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Point Location

• Reading:  Chapter 6 of the Textbook

• Driving Applications
– Knowing Where You Are in GIS
– Seismic ray tracing

• Related Applications
– Triangulation using Trapezoidal Maps
– Motion Planning: Cell decomposition
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Knowing Where You Are

• Which county is the star located in?
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Knowing Where You Are

• Simulating seismic ray tracing
– 3D point location is needed
– Many rays are propagated in side the earth
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Knowing Where You Are

• Given a map and a query point q specified 
by its coordinates, find the region of the 
map containing q

• A map can be treated as a subdivision of 
the plane into regions, or planar 
subdivision
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Planar Point Location
• Let S be a planar subdivision with n edges.  The planar point location 

problem is to store S in such a way that we can answer:  given a query 
point q, report the face f of S that contains q.  If q lies on an edge or a 
vertex, report so

• bottom line: brute force    
algorithm takes O(n) time 
for each query
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Planar Point Location
• Divide the subdivision into a finer subdivision (slabs) using 

vertical lines passing through each vertex

• Using binary search to find which 
slab the point is in O(log n)

• Point location in a slab in O(log n)

Total time O(log n)
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A Possible Solution
• But the storage requirement is high: O(n2)!!!

⇒We need a better solution: trapezoidal maps!
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Trapezoidal Maps
• A.k.a vertical decomposition
• A.k.a trapezoidal decomposition

Assumption
- We add an outer boundary R
- No points with same x coordinates

Drawing two vertical extensions 
from every endpoint

• one going upwards
• one going downwards



CS633

Adjacent trapezoids

• Two trapezoids Δ and Δ´ are adjacent if they 
meet along a vertical edge

Segments in general position :
A trapezoid has almost four
adjacent trapezoids Not true for this case
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Adjacent trapezoids

• We keep pointers to neighboring trapezoids
– How do we know which one is which one???

• Left upper
• Left lower
• Right lower
• Right upper
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Trapezoidal Maps
• A face is a trapezoid-like shape (trapezoid, triangle)
• In each trapezoid Δ we store:

– leftp(Δ)                  - 4 pointers to its neighbors
– rightp(Δ)
– top(Δ)
– bottom(Δ)

leftp(Δ)

rightp(Δ)

top(Δ)

bottom(Δ)

Δ

not stored
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Building Trapezoidal Map 
• Use randomized incremental algorithm to construct the trapezoidal map 

T(S) 

• Maintain a point location data structure D
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Building Trapezoidal Map 

• The search structure D is a directed acyclic graph (DAG) with 
– a single root 

– exactly one leaf for every trapezoid of T(S). 

• There are 2 types of inner nodes (of out-degree 2): 
– x-nodes, labeled with an endpoint of some segment in S

– y-nodes, labeled with a segment itself

• A query with q  starts at the root and proceeds along a directed 
path to a leaf
– At an x-node, the test is “Does q lie to the left or right of the vertical 

line through endpoint stored at this node?”  
– At a y-node, the test is “Does q lie above or below the segment s 

stored here?”
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TrapezoidalMap(S)
Input: A set S of  n non-crossing line segments
Output:  The trapezoidal map T(S) and a search data structure D for 

T(S) in a bounding box

1.  Determine a bounding box R that contains all segments of S, and initialize 

trapezoidal map structure T  & search structure D for it

2.  Compute a random permutation s1, s2,…, sn of the elements of S.

3.  for i ← 1 to n do

              - Find set Δ0, Δ1,…, Δk of trapezoids in T properly intersected by si

              - Remove Δ0, Δ1,…, Δk from T and replace them by new trapezoids
                that appear because of the insertion of si          
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Find Intersecting Δs 

• Δ1 can be found using the data structure D 

Δ1 Δ2

Δ3

Δ4
Δ5s

qp
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FollowSegment(T, si)

Input: A trapezoidal map T and a new segment si 
Output: The sequence Δ0, Δ1,…, Δk of trapezoids intersected by si 

1.  Let p and q be the left and right endpoint of si 
2.  Search with p in the search structure to find Δ0

3.   j ← 0
4.  while q lies to the right of rightp(Δi )
5.     do if rightp(Δi ) lies above si 
6.              then Let Δj+1 be the lower right neighbor of Δj 

7.              else Let Δj+1 be the upper right neighbor of Δj 

8.           j ← j + 1
9.  return Δ0, Δ1,…, Δj 
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Case 1: New segment completely 
contained in trapezoid

Di-1

Δ

A
B

C

D

s
p

q

Di-1

p q

sA B
C D
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Case 2: New segment partially 
contained in trapezoid

