
1

CS633 Lecture 09
Voronoi Diagram

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on Allen Miu’s lecture notes

2

Independently Rediscovered Many Times

It is a fundamental concept

Descartes Astronomy 1644 “Heavens”
Dirichlet Math 1850 Dirichlet tesselation
Voronoi Math 1908 Voronoi diagram
Boldyrev Geology 1909 area of influen polygons
Thiessen Meteorology 1911 Theissen polygons
Niggli Crystallography 1927 domains of action
Wigner & Seitz Physics 1933 Wigner-Seitz regions
Frank & Casper Physics 1958 atom domains
Brown Ecology 1965 areas potentially available
Mead Ecology 1966 plant polygons
Hoofd et al. Anatomy 1985 capillary domains
Icke Astronomy 1987 Voronoi diagram

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha, 99

3

Fun Stuff

• Paul Chew’s Jave applet
– http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

• Simon Barber’s flash
– http://www.quasimondo.com/archives/voronoi1.html

• FLIGHT404’s Blog
– http://www.flight404.com/blog/?p=82

• Scott Snibbe’s Blog
– http://www.snibbe.com/scott/bf/index.htm

Soap Bubbles
dragonfly's wing

4

Post Office: What is the area of service?

e

e : Voronoi edge

v

v : Voronoi vertex

pi

 pi : site

5

Definition of Voronoi Diagram

• Let P be a set of n distinct points (sites) in the plane.

• The Voronoi diagram of P is the subdivision of the plane into
n cells, one for each site.

• A point q lies in the cell corresponding to a site pi ∈ P iff
Euclidean_Distance(q, pi) < Euclidean_distance(q, pj), for each pi
∈ P, j ≠ i.

6

1 site

7

Two sites

Voronoi Diagram is a line
that extends infinitely in
both directions, and the
two half planes on either
side.

8

Collinear sites

9

Non-collinear sites

A Voronoi vertex is
the center of an empty
circle touching 3 or
more sites.

v

Half lines

A vertex has
degree ≥ 3

10

Voronoi Cells and Segments

v

11

Voronoi Cells and Segments

v

Unbounded CellBounded Cell

Segment

12

Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

13

Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams?

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above

14

Degenerate Case:
no bounded cells!

v

15

Summary of Voronoi Properties
 A point q lies on a Voronoi edge between sites pi

and pj iff the largest empty circle centered at q
touches only pi and pj

– A Voronoi edge is a subset of locus of points
equidistant from pi and pj

e

e : Voronoi edge

v

v : Voronoi vertex

pi

 pi : site points

16

Summary of Voronoi Properties
 A point q is a vertex iff the largest empty circle

centered at q touches at least 3 sites
– A Voronoi vertex is an intersection of 3 more

segments, each equidistant from a pair of sites

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points

17

Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Duality and degenerate cases

18

Linear complexity {|v|, |e| = O(n)}

Intuition: Not all bisectors are Voronoi edges!

e

e : Voronoi edge

pi

pi : site points

19

Linear complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6
Proof: (Easy Case)

…

Collinear sites: |v| = 0, |e| = n – 1

20

Linear complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6
Proof: (General Case)

• Euler’s Formula: for connected, planar graphs,
|v| – |e| + f = 2

Where:

|v| is the number of vertices

|e| is the number of edges

f is the number of faces

21

Linear complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6

Proof: (General Case)
• For Voronoi graphs, f = n ⇒ (|v| +1) – |e| + n = 2

epi

p∞

To apply Euler’s Formula, we
“planarize” the Voronoi diagram
by connecting half lines to
an extra vertex.

22

Linear complexity {|v|, |e| = O(n)}

23

Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Duality and degenerate cases

24

Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…

25

Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…

26

Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…

27

Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…

Repeat for each site

Running Time:
O(n2 log n)

28

Constructing Voronoi Diagrams

• We should be able to do better
– the linear complexity of Voronoi diagram

• Fortune’s Algorithm ‘87
– Sweep line algorithm

• Voronoi diagram constructed as horizontal
line sweeps the set of sites from top to bottom

• Maintains portion of diagram which cannot
change due to sites below sweep line,
keeping track of incremental changes for each
site (and Voronoi vertex) it “sweeps”

29

Constructing Voronoi Diagrams

What is the invariant we are looking for?

Maintain a representation of the locus of points q that
are closer to some site pi above the sweep line than to

the line itself (and thus to any site below the line).

e
v

pi

Sweep Line

30

Constructing Voronoi Diagrams
Which points are closer to a site above the sweep line

Sweep Line

pi

The set of parabolic arcs form a beach-line that bounds
the locus of all such points

Equidistance

31

Constructing Voronoi Diagrams
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

Break point

Beach line

32

Constructing Voronoi Diagrams
Arcs flatten out as sweep line moves down.

