
CS633 Lecture 08
Point Location

Jyh-Ming Lien
Dept of Computer Science

George Mason University

Based on Chapter 6 of the textbook and Ming Lin’s
lecture note at UNC and Robert Bless ’s lecture
note at WUSTL

CS633

Point Location

• Reading: Chapter 6 of the Textbook

• Driving Applications
– Knowing Where You Are in GIS
– Seismic ray tracing

• Related Applications
– Triangulation using Trapezoidal Maps
– Motion Planning: Cell decomposition

CS633

Knowing Where You Are

• Which county is the star located in?

CS633

Knowing Where You Are

• Simulating seismic ray tracing
– 3D point location is needed
– Many rays are propagated in side the earth

CS633

Knowing Where You Are

• Given a map and a query point q specified
by its coordinates, find the region of the
map containing q

• A map can be treated as a subdivision of
the plane into regions, or planar
subdivision

CS633

Planar Point Location
• Let S be a planar subdivision with n edges. The planar point location

problem is to store S in such a way that we can answer: given a query
point q, report the face f of S that contains q. If q lies on an edge or a
vertex, report so

• bottom line: brute force
algorithm takes O(n) time
for each query

CS633

Planar Point Location
• Divide the subdivision into a finer subdivision (slabs) using

vertical lines passing through each vertex

• Using binary search to find which
slab the point is in O(log n)

• Point location in a slab in O(log n)

Total time O(log n)

CS633

A Possible Solution
• But the storage requirement is high: O(n2)!!!

⇒We need a better solution: trapezoidal maps!

CS633

Trapezoidal Maps
• A.k.a vertical decomposition
• A.k.a trapezoidal decomposition

Assumption
- We add an outer boundary R
- No points with same x coordinates

Drawing two vertical extensions
from every endpoint

• one going upwards
• one going downwards

CS633

Adjacent trapezoids

• Two trapezoids Δ and Δ´ are adjacent if they
meet along a vertical edge

Segments in general position :
A trapezoid has almost four
adjacent trapezoids Not true for this case

CS633

Adjacent trapezoids

• We keep pointers to neighboring trapezoids
– How do we know which one is which one???

• Left upper
• Left lower
• Right lower
• Right upper

CS633

Trapezoidal Maps
• A face is a trapezoid-like shape (trapezoid, triangle)
• In each trapezoid Δ we store:

– leftp(Δ) - 4 pointers to its neighbors
– rightp(Δ)
– top(Δ)
– bottom(Δ)

leftp(Δ)

rightp(Δ)

top(Δ)

bottom(Δ)

Δ

not stored

CS633

Building Trapezoidal Map
• Use randomized incremental algorithm to construct the trapezoidal map

T(S)

• Maintain a point location data structure D

CS633

Building Trapezoidal Map

• The search structure D is a directed acyclic graph (DAG) with
– a single root

– exactly one leaf for every trapezoid of T(S).

• There are 2 types of inner nodes (of out-degree 2):
– x-nodes, labeled with an endpoint of some segment in S

– y-nodes, labeled with a segment itself

• A query with q starts at the root and proceeds along a directed
path to a leaf
– At an x-node, the test is “Does q lie to the left or right of the vertical

line through endpoint stored at this node?”
– At a y-node, the test is “Does q lie above or below the segment s

stored here?”

CS633

TrapezoidalMap(S)
Input: A set S of n non-crossing line segments
Output: The trapezoidal map T(S) and a search data structure D for

T(S) in a bounding box

1. Determine a bounding box R that contains all segments of S, and initialize

trapezoidal map structure T & search structure D for it

2. Compute a random permutation s1, s2,…, sn of the elements of S.

3. for i ← 1 to n do

 - Find set Δ0, Δ1,…, Δk of trapezoids in T properly intersected by si

 - Remove Δ0, Δ1,…, Δk from T and replace them by new trapezoids
 that appear because of the insertion of si

CS633

Find Intersecting Δs

• Δ1 can be found using the data structure D

Δ1 Δ2

Δ3

Δ4
Δ5s

qp

CS633

FollowSegment(T, si)

Input: A trapezoidal map T and a new segment si
Output: The sequence Δ0, Δ1,…, Δk of trapezoids intersected by si

1. Let p and q be the left and right endpoint of si
2. Search with p in the search structure to find Δ0

3. j ← 0
4. while q lies to the right of rightp(Δi)
5. do if rightp(Δi) lies above si
6. then Let Δj+1 be the lower right neighbor of Δj

