we have to check whether the point 
stored at the leaf is contained in the query region
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Querying on a kd-Tree

L1: split x

L1

L2 L3

L4 L5 L6 L7
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Querying on a kd-Tree

L1

L2 L3

L4 L5 L6 L7
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Querying on a kd-Tree

L1

L2 L3

L4 L5 L6 L7
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SearchKDTree(v, R)

Input: The root of a (subtree of a) kd-tree and a range R.
Output: All points at leaves below v that lie in the range.

1.  if v is a leaf
2.     then Report the point stored at v if it lies in R.
3.     else if region(lc(v)) is fully contained in R
4.           then ReportSubtree(lc(v))
5.          else if region(lc(v)) intersects R
6.           then SearchKDTree(lc(v), R)
7.             If region(rc(v)) is fully contained in R
8.           then ReportSubtree(rc(v))
9.          else if region(rc(v)) intersects R
10.                    then SearchKDTree(rc(v), R)
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2D KD-Tree Query 
Time Analysis

• Query time = # of vertices visited + time to report K points 
– See the grey nodes below

• How many vertices will be visited?
– How many regions intersecting the query range?

– How many regions intersecting a orthogonal line?
• which times 4 is be the upper bound of the grey nodes below
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2D KD-Tree Query 
Time Analysis

• How many regions intersecting a orthogonal line?
– T(n) = 1+T(n/2) =  log n
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2D KD-Tree Query 
Time Analysis

• We count intersection in 3-sub-trees!

 Q(n) = O(1), if n = 1
 Q(n) = 2 + 2 Q(n/4), if n > 1 

  ⇒ Q(n) = O(nlog42) = O(n1/2)
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• A d-dimensional kd-tree for a set of n points 
takes O(d·n) storage and O(d ·nlogn) time to 
construct.  The query time is bounded by 
O(n1-1/d + k). 

• Let’s try d = 3
• Extend to d-D

 Q(n) = 2d-1 + 2d-1 Q(n/2d), if n > 1 

  ⇒ Q(n) = O(nlog(2^d)2^(d-1)) = O(n(log22^(d-1)/log22^(d)))   
  ⇒ Q(n) = O(n(d-1)/d)

KD KD-Tree Query 
Time Analysis
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K-D-Range Search 

• Extending binary search tree
– K-D tree

• Stack different dimensions in a tree
• Require less memory
• Slower

– Range tree
• Hierarchical structure of trees
• Require more memory
• Faster
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Basics of Range Trees
• Range tree is more efficient but requires more space (store the 

same data in multiple copies!)

• 2D Range tree has two levels
– First level is a 1D BST on x-axis (x-BST)
– For each node v of x-BST, we build a 1D BST on y-axis for values in the 

sub-tree of  v 
• Canonical subset of v
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Basics of Range Trees

x

y

yx

First level tree
Second level tree
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Build2DRangeTree(P)
Input: A set P of points in the plane.

Output:  The root of 2-dimensional tree.
1.  Build a binary search tree Tassoc on the set Py of y-coordinates of the points 

in P.  Store at leaves of Tassoc the points themselves.
2.  if P contains only 1 point
3.     then Create a leaf v storing this point and make Tassoc 
                 the associated structure of v.
4.     else Split P into 2 subsets: Pleft containing points with 
                 x-coordinate ≤ xmid, the median x-coordinate, and
                 Pright containing points with x-coordinate ≥ xmid

5.       vleft ← Build2DRangeTree(Pleft)
6.       vright ← Build2DRangeTree(Pright)
7.               Create a node v storing xmid, make vleft left child of v & vright 
                  right child of v, and make Tassoc the associated structure of v
8.  return v
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Size of Range Trees

• Given a set of n points in 2D, the size of the 
range tree is:

                    Size(n)=n+2×Size(n/2)

• Time of building the range tree:

Time(n)=O(nlogn)+2×Time(n/2) = O(nlogn)
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Query Range Trees
• Similar to 1D, to report points in [x:x’] x [y:y’], we search with 

x and x’ in T.  Let u and u’ be the two leaves where the search 
ends resp.  Then the points in [x:x’] are the ones stored in 
leaves between u and u’, plus possibly points stored at u & u’. 

• We can perform the 2D range query similarly by only visiting 
the associated binary search tree on y-coordinate of the 
canonical subset of v, whose x-coordinate lies in the x-interval 
of the query rectangle.
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Query Range Trees

split point

Search using x and x’
Search using y and y’
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move to left

Input: A 2D range tree T and a range [x:x’] x [y:y’]

Output: All points in T  that lie in the range.

1.  vsplit ← FindSplitNode(T, x, x’)
2.  if vsplit is a leaf

3.     then Check if the point stored at vsplit  must be reported

4.     else (* Follow the path to x and call 1DRangeQuery on
                    the subtrees right of the path *)
• v ← lc(vsplit )
6.            while v is not a leaf
7.    do if x ≤  xv 
8.         then 1DRangeQuery(Tassoc(rc(v)), [y:y’])
9.           v ← lc(v)
10.        else  v ← rc(v)           
11.           Check if the point stored at leaf v must be reported
12.           Similar procedure for x’

move to right

2DRangeQuery
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Range Tree Query
Algorithm Analysis

• By querying this range tree, one can report the 
points in P that lie in a rectangular query range 
in O(log2n + k) time, where k is the number of 
reported points.