Sweep Line

pi

33

Eventually, the middle arc disappears.
Constructing Voronoi Diagrams

Sweep Line

pi

q

34

We have detected a circle that is empty (contains no sites)

Constructing Voronoi Diagrams

Sweep Line

pi

q

Voronoi vertex!

35

Beach Line properties

• voronoi edge = break point trajectory
– Emergence of a new break point(s) (from formation of a new arc or

a fusion of two existing break points) identifies a new edge

• voronoi vertices = collision of break points =
disappeared parabolic curve
– Decimation of an old arc identifies new vertex

36

Break

• 10 Minutes

37

Demo

• A visual implementation of Fortune's Voronoi algorithm
– by Allan Odgaard & Benny Kjær Nielsen
– Source code is available

– http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

“It is notoriously difficult to obtain a practical implementation
of an abstractly described geometric algorithm”
 – Steven Fortune

38

Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the sweep line
– Keep track of break points

– Keep track of arcs currently on beach line

• Priority event queue

39

Doubly Linked List (D)
• Divide segments into uni-directional half-edges
• A chain of counter-clockwise half-edges forms a cell
• Define a half-edge’s “twin” to be its opposite half-edge of the same

segment

e
v

 Cell(pi)

40

Balanced Binary Tree (T)
• Internal nodes represent break points between two arcs

– Also contains a pointer to the D record of the edge being traced

• Leaf nodes represent arcs, each arc is in turn represented by
the site that generated it
– Also contains a pointer to a potential circle event

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

pi

pj
pk

pl

l

Not stored

41

Event Queue (Q)

• An event is an interesting point encountered by the
sweep line as it sweeps from top to bottom
– Sweep line makes discrete stops, rather than a continuous

sweep

– Site Events (when the sweep line encounters a new site point)

– Circle Events (when the sweep line encounters the bottom of
an empty circle touching 3 or more sites).

• Events are prioritized based on y-coordinate

42

Site Event

A new arc appears when a new site appears.

l

43

Site Event

A new arc appears when a new site appears.

l

44

Site Event

Original arc above the new site is broken into two
 Number of arcs on beach line is O(n)

l

45

Circle Event

An arc disappears whenever an empty circle touches three
or more sites and is tangent to the sweep line.

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi

q

Voronoi vertex!

46

Event Queue Summary

• Site Events are
– given as input
– represented by the xy-coordinate of the site point

• Circle Events are
– computed on the fly (intersection of the two

bisectors in between the three sites)
– represented by the xy-coordinate of the lowest point

of an empty circle touching three or more sites
– “anticipated”, these newly generated events may be

false and need to be removed later

47

Algorithm

1. Initialize
• Event queue Q ⇐ all site events

• Binary search tree T ⇐ ∅

• Doubly linked list D ⇐ ∅

2. While Q not ∅,
• Remove event (e) from Q with largest y-

coordinate
• HandleEvent(e, T, D)

48

Handling Site Events

1. Update T:
– Locate the existing arc (if any) that is above the new site
– Break the arc by replacing the leaf node with a sub tree

representing the new arc and its break points

2. Update D:
– Add two half-edge records in the doubly linked list

3. Update Q:
– Check for potential circle event(s), add them to event queue

49

Locate the existing arc that is above
the new site

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

• The x coordinate of the new site is used for the binary search
• The x coordinate of each breakpoint along the root to leaf path
 is computed on the fly

pi

pj
pk

pl

lpm

50

Break the Arc

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

Corresponding leaf replaced by a new sub-tree

pi

pj
pk

pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl
Different arcs can be identified
by the same site!

51

Add a new edge record in the doubly
linked list

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pm pl

< pl, pm>

< pm, pl>

pl

pi

pj
pk

pl

l
pm

New Half Edge Record
Endpoints  ∅

Pointers to two half-edge
records

l
pm

52

Checking for Potential Circle Events
• Scan for 3 consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not

have break points that converge

53

Checking for Potential Circle Events
• Scan for 3 consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not

have break points that converge

54

Checking for Potential Circle Events
• Scan for 3 consecutive arcs and

determine if breakpoints converge
– Triples with new arc in the middle do not

have break points that converge

55

Converging break points may not always
yield a circle event

• Appearance of a new site before the
circle event makes the potential circle
non-empty

l

(The original circle event becomes a false alarm)

56

Handling Site Events
1. Update T:

– Locate the leaf representing the existing arc that is above the
new site

• Delete the potential circle event in the event queue
– Break the arc by replacing the leaf node with a sub tree

representing the new arc and break points

2. Update D:
– Add a new edge record in the doubly linked list

3. Update Q:
– Check for potential circle event(s), add them to queue if they

exist
• Store in the corresponding leaf of T a pointer to the new circle

event in the queue

57

Handling Circle Events

1. Update T:
• Delete from T the leaf node of the disappearing arc

and its associated circle events in the event queue

2. Update D:
• Add vertex to corresponding edge record in doubly

linked list
• Create new edge record in doubly linked list

3. Update Q:
• Check the new triplets formed by the former

neighboring arcs for potential circle events

58

A Circle Event

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

59

Add vertex to corresponding edge record

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Half Edge Record
Endpoints.add(x, y)

Half Edge Record
Endpoints.add(x, y)

Link!

60

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>

61

Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

62

Create new edge record

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

New Half Edge Record
Endpoints.add(x, y)

A new edge is traced out by the new
break point < pk, pm>

63

Check the new triplets for
potential circle events

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

Q y…
new circle event

64

Minor Detail

• Algorithm terminates when Q = ∅, but
the beach line and its break points
continue to trace the Voronoi edges
– Terminate these “half-infinite” edges via a

bounding box

65

Algorithm Termination

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l

pmpm pl

< pm, pl>

< pk, pm>

Q ∅

66

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

67

Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

Terminate half-lines
with a bounding box!

68

Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases

69

Handling Site Events

1. Locate the leaf representing the existing arc
that is above the new site

– Delete the potential circle event in the event
queue

2. Break the arc by replacing the leaf node
with a sub tree representing the new arc
and break points

3. Add a new edge record in the link list
4. Check for potential circle event(s), add

them to queue if they exist
– Store in the corresponding leaf of T a pointer to

the new circle event in the queue

Running Time

O(log n)

O(1)

O(1)

O(1)

70

Handling Circle Events

1. Delete from T the leaf node of the
disappearing arc and its associated
circle events in the event queue

2. Add vertex record in doubly link
list

3. Create new edge record in doubly
link list

4. Check the new triplets formed by
the former neighboring arcs for
potential circle events

Running Time

O(log n)

O(1)

O(1)

O(1)

71

Total Running Time

• Each new site can generate at most two new
arcs
⇒ beach line can have at most 2n – 1 arcs
⇒ at most O(n) site and circle events in the queue

• Site/Circle Event Handler O(log n)

⇒ O(n log n) total running time

72

Is Fortune’s Algorithm Optimal?
• We can sort numbers using any algorithm that

constructs a Voronoi diagram!

-5 1 3 6 7

Number
Line

73

Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Duality and degenerate cases

74

Voronoi Diagram/Convex Hull Duality

Sites sharing a half-infinite edge are convex hull
vertices

e
v

pi

75

Degenerate Cases

• Events in Q share the same y-coordinate
– Can additionally sort them using x-

coordinate

• Circle event involving more than 3 sites
– Current algorithm produces multiple degree

3 Voronoi vertices joined by zero-length
edges

– Can be fixed in post processing

76

Degenerate Cases

• Site points are collinear (break points
neither converge or diverge)
– Bounding box takes care of this

• One of the sites coincides with the
lowest point of the circle event
– Do nothing

77

Site coincides with circle event:

1. New site detected
2. Break one of the arcs an infinitesimal distance

away from the arc’s end point

78

Site coincides with circle event

79

Summary of Fortune’s algorithm

• Optimal
• Sweep line algorithm

– Site events

– Circle events

Images from http://www.cescg.org/CESCG99/RCuk/

80

Other Ways Computing Voronoi Diagram

• Divide-and-conquer

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/DivConqVor/divConqVor.htm

81

Other Ways Computing Voronoi Diagram

• Lifting: three dimensional convex hull
– We will learn about this in Chapter 9

• Incremental
– We will learn about this in Chapter 9, too

82

Other Ways Computing Voronoi Diagram

• Using Graphics hardware (GPU)

Perspective, 3/4 view Parallel, top view

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha, 99

83

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming
Lin, and Dinesh Manocha, 99

Ordinary

• Point sites
• Nearest Euclidean distance

Generalized
• Higher-order site geometry
• Varying distance metrics

Weighted Distances

Higher-order
Sites

2.0

0.5

84

Summary

• Voronoi diagram is a useful planar
subdivision of a discrete point set

• Voronoi diagrams have linear complexity
and can be constructed in O(n log n)
time

85

Homework Assignment

• 7.10, 7.11