Di-1

Δ

Di-1

q

s B
C A

A B

C
s

p q
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Case 3: New segment completely 
outside trapezoid

Di-1

Δ

Di-1

s
A B

A

B

s
p

q
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Short Example

Δ1 Δ2

Δ3

Δ4
Δ5s

qp

Δ6

Δ7

Δ8

Δ1 Δ2

Δ3

Δ4
Δ5s

qp



CS633

Another Example

s2

s1

s3
s4

s5

s6

s7

s8

a

b

c
d

e

f

g
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Another Example

s1

a

g



CS633

Another Example

s2

s1

g

a

c
d
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Another Example

s2

s1

g

a

c
d

e

s3
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Another Example

s2

s1

g

a

c
d

e

s3
s4

b
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Another Example

s2

s1

g

a

c
d

e

s3
s4

b

s5
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Another Example

s2

s1

g
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c
d
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s5

s6
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Another Example

s2

s1

g
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d
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Another Example

s2

s1

g

a

c
d
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s3
s4

b

s5

s6

s7

s8
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Size of Trapezoidal Map
• What’s the size of such a decomposition?

– Idea: relate size of the trapezoidal map to the size of the segments

– Each face in a trapezoidal map of a set S of line segments in general 
position has 1 or 2 vertical sides and exactly two non-vertical sides
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Size of Trapezoidal Map

• Left edge of a trapezoid in a trapezoidal map

Idea: There are as many “left edges of  
trapezoids” as trapezoids

For every trapezoid Δ, except the left 
most one, the left edge is defined by an 
end point of  a segment leftp(Δ)
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Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 1
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Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 2
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Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 3
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Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 4



CS633

Size of Trapezoidal Map
• There are only five cases (for left edge of a trapezoid)

leftp(Δ)

top(Δ)

bottom(Δ)

Δ

Case 5

R
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Size of Trapezoidal Map
• Theorem: The trapezoidal map T(S) of a set of n line segments S 

in general position contains at most 6n + 4 vertices

• Proof:
– Bounding box R has 4 vertices
– End points 2n vertices

– Vertical line end points 4n

– Total 6n+4
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Size of Trapezoidal Map
• Theorem: The trapezoidal map T(S) of a set of n line segments S 

in general position contains at most 3n + 1 trapezoids (i.e., left 
points of trapezoids)

• Proof:
– R has 1 left point
– Left point of a segment 2n

• Each such a point can be leftp(Δ) of 2 trapezoids

– Right point of a segment 1n
• Each such a point can be leftp(Δ) of 1 trapezoids

– Total 3n+1
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Randomized 
Incremental Algorithm

• Construction of the search structure is incremental:  
– It adds one segment at a time
– After each addition, it updates D and T(S)

• The order in which the segments are added affects the 
construction of search structure D
– In worst case, construction time is O(n2)

• Each new segment intersects all existing trapezoids

– In worst case, query time is O(n)

– Therefore we randomly order of the input and hope for good 
“expected” time complexity
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Algorithm Analysis
• The expected running time is the average running time taken over all 

n! permutations

– The expected size of D is the average sizes of all n! resulting search 
structures

– The expected query time for q is the average query time for point q over all 
runs

Theorem:
Algorithm TrapezoidalMap computes the trapezoidal map 
T(S) of  a set S of  n line segments in general position and a 
search structure D for T(S) in O(n log n) expected time.   
The expected size of  the search structure D is O(n) and 
for any query point q the expected query time is O(log n).
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Average Query Time Analysis
• The query time for q is linear in the length of the path in D that is traversed 

when querying with q

• It is increased by at most 3 in every iteration based on case analysis

• So, 3n is the best possible worst-case bound over all possible insertion order 
for S 

• But, we’re interested in average query time w.r.t. all n! possible insertion 
orders

• Let Xi , for 1≤ i ≤ n, for denote the number of nodes on the path created in i’th 
iteration.  We can express the expected path length as:  
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Average Query Time Analysis

Xi ≤ 3 ⇒ E[Xi] ≤  0*(1-Pi ) + 3*Pi ⇒ E[Xi] ≤  3Pi 

• What is Pi?

– The probability that Δ q(Si ) is created (i.e, Δq(Si )≠ Δq(Si-1 ) ) because of 

the segment si

– Since si is selected at random, it has the same probability that Δ q(Si ) 

is destroyed by randomly pick a segment from Si (backward 
analysis!!)