Time(n) = Sumi( 1D BST of node i )

                < Sumi( O(log n) ) < (log n)(log n)

                = O(log2 n)
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Higher-D Range Trees

• Let P be a set of n points in d-dimensional space, 
where d≥ 2.  A range tree for P uses O(nlogd-1n) storage 
and it can be constructed in O(nlogd-1n) time. One can 
report the points in P that lies in a rectangular query 
range in O(logdn + k) time, where k is the number of 
reported points.

1D Range 
tree

3D Range 
tree 2D Range 

tree

log nlog2nlog3n

…..

logdn

d-D Range 
tree
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Range Trees

• Degenerate Cases
– Same x or same y coordinate

– This can also apply to K-d tree

• Can we do better than O(log2n + k)?
– Fractional Cascading



CS633

General Sets of Points
• Replace the coordinates, which are real numbers, by 

elements of the so-called composite-number space.  
The elements of this space are pair of reals, denoted by 
(a|b).  We denote the order by:

(a|b) < (a’|b’) ⇔  a < a’ or (a=a’ and b<b’)

• Many points are distinct.  But for the ones with same x- 
or y-coordinate, replace each point 

p := (px, py) by  p’ := ((px| py), (py| px)) 

• Replace R := [x:x’] x [y:y’] by
R’ := [(x| -∞) : (x’| +∞ )] x [(y| -∞) : (y’| +∞ )] 
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General Sets of Points
• Points (5,10) (5,21) in the range [4:8]×[2:50]

– Convert points to (5|10,10|5), (5|21,21|5)

– Convert range to [4| -∞ :8| +∞]×[2| -∞ :50|+∞ ]
– Is the converted points in the converted range?

• Points (9,51) (4,51) NOT in the range [4:8×2:50]
– Convert points to (9|51,51|9), (4|51,51|4)

– Convert range to [4| -∞ :8| +∞]×[2| -∞ :50|+∞ ]
– Is the converted points in the converted range?
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Search in Subsets
• Given: Two ordered arrays A1 and A2. key(A2) ⊂ key(A1), 

query [x, x’] 

• Search: All elements e in A1 and A2 with x<key(e)<x’. 

• Idea: pointers between A1 and A2 
– Each element in A1 points to the smallest larger element in A2
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Example: (7,80) (67,99) (3,19) (11,37) (21,3) (8,10) (99,62)
Seach [6:30 × 8:40]

Fractional Cascading

11

7 67

99213 8

2183 7 6711

First level tree
Second level treeS
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Fractional Cascading 
Algorithm Analysis

• Time complexity
– Each node will take constant time to find values to report
– O(log(n)+k)

• Yeah, we get rid of one “log”!!  Same for d-D range Tree
– Let P be a set of n points in d-dimensional space, with d≥ 2.  A 

layered range tree for P uses O(nlogd-1n) storage and it can be 
constructed in O(nlogd-1n) time. With this range tree, one can 
report the points in P that lies in a rectangular query range in 
O(logd-1n + k) time, where k is the number of reported points.
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More Trees

• Binary space partitioning
• Quad/Oct-tree (Chapter 14, a very 

simple data structure)
– Compute distance field

– Motion planning
– Texturing

– Fill holes
– …..many many more
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Drawing the Visible Objects

We want to generate the image that the eye 
would see, given the objects in our space

How do we draw the correct object at each 
pixel, given that some objects may obscure 
others in the scene?

Hidden surface removal
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A Simple Solution: 

• Keep a buffer that holds the z-depth of the 
pixel currently at each point on screen

• Draw each polygon: for each pixel, test its 
depth versus current screen depth to decide if 
we draw it or not

Z-buffer
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Drawbacks to Z-buffering

This used to be a very expensive solution!
• Requires memory for the z-buffer

– extra hardware cost was prohibitive

• Requires extra z-test for every pixel

So, a software solution was developed …



CS633

1

The Painter's Algorithm

Avoid extra z-test & space costs by scan 
converting polygons in back-to-front order

Is there always a correct 
back-to-front order?

From wikipedia

2 3
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How Do We Deal With Cycles?

In 3 dimensions, polygons can overlap, creating 
cycles in which no depth ordering would draw 
correctly

How do we deal 
with these cases?
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How Do We Deal With Cycles?

We can break one polygon into two and 
order them separately
– Which polygon?
– Where?

View dependent
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BSP Trees

Having a pre-built BSP tree will allow us to 
get a correct depth order of polygons in 
our scene for any point in space.

