CS633 Lecture 08

Point Location

Jyh-Ming Lien
Dept of Computer Science
George Mason University

Based on Chapter 6 of the textbook and Ming Lin’s
lecture note at UNC and Robert Bless ’s lecture
note at WUSTL

Point Location

e Reading: Chapter 6 of the Textbook

e Driving Applications
— Knowing Where You Are in GIS
— Seismic ray tracing

e Related Applications
— Triangulation using Trapezoidal Maps
— Motion Planning: Cell decomposition

Knowing Where You Are

e Which county is the star located in?

. INDEPENDENT CITIES INCLUDE:

1. ALEXANDRIA 21. LYNCHBURG

2. BEDFORD 22 MANASSAS

3. BRISTOL 23. MANASSAS PARK

4. BUENA VISTA 24. MARTINSVILLE

5. CHARLOTTESVILLE 25. NEWPORT NEWS

6. CHESAPEAKE 26. NORFOLK

7. CLIFTON FORGE 27. NORTON

9. COLONIAL HEIGHTS 28. PETERSBURG

9. COVINGTON 29. POGUOSON

10. DANVILLE 30. PORTSMOUTH P

11. EMPORIA 31. RADFORD PRINCE
12. FAIRFAX 32. RICHMOND f WILLIAM
13. FALLS CHURCH 33. ROANOKE :

14, FRANKLIN 34 SALEM

15. FREDERICKSBURG 35. STAUNTON

16. GALAX 36. SUFFOLK

17. HAMPTON 37. VIRGINIA BEACH

18, HARRISONBURG 38. WAYNESBORO

19. HOPEWELL 39. WILLIAMSBURG =
20. LEXINGTON 40. WINCHESTER ROCK- ‘ﬁ
RIDGE
)
= APPO.
' ATTO! JA.
BEDFORD, PRINCE
AMPBEL! EDWARD

Copyright 2005 digital-topo-maps.com

Knowing Where You Are

e Simulating seismic ray tracing

— 3D point location is needed

— Many rays are propagated in side the earth

CS633

()
10)
=)
=
S
il
(oo}
)

%)
(==}

N
(=]

»
™
~>

7 . \\i
’ v ¥ j\&N
RO
160. 170. 180.

Longitude

A

(/4

A

7 A

N

Knowing Where You Are

e Given a map and a query point g specified
by its coordinates, find the region of the
map containing ¢

e A map can be treated as a subdivision of
the plane into regions, or planar
subdivision

Planar Point Location

e LetSbe a planar subdivision with n edges. The planar point location
problem is to store S in such a way that we can answer: given a query
point g, report the face f'of S that contains ¢. If g lies on an edge or a

vertex, report so

N

e bottom line: brute force
algorithm takes O(n) time
—7 for each query

Planar Point Location

e Divide the subdivision into a finer subdivision (slabs) using
vertical lines passing through each vertex

yd
d

N
J

.

* Using binary search to find which
slab the pointis in O(log n)

e Point location in a slab in O(log n)

Total time O(log n)

CS633

A Possible Solution

e But the storage requirement is high: O(n?)!!!

|
——
:

L

N

\/I\/

/

n/2

2
=S

n/2

=\We need a better solution: trapezoidal maps!

CS633

Trapezoidal Maps

e A.k.a vertical decomposition
e A.k.a trapezoidal decomposition

I

Drawing two vertical extensions
from every endpoint
* onhe going upwards

e one going downwards

Assumption
1~ - We add an outer boundary R
- No points with same x coordinates

Adjacent trapezoids

e Two trapezoids A and A" are adjacent if they
meet along a vertical edge

Segments in general position :

A trapezoid has almost four .
adjac?ent trapezoids Not true for this case

CS633

Adjacent trapezoids

e We keep pointers to neighboring trapezoids

— How do we know which one is which one???
e Left upper
e |eft lower
e Right lower
e Right upper

CS633

Trapezoidal Maps

e Aface is a trapezoid-like shape (trapezoid, triangle)
e In each trapezoid A we store:

— leftp(A) - 4 pointers to its neighbors
— rightp(A)
— top(A)
— bottom(A)
© top(A)
I /.
I ST
|
leftp(A)

— A
n

®

bottom(A) O not stored

Building Trapezoidal Map

e Use randomized incremental algorithm to construct the trapezoidal map

I(S)

e Maintain a point location data structure D)K

A

11

B

/

2l

1r

2r

A
A R

Building Trapezoidal Map

e The search structure D is a directed acyclic graph (DAG) with
— asingle root

— exactly one leaf for every trapezoid of 7(S).

e There are 2 types of inner nodes (of out-degree 2):
— x-nodes, labeled with an endpoint of some segment in S

— y-nodes, labeled with a segment itself

e A query with ¢ starts at the root and proceeds along a directed
path to a leaf

— At an x-node, the test is “Does ¢ lie to the left or right of the vertical
line through endpoint stored at this node?”