– Pi = Pr[Δq(Si )≠ Δq(Si-1 ) ] = Pr[Δq(Si ) ∉ T(Si-1 ) ] ≤  4/i

leftp(Δ)
rightp(Δ)

top(Δ)

bottom(Δ)

Δ q(Si )
To destroy Δ q(Si ) we can 
remove any of  the four 
bounding edges
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Average Query Time Analysis

E[∑1≤ i ≤ n Xi] ≤  ∑1≤ i ≤ n 3Pi  ≤  ∑1≤ i ≤ n 12/i = 12∑1≤ i 

≤ n 1/i = 12Hn

Hn = 1/1 + 1/2 + 1/3 + … + 1/n

ln n < Hn   <  (ln n + 1)

⇒ Therefore, the query time takes O(log n) 
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Expected Size of the Structure

• To bound the size, it suffices to bound the number of 
nodes in D.  

• The leaves in D are in one-to-one correspondence with 
the trapezoids in T(S), of which there are O(n). 

• Let ki be no. of new trapezoids created in iteration i, due 
to insertion of segment si :

O(n) + E[∑1≤ i ≤ n(number of inner nodes created in iteration i)]
O(n) + E[∑1≤ i ≤ n ki ] = O(n) + ∑1≤ i ≤ n E[ki] 
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Expected Size of the Structure
• Backward analysis

– ∑1≤ i ≤ n E[ki] is the # of the “segment” nodes
– E[ki] is the expected number of new trapezoids created by the i-th segment
– Each si has the same probability of being the i-th segment

• E[ki]=(# of trapezoids destroyed by removing s0+
                       # of trapezoids destroyed by removing s1+
                # of trapezoids destroyed by removing s2+
                           ……
                # of trapezoids destroyed by removing si) / i

• E[ki]= (1/i) ∑ s∈Si ∑ Δ∈T(Si) δ (Δ , si) 
– δ (Δ , si) = 1 if Δ is bounded by Si 

– δ (Δ , si) = 0 otherwise
– ∑ s∈Si ∑ Δ∈T(Si) δ (Δ ,s) ≤ 4 |T(Si )| = O(i)

• E[ki] = (1/i) ∑ s∈Si ∑ Δ∈T(Si) δ (Δ ,s) ≤  O(i)/i = O(1)
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Expected Construction Time

• The time to insert segment si is O(ki) plus the time 
needed to locate the left endpoint of si in T(Si-1).  Use 
the earlier bound on ki, we get the expected running 
time for the construction:

O(1) + ∑1≤ i ≤ n { O(log i) + O(E[ki]) } = O(n log n)
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Naïve Assumptions

• General position statement assumes no two 
distinct points have the same x-coordinate.

• Assume that a query point never lies on the 
vertical line of an x-node on its search path, 
nor on the segment of a y-node.
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Dealing with Degeneracies
• Use symbolic perturbation.  In effects, use an affine mapping called “shear 

transform” along the x-axis.
– (x,y) becomes (x+εy, y)

• The algorithm does not compute any geometric objects; it never actually 
computes coordinates of the endpoints.  

• All it does is to apply 2 elementary operations to the input points:
– Take 2 distinct points p & q and decides whether q lies to the left, right or on the vertical 

line through p.

– Take 1 of the input segments, specified by p1 & p2, and tests whether a third point q lies 
above, below, or on this segment.  It is only applied when a vertical line through q 
intersects with this segment. 
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Application: Triangulation
• 1. Decompose the Polygon into Trapezoids.

– Seidel proves that if each permutation of s1 .. sN is equally likely 
then trapezoid formation takes O(n log*n) expected time

• 2. Decompose the Trapezoids into Monotone Polygons.
– A monotone polygon is a polygon whose boundary consists of two y-

monotone chains. These polygons are computed from the trapezoidal 
decomposition by checking whether the two vertices of the original 
polygon lie on the same side. This is a linear O(n) time operation 

• 3. Triangulate the Monotone Polygons.
– all the monotone polygons can be triangulated in O(n) time
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Application: Triangulation

X monotone
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Application: Motion Planning
• Exact cell decomposition – from Latombe 2000

qinit

qfinal
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Application: Motion Planning
• Convert trapezoid map to connectivity graph

– Roadmap

qinit

qfinal
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Conclusion

• Point location
– Brute force has O(n) time complexity

– Slab approach has O(log n) time but O(n 2) space complexity

– Trapezoid decomposition allows O(log n) expected time but O(n) 
space complexity

• Trapezoid decomposition
– randomized incremental algorithm
– Sweep line algorithm (does not provide the point location data 

structure D)
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Homework Assignment

• 6.5, 6.6, 6.7