We will build a data structure based on the 
polygons in our scene, that can be 
queried with any point input to return an 
ordering of those polygons.
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The Big Picture

Assume that no objects in our space overlap

Use planes to 
recursively split our 
object space, keeping 
a tree structure of 
these recursive splits.
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Choose a Splitting Line

Choose a splitting plane, dividing our objects 
into three sets – those on each side of the 
plane, and those fully contained on the 
plane.
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Choose More Splitting Lines

What do we do when an object (like object 1) 
is divided by a splitting plane?  

It is divided into two objects, one on each side 
of the plane.
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Split Recursively Until Done

When we reach a convex space containing 
exactly zero or one objects, that is a leaf 
node.
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Continue
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Continue
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Finished

Once the tree is constructed, every root-to-
leaf path describes a single convex 
subspace. 
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Querying the Tree

If a point is in the positive half-space of a 
plane, 
– everything in the negative half-space is farther 

away -- so draw it first, using this algorithm 
recursively

– draw objects on the splitting plane

– draw objects into the positive half-space, 
recursively
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What Order Is Generated 
From This Eye Point?

How much time does it take to query 
the BSP tree, asymptotically?
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Structure of a BSP Tree
• Each internal node has a +half space, a -half space, and a list of 

objects contained entirely within that plane (if any exist).

• Each leaf has a list of zero or one objects inside it, and no 
subtrees

• The size of a BSP tree is the total number of objects stored in the 
leaves & nodes of the tree
– This can be larger than the number of objects in our scene because of 

splitting

K-d tree and Octree are special cases of BSP
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Building a BSP Tree

• How do we pick splitting lines/planes?
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Building a BSP Tree 
From Line Segments in the Plane
We’ll now deal with a formal algorithm for 

building a BSP tree for line segments in the 2D 
plane.

This will generalize for building trees of D-1 
dimensional objects within D-dimensional 
spaces.
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Auto-Partitioning

Auto-partitioning:  splitting only along 
planes coincident on objects in our 
space



CS633

Algorithm for the 2d Case
• If we only have one segment 's', return a leaf node containing s.
• Otherwise, choose a line segment 's' along which to split

• For all other line segments, one of four cases will be true:
  1) The segment is in the +half space of s
  2) The segment is in the -half space of s
  3) The segment crosses the line through s
  4) The segment is entirely contained within the line through s

• Split all segments who cross 's' into two new segments -- one in the +half 
space, and one in the -half space

• Create a new BSP tree from the set of segments in the +half space of s, and 
another on the set of segments in the -half space

• Return a new node whose children are these +/- half space BSP’s, and 
which contains the list of segments entirely contained along the line 
through s.
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• Different orderings result in different trees

• Greedy approach? 
– pick the line with fewest intersections
– doesn't always work -- sometimes it does very badly
– it is costly to find

How Small Is the BSP 
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Random Approach Works Well

If we randomly order segments before 
building the tree, then we do well in the 
average case

– Expected number of fragments, i.e., size of leaves 
O(n log n)

– Expected running time: O(n2 log n)
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Expected Number of Fragments

• dist(si, sj)

– number of segments between si, and sj

– The probability that sj is split by l(si) depends on 
dist(si, sj)

si
0 0

1
2

3

1
2

l(si)
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Expected Number of Fragments

l(si) splits sj if no segment between sj and sj is selected 
as a splitting line before si

si
0 0

1
2

3

1
2

Not split by l(si) 
l(si)
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Expected Number of Fragments

∴si needs to be the first to be selected among the 
(dist(si, sj)+2) segments to cut sj

⇒Pr[l(si) cuts sj ]≤ 1/(dist(si, sj)+2)

∴number of segments generated by si 

      ≤ sumj(1/(dist(si, sj)+2))

    ≤ 2×sumk(1/(k+2))

    ≤2 ln n = O(log n)

∴number of fragments is O(n log n)
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Expected Running Time

• Each split will take O(n) or shorter time

• There can be O(n log n) splits

• Total time to build a BSP: O(n2 log n) 
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Optimization: Free Splits

• Sometimes a segment will entirely cross a 
convex region described by some interior node 
-- if we choose that segment to split on next, 
we get a "free split" -- no splitting needs to 
occur on the other segments since it crosses 
the region.
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Our Building Algorithm 
Extends to 3D!

The same procedure we used to build a 
tree from two-dimensional objects can 
be used in the 3D case – we merely use 
polygonal faces as splitting planes, rather 
than line segments.
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• There are sets of triangles in 3-space for 
which auto-partitions guarantee Ω(n2) 
fragments

• Can we do better by not using auto-
partitions?

More analysis:  
How good are auto-partitions?



CS633

Sometimes, No

There are actually sets of triangles for 
which any BSP will have Ω(n2) 
fragments!

Fortunately, these cases are artificial and rarely seen…
BSP usually performs well in practice
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More applications

• Querying a point to find 
out what convex space it 
exists within

• Shadows

• Visibility

• Blending
– Opengl stuff
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Conclusion

• Range search
– K-D tree

• Interleave dimensions

– Range tree
• Hierarchical dimensions
• Fractional cascade 

• Other popular trees
– Binary space partitioning
– Quad/Oct-tree


