# CS633 Lecture 09 Voronoi Diagram Jyh-Ming Lien 

Department of Computer Science George Mason University

Based on Allen Miu's lecture notes

## Independently Rediscovered Many Times

## It is a fundamental concept

| Descartes | Astronomy | 1644 | "Heavens" |
| :--- | :--- | :--- | :--- |
| Dirichlet | Math | 1850 | Dirichlet tesselation |
| Voronoi | Math | 1908 | Voronoi diagram |
| Boldyrev | Geology | 1909 | area of influen polygons |
| Thiessen Meteorology 1911 | Theissen | polygons |  |
| Niggli | Crystallography | 1927 | domains of action |
| Wigner \& Seitz | Physics | 1933 | Wigner-Seitz regions |
| Frank \& Casper | Physics | 1958 | atom domains |
| Brown | Ecology | 1965 | areas potentially available |
| Mead | Ecology | 1966 | plant polygons |
| Hoofd et al. | Anatomy | 1985 | capillary domains |
| Icke | Astronomy | 1987 | Voronoi diagram |

## Fun Stuff

- Paul Chew's Jave applet
- http://www.cs.cornell.edu/Info/People/chew/Delaunay.html
- Simon Barber's flash
- http://www.quasimondo.com/archives/voronoi1.html
- FLIGHT404's Blog
- http://www.flight404.com/blog/? $\mathrm{p}=82$
- Scott Snibbe's Blog
- http://www.snibbe.com/scott/bf/index.htm


Soap Bubbles
dragonfly's wing

## Post Office: What is the area of service?

$p_{i}$ : site
$e$ : Voronoi edge
$v$ : Voronoi vertex


## Definition of Voronoi Diagram

- Let $P$ be a set of $n$ distinct points (sites) in the plane.
- The Voronoi diagram of $P$ is the subdivision of the plane into $n$ cells, one for each site.
- A point $q$ lies in the cell corresponding to a site $p_{i} \in P$ iff Euclidean_Distance $\left(q, p_{i}\right)<$ Euclidean_distance $\left(q, p_{j}\right)$, for each $p_{i}$ $\in P, j \neq i$.


## 1 site

○

## Two sites



Voronoi Diagram is a line that extends infinitely in both directions, and the two half planes on either side.

## Collinear sites



## Non-collinear sites

A vertex has degree $\geq 3$

Half lines


A Voronoi vertex is the center of an empty circle touching 3 or more sites.

## Voronoi Cells and Segments



## Voronoi Cells and Segments



## Who wants to be a Millionaire?

Which of the following is true for 2-D Voronoi diagrams?

Four or more non-collinear sites are...

1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above


## Who wants to be a Millionaire?

Which of the following is true for 2-D Voronoi diagrams?

Four or more non-collinear sites are...

1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above


## Degenerate Case: no bounded cells!



## Summary of Voronoi Properties

A point $q$ lies on a Voronoi edge between sites $p_{i}$ and $p_{j}$ iff the largest empty circle centered at $q$ touches only $p_{i}$ and $p_{j}$

- A Voronoi edge is a subset of locus of points equidistant from $p_{i}$ and $p_{j}$
$p_{i}$ : site points
$e$ : Voronoi edge
$v$ : Voronoi vertex



## Summary of Voronoi Properties

A point $q$ is a vertex iff the largest empty circle centered at $q$ touches at least 3 sites

- A Voronoi vertex is an intersection of 3 more segments, each equidistant from a pair of sites
$p_{i}$ : site points
$e$ : Voronoi edge
$v$ : Voronoi vertex



## Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
- Intuitions
- Data Structures
- Algorithm
- Running Time Analysis
- Duality and degenerate cases


## Linear complexity $\{|v|,|e|=O(n)\}$

Intuition: Not all bisectors are Voronoi edges!
$p_{i}$ : site points
$e$ : Voronoi edge


## Linear complexity $\{|v|,|e|=O(n)\}$

Claim: For $n \geq 3,|v| \leq 2 n-5$ and $|e| \leq 3 n-6$ Proof: (Easy Case)