— At a y-node, the test is “Does ¢ lie above or below the segment s
stored here?”

TrapezoidalMap(S)

Input: A set S of n non-crossing line segments
Output: The trapezoidal map 7(S) and a search data structure D for

7(S) in a bounding box

1. Determine a bounding box R that contains all segments of S, and initialize
trapezoidal map structure T & search structure D for it
2. Compute a random permutation s, s,,..., s, of the elements of S.

3. fori< Itondo
- Find set A, A,,..., A, of trapezoids in T properly intersected by s,

- Remove Ay, A,,..., A, from T and replace them by new trapezoids
that appear because of the insertion of s,

Find Intersecting As

'S -®

« A, can be found using the data structure D

FollowSegment(7, s))

Input: A trapezoidal map 7' and a new segment s,
Output: The sequence A, A,,..., A, of trapezoids intersected by s,

1

Let p and ¢ be the left and right endpoint of s,

Search with p in the search structure to find A,

j<0

while q lies to the right of rightp(A.)

do if rightp(A,) lies above s,
then Let A, ; be the lower right neighbor of A,
else Let A, ; be the upper right neighbor of A,
j—j+1

return Ay, A,,..., Aj

L XN AW =

Case 1: New segment completely
contained in trapezoid

: C Bl
: q
—e S |
| B |
A D /
D4
|:)|1 |
P
A A S B

Case 2: New segment partially
contained in trapezoid

C -
P — I
e S ~ 4 |
ARy
D4
|:)i-1 > |
A s) LB

Case 3: New segment completely
outside trapezoid

Short Example

Another Example

Another Example

g
81
a

Another Example

g
81
a

Another Example

Another Example

Another Example

Another Example

Another

Example

Another Example

Size of Trapezoidal Map

e What's the size of such a decomposition?
— ldea: relate size of the trapezoidal map to the size of the segments

— Each face in a trapezoidal map of a set S of line segments in general
position has 1 or 2 vertical sides and exactly two non-vertical sides

7

Size of Trapezoidal Map

+ Left edge of a trapezoid in a trapezoidal map

For every trapezoid A, except the left
most one, the left edge is defined by an
end point of a segment leftp(A)

Idea: There are as many “left edges of
trapezoids” as trapezoids

Size of Trapezoidal Map

e There are only five cases (for left edge of a trapezoid)

Case 1 — top(A)

leftp(A

E A

—

bottom(A)

Size of Trapezoidal Map

e There are only five cases (for left edge of a trapezoid)

Case2 top(A)

A

leftp(A) —

bottom(A)

Size of Trapezoidal Map

e There are only five cases (for left edge of a trapezoid)

Case 3
top(A)

A

leftp(A) o—

bottom(A)

Size of Trapezoidal Map

e There are only five cases (for left edge of a trapezoid)

Case 4
top(A)

leftp(A) A

bottom(A)

Size of Trapezoidal Map

e There are only five cases (for left edge of a trapezoid)

top(A)

Case 5

leftp(A) o

A

bottom(A)

Size of Trapezoidal Map

e Theorem: The trapezoidal map T(S) of a set of n line segments S
in general position contains at most 6n + 4 vertices

e Proof:
— Bounding box R has 4 vertices
— End points 2n vertices
— Vertical line end points 4n
— Total 6n+4

Size of Trapezoidal Map

e Theorem: The trapezoidal map T(S) of a set of n line segments S
in general position contains at most 3n + 1 trapezoids (i.e., left
points of trapezoids)

e Proof:
— R has I left point

— Left point of a segment 2n
* Each such a point can be leftp(A) of 2 trapezoids

— Right point of a segment /n

 Each such a point can be leftp(A) of 1 trapezoids

— Total 3n+1

Randomized
Incremental Algorithm

e Construction of the search structure is incremental:

— It adds one segment at a time
— After each addition, it updates D and T(S)

e The order in which the segments are added affects the
construction of search structure D

— In worst case, construction time is O(n?)
e Each new segment intersects all existing trapezoids

— In worst case, query time is O(n)

— Therefore we randomly order of the input and hope for good
“expected” time complexity

Algorithm Analysis

e The expected running time is the average running time taken over all
n! permutations

— The expected size of D is the average sizes of all n/ resulting search
structures

— The expected query time for g is the average query time for point ¢ over all
runs

Theorem:

Algorithm TrapezoidalMap computes the trapezoidal map
7(S) of a set S of n line segments in general position and a

search structure D for 7(S) in O(n log n) expected time.

The expected size of the search structure D is O) and
for any query point g the expected query time is O(log n).