7. else Let Δj+1 be the upper right neighbor of Δj

8. j ← j + 1
9. return Δ0, Δ1,…, Δj

CS633

Case 1: New segment completely
contained in trapezoid

Di-1

Δ

A
B

C

D

s
p

q

Di-1

p q

sA B
C D

CS633

Case 2: New segment partially
contained in trapezoid

Di-1

Δ

Di-1

q

s B
C A

A B

C
s

p q

CS633

Case 3: New segment completely
outside trapezoid

Di-1

Δ

Di-1

s
A B

A

B

s
p

q

CS633

Short Example

Δ1 Δ2

Δ3

Δ4
Δ5s

qp

Δ6

Δ7

Δ8

Δ1 Δ2

Δ3

Δ4
Δ5s

qp

CS633

Another Example

s2

s1

s3
s4

s5

s6

s7

s8

a

b

c
d

e

f

g

CS633

Another Example

s1

a

g

CS633

Another Example

s2

s1

g

a

c
d

CS633

Another Example

s2

s1

g

a

c
d

e

s3

CS633

Another Example

s2

s1

g

a

c
d

e

s3
s4

b

CS633

Another Example

s2

s1

g

a

c
d

e

s3
s4

b

s5

CS633

Another Example

s2

s1

g

a

c
d

e

s3
s4

b

s5

s6

f

CS633

Another Example

s2

s1

g

a

c
d

e

s3
s4

b

s5

s6

s7 f

CS633

Another Example

s2

s1

g

a

c
d

e

s3
s4

b

s5

s6

s7

s8

CS633

Size of Trapezoidal Map
• What’s the size of such a decomposition?

– Idea: relate size of the trapezoidal map to the size of the segments

– Each face in a trapezoidal map of a set S of line segments in general
position has 1 or 2 vertical sides and exactly two non-vertical sides

CS633

Size of Trapezoidal Map

• Left edge of a trapezoid in a trapezoidal map

Idea: There are as many “left edges of
trapezoids” as trapezoids

For every trapezoid Δ, except the left
most one, the left edge is defined by an
end point of a segment leftp(Δ)

CS633

Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 1

CS633

Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 2

CS633

Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 3

CS633

Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 4

CS633

Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 5

R

CS633

Size of Trapezoidal Map
• Theorem: The trapezoidal map T(S) of a set of n line segments S

in general position contains at most 6n + 4 vertices

• Proof:
– Bounding box R has 4 vertices
– End points 2n vertices

– Vertical line end points 4n

– Total 6n+4

CS633

Size of Trapezoidal Map
• Theorem: The trapezoidal map T(S) of a set of n line segments S

in general position contains at most 3n + 1 trapezoids (i.e., left
points of trapezoids)

• Proof:
– R has 1 left point
– Left point of a segment 2n

• Each such a point can be leftp(Δ) of 2 trapezoids

– Right point of a segment 1n
• Each such a point can be leftp(Δ) of 1 trapezoids

– Total 3n+1

CS633

Randomized
Incremental Algorithm

• Construction of the search structure is incremental:
– It adds one segment at a time
– After each addition, it updates D and T(S)

• The order in which the segments are added affects the
construction of search structure D
– In worst case, construction time is O(n2)

• Each new segment intersects all existing trapezoids

– In worst case, query time is O(n)

– Therefore we randomly order of the input and hope for good
“expected” time complexity

CS633

Algorithm Analysis
• The expected running time is the average running time taken over all

n! permutations

– The expected size of D is the average sizes of all n! resulting search
structures

– The expected query time for q is the average query time for point q over all
runs

Theorem:
Algorithm TrapezoidalMap computes the trapezoidal map
T(S) of a set S of n line segments in general position and a
search structure D for T(S) in O(n log n) expected time.
The expected size of the search structure D is O(n) and
for any query point q the expected query time is O(log n).

CS633

Average Query Time Analysis
• The query time for q is linear in the length of the path in D that is traversed

when querying with q

• It is increased by at most 3 in every iteration based on case analysis

• So, 3n is the best possible worst-case bound over all possible insertion order
for S

• But, we’re interested in average query time w.r.t. all n! possible insertion
orders

• Let Xi , for 1≤ i ≤ n, for denote the number of nodes on the path created in i’th
iteration. We can express the expected path length as:

CS633

Average Query Time Analysis

Xi ≤ 3 ⇒ E[Xi] ≤ 0*(1-Pi) + 3*Pi ⇒ E[Xi] ≤ 3Pi

• What is Pi?

– The probability that Δ q(Si) is created (i.e, Δq(Si)≠ Δq(Si-1)) because of

the segment si

– Since si is selected at random, it has the same probability that Δ q(Si)

is destroyed by randomly pick a segment from Si (backward
analysis!!)