Collinear sites: $|v|=0,|e|=n-1$

## Linear complexity $\{|v|,|e|=O(n)\}$

Claim: For $n \geq 3,|v| \leq 2 n-5$ and $|e| \leq 3 n-6$ Proof: (General Case)

- Euler's Formula: for connected, planar graphs, $|v|-|e|+f=2$

Where:
$|v|$ is the number of vertices
$|e|$ is the number of edges

$f$ is the number of faces

## Linear complexity $\{|v|,|e|=O(n)\}$

Claim: For $n \geq 3,|v| \leq 2 n-5$ and $|e| \leq 3 n-6$
Proof: (General Case)

- For Voronoi graphs, $f=n \Rightarrow(|v|+1)-|e|+n=2$

To apply Euler's Formula, we "planarize" the Voronoi diagram by connecting half lines to an extra vertex.


## Linear complexity $\{|v|,|e|=O(n)\}$

Moreover,
and

$$
\sum_{v \in \operatorname{Vor}(P)} \operatorname{deg}(v)=2 \cdot|e|
$$

$$
\forall v \in \operatorname{Vor}(P), \quad \operatorname{deg}(v) \geq 3
$$

together with
we get, for $n \geq 3$

$$
\begin{aligned}
& 2 \cdot \mid e \geq 3(|v|+1) \\
& (|v|+1)-|e|+n=2
\end{aligned}
$$

$$
\begin{aligned}
& |v| \leq 2 n-5 \\
& |e| \leq 3 n-6
\end{aligned}
$$

## Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
- Intuitions
- Data Structures
- Algorithm
- Running Time Analysis
- Duality and degenerate cases


## Constructing Voronoi Diagrams

Brute force algorithm

- a half plane intersection...


## Constructing Voronoi Diagrams

Brute force algorithm

- a half plane intersection...



## Constructing Voronoi Diagrams

Brute force algorithm

- a half plane intersection...



## Constructing Voronoi Diagrams

Brute force algorithm

- a half plane intersection...

Repeat for each site
Running Time:
$\mathrm{O}\left(n^{2} \log n\right)$


## Constructing Voronoi Diagrams

- We should be able to do better
- the linear complexity of Voronoi diagram
- Fortune's Algorithm '87
- Sweep line algorithm
- Voronoi diagram constructed as horizontal line sweeps the set of sites from top to botton
- Maintains portion of diagram which cannot change due to sites below sweep line, keeping track of incremental changes for eac site (and Voronoi vertex) it "sweeps"


Steve Fortune
Bell lab

## Constructing Voronoi Diagrams

What is the invariant we are looking for?


Maintain a representation of the locus of points $q$ that are closer to some site $p_{i}$ above the sweep line than to the line itself (and thus to any site below the line).

## Constructing Voronoi Diagrams

Which points are closer to a site above the sweep line

Sweep Line


The set of parabolic arcs form a beach-line that bounds the locus of all such points

## Constructing Voronoi Diagrams

 Break points trace out Voronoi edges.Sweep Line


Equidistance

## Constructing Voronoi Diagrams

Arcs flatten out as sweep line moves down.

$\downarrow$

## Constructing Voronoi Diagrams

Eventually, the middle arc disappears.

Sweep Line


## Constructing Voronoi Diagrams

We have detected a circle that is empty (contains no sites)


## Beach Line properties

- voronoi edge = break point trajectory
- Emergence of a new break point(s) (from formation of a new arc or a fusion of two existing break points) identifies a new edge
- voronoi vertices = collision of break points = disappeared parabolic curve
- Decimation of an old arc identifies new vertex


## Break

- 10 Minutes


## Demo

- A visual implementation of Fortune's Voronoi algorithm
- by Allan Odgaard \& Benny Kjær Nielsen
- Source code is available
- http://www.diku.dk/hjemmesider/studerende/duff/Fortune/
"It is notoriously difficult to obtain a practical implementation of an abstractly described geometric algorithm"
- Steven Fortune