Average Query Time Analysis

The query time for g is linear in the length of the path in D that is traversed
when querying with ¢

It is increased by at most 3 in every iteration based on case analysis

So, 3n is the best possible worst-case bound over all possible insertion order
for S

But, we're interested in average query time w.r.t. all n/ possible insertion
orders

Let X, for 1= i < n, for denote the number of nodes on the path created in i th
iteration. We can express the expected path length as:

Average Query Time Analysis

X <3 = E[X]< 0%I-P.) + 3*P,.=E[X] = 3P,

1

. What is P;?
— The probability that A (S,) is created (i.e, A (S;)= A (S;)) because of
the segment s,

— Since s, is selected at random, it has the same probability that A (S;)
is destroyed by randomly pick a segment from S, (

)
_ P= Pr[A(S);aA(Sl])] Pr[A(S)e;éT(S])] 4/i

To destroy A (S;) we can

righto(A) __. remove any of the four
bounding edges

Ieftp(A)|
I A q(Si)

1

bottom(A)

Average Query Time Analysis

El<z<n z El<l<n3P El<l<n12/l_1221<1
_,1i=12H,

=1/1+12+1/3+ ...+ 1/n
Inn<H, < (Inn+1)

= Therefore, the query time takes O(log n)

Expected Size of the Structure

e To bound the size, it suffices to bound the number of
nodes in D.

e The leaves in D are in one-to-one correspondence with
the trapezoids in T(S), of which there are O(n).

e Let k, be no. of new trapezoids created in iteration 7, due
to insertion of segment s, :

O(mn) + E[Y,_,;_ (number of inner nodes created in iteration i)]
O(l’l) + E[Elsisn kl] - O(n) T Elsisn E[kl]

Expected Size of the Structure

e Backward analysis
— Yi.i-. E[k] is the # of the “segment” nodes

— E[£;] 1s the expected number of new trapezoids created by the i-th segment
— Each s, has the same probability of being the i-th segment
 E[k,]=(# of trapezoids destroyed by removing s,+
of trapezoids destroyed by removing s,+
of trapezoids destroyed by removing s,+

of trapezoids destroyed by removing s,) / i

« Elk]=(1/0) Y i 2 AET(Si) 0(A,s)
— 0 (A, s)=1if Ais bounded by S,
— 3 (A, s) =0 otherwise
~ Desi2 AET(S) 0 (A,s) <4 1T(S;)| = O(1)

o Ek]= ()Y a5 S aersy O (A.5) = O)/i = O(1)

Expected Construction Time

e The time to insert segment s, is O(k,) plus the time
needed to locate the left endpoint of s, in 7(S, ;). Use
the earlier bound on &, we get the expected running
time for the construction:

O(1) + X12i<n { OUlog i) + O(E[K]) } = O(n log n)

Naive Assumptions

 General position statement assumes no two
distinct points have the same x-coordinate.

e Assume that a query point never lies on the
vertical line of an x-node on its search path,
nor on the segment of a y-node.

Dealing with Degeneracies

Use symbolic perturbation. In effects, use an affine mapping called “shear
transform” along the x-axis.

— (x,y) becomes (x+¢y,)

The algorithm does not compute any geometric objects; it never actually
computes coordinates of the endpoints.

All it does is to apply 2 elementary operations to the input points:

— Take 2 distinct points p & g and decides whether ¢ lies to the left, right or on the vertical
line through p.

— Take 1 of the input segments, specified by p, & p,, and tests whether a third point g lies

above, below, or on this segment. It is only applied when a vertical line through ¢
intersects with this segment.

Application: Triangulation

1. Decompose the Polygon into Trapezoids.

— Seidel proves that if each permutation of s1 .. sN is equally likely
then trapezoid formation takes O(n log*n) expected time

« 2. Decompose the Trapezoids into Monotone Polygons.

— A monotone polygon is a polygon whose boundary consists of two y-
monotone chains. These polygons are computed from the trapezoidal
decomposition by Checkin§ whether the two vertices of the original
polygon lie on the same side. This is a linear O(n) time operation

« 3. Triangulate the Monotone Polygons.
— all the monotone polygons can be triangulated in O(n) time

Application: Triangulation
—)x monotone

Al

Application: Motion Planning

e Exact cell decomposition — from Latombe 2000

Application: Motion Planning

e Convert trapezoid map to connectivity graph

— Roadmap

Conclusion

e Point location

— Brute force has O(n) time complexity
— Slab approach has O(log ») time but O(n) space complexity

— Trapezoid decomposition allows O(log n) expected time but O(n)
space complexity

* Trapezoid decomposition

— randomized incremental algorithm
— Sweep line algorithm (does not provide the point location data
structure D)

Homework Assignment

® 6.5 6.06,0.7