– Pi = Pr[Δq(Si)≠ Δq(Si-1)] = Pr[Δq(Si) ∉ T(Si-1)] ≤ 4/i

leftp(Δ)
rightp(Δ)

top(Δ)

bottom(Δ)

Δ q(Si)
To destroy Δ q(Si) we can
remove any of the four
bounding edges

CS633

Average Query Time Analysis

E[∑1≤ i ≤ n Xi] ≤ ∑1≤ i ≤ n 3Pi ≤ ∑1≤ i ≤ n 12/i = 12∑1≤ i

≤ n 1/i = 12Hn

Hn = 1/1 + 1/2 + 1/3 + … + 1/n

ln n < Hn < (ln n + 1)

⇒ Therefore, the query time takes O(log n)

CS633

Expected Size of the Structure

• To bound the size, it suffices to bound the number of
nodes in D.

• The leaves in D are in one-to-one correspondence with
the trapezoids in T(S), of which there are O(n).

• Let ki be no. of new trapezoids created in iteration i, due
to insertion of segment si :

O(n) + E[∑1≤ i ≤ n(number of inner nodes created in iteration i)]
O(n) + E[∑1≤ i ≤ n ki] = O(n) + ∑1≤ i ≤ n E[ki]

CS633

Expected Size of the Structure
• Backward analysis

– ∑1≤ i ≤ n E[ki] is the # of the “segment” nodes
– E[ki] is the expected number of new trapezoids created by the i-th segment
– Each si has the same probability of being the i-th segment

• E[ki]=(# of trapezoids destroyed by removing s0+
 # of trapezoids destroyed by removing s1+
 # of trapezoids destroyed by removing s2+
 ……
 # of trapezoids destroyed by removing si) / i

• E[ki]= (1/i) ∑ s∈Si ∑ Δ∈T(Si) δ (Δ , si)
– δ (Δ , si) = 1 if Δ is bounded by Si

– δ (Δ , si) = 0 otherwise
– ∑ s∈Si ∑ Δ∈T(Si) δ (Δ ,s) ≤ 4 |T(Si)| = O(i)

• E[ki] = (1/i) ∑ s∈Si ∑ Δ∈T(Si) δ (Δ ,s) ≤ O(i)/i = O(1)

CS633

Expected Construction Time

• The time to insert segment si is O(ki) plus the time
needed to locate the left endpoint of si in T(Si-1). Use
the earlier bound on ki, we get the expected running
time for the construction:

O(1) + ∑1≤ i ≤ n { O(log i) + O(E[ki]) } = O(n log n)

CS633

Naïve Assumptions

• General position statement assumes no two
distinct points have the same x-coordinate.

• Assume that a query point never lies on the
vertical line of an x-node on its search path,
nor on the segment of a y-node.

CS633

Dealing with Degeneracies
• Use symbolic perturbation. In effects, use an affine mapping called “shear

transform” along the x-axis.
– (x,y) becomes (x+εy, y)

• The algorithm does not compute any geometric objects; it never actually
computes coordinates of the endpoints.

• All it does is to apply 2 elementary operations to the input points:
– Take 2 distinct points p & q and decides whether q lies to the left, right or on the vertical

line through p.

– Take 1 of the input segments, specified by p1 & p2, and tests whether a third point q lies
above, below, or on this segment. It is only applied when a vertical line through q
intersects with this segment.

CS633

Application: Triangulation
• 1. Decompose the Polygon into Trapezoids.

– Seidel proves that if each permutation of s1 .. sN is equally likely
then trapezoid formation takes O(n log*n) expected time

• 2. Decompose the Trapezoids into Monotone Polygons.
– A monotone polygon is a polygon whose boundary consists of two y-

monotone chains. These polygons are computed from the trapezoidal
decomposition by checking whether the two vertices of the original
polygon lie on the same side. This is a linear O(n) time operation

• 3. Triangulate the Monotone Polygons.
– all the monotone polygons can be triangulated in O(n) time

CS633

Application: Triangulation

X monotone

CS633

Application: Motion Planning
• Exact cell decomposition – from Latombe 2000

qinit

qfinal

CS633

Application: Motion Planning
• Convert trapezoid map to connectivity graph

– Roadmap

qinit

qfinal

CS633

Conclusion

• Point location
– Brute force has O(n) time complexity

– Slab approach has O(log n) time but O(n 2) space complexity

– Trapezoid decomposition allows O(log n) expected time but O(n)
space complexity

• Trapezoid decomposition
– randomized incremental algorithm
– Sweep line algorithm (does not provide the point location data

structure D)

CS633

Homework Assignment

• 6.5, 6.6, 6.7