## Data Structures

- Current state of the Voronoi diagram
- Doubly linked list of half-edge, vertex, cell records
- Current state of the sweep line
- Keep track of break points
- Keep track of arcs currently on beach line
- Priority event queue


## Doubly Linked List (D)

- Divide segments into uni-directional half-edges
- A chain of counter-clockwise half-edges forms a cell
- Define a half-edge's "twin" to be its opposite half-edge of the same segment



## Balanced Binary Tree ( $T$ )

- Internal nodes represent break points between two arcs
- Also contains a pointer to the $D$ record of the edge being traced
- Leaf nodes represent arcs, each arc is in turn represented by the site that generated it
- Also contains a pointer to a potential circle event



## Event Queue (Q)

- An event is an interesting point encountered by the sweep line as it sweeps from top to bottom
- Sweep line makes discrete stops, rather than a continuous sweep
- Site Events (when the sweep line encounters a new site point)
- Circle Events (when the sweep line encounters the bottom of an empty circle touching 3 or more sites).
- Events are prioritized based on y-coordinate


## Site Event

A new arc appears when a new site appears.


## Site Event

A new arc appears when a new site appears.


## Site Event

Original arc above the new site is broken into two $\rightarrow$ Number of arcs on beach line is $\mathrm{O}(n)$


## Circle Event

An arc disappears whenever an empty circle touches three or more sites and is tangent to the sweep line.


Sweep line helps determine that the circle is indeed empty.

## Event Queue Summary

- Site Events are
- given as input
- represented by the xy-coordinate of the site point
- Circle Events are
- computed on the fly (intersection of the two bisectors in between the three sites)
- represented by the xy-coordinate of the lowest point of an empty circle touching three or more sites
- "anticipated", these newly generated events may be false and need to be removed later


## Algorithm

1. Initialize

- Event queue $\mathrm{Q} \Leftarrow$ all site events
- Binary search tree $\mathrm{T} \Leftarrow \varnothing$
- Doubly linked list $\mathrm{D} \Leftarrow \varnothing$

2. While Q not $\varnothing$,

- Remove event (e) from Q with largest y coordinate
- HandleEvent(e, T, D)


## Handling Site Events

1. Update $T$ :

- Locate the existing arc (if any) that is above the new site
- Break the arc by replacing the leaf node with a sub tree representing the new arc and its break points


## 2. Update D:

- Add two half-edge records in the doubly linked list

3. Update $\mathbf{Q}$ :

- Check for potential circle event(s), add them to event queue


## Locate the existing arc that is above the new site

- The x coordinate of the new site is used for the binary search
- The x coordinate of each breakpoint along the root to leaf path is computed on the fly



## Break the Arc

Corresponding leaf replaced by a new sub-tree


## Add a new edge record in the doubly linked list



## Checking for Potential Circle Events

- Scan for 3 consecutive arcs and determine if breakpoints converge
- Triples with new arc in the middle do not have break points that converge



## Checking for Potential Circle Events

- Scan for 3 consecutive arcs and determine if breakpoints converge
- Triples with new arc in the middle do not have break points that converge



## Checking for Potential Circle Events

- Scan for 3 consecutive arcs and determine if breakpoints converge
- Triples with new arc in the middle do not have break points that converge



## Converging break points may not always

 yield a circle event- Appearance of a new site before the circle event makes the potential circle non-empty

(The original circle event becomes a false alarm)


## Handling Site Events

## 1. Update $T$ :

- Locate the leaf representing the existing arc that is above the new site
- Delete the potential circle event in the event queue
- Break the arc by replacing the leaf node with a sub tree representing the new arc and break points

2. Update D:

- Add a new edge record in the doubly linked list

3. Update $\mathbf{Q}$ :

- Check for potential circle event(s), add them to queue if they exist
- Store in the corresponding leaf of T a pointer to the new circle event in the queue


## Handling Circle Events

## 1. Update T :

- Delete from $T$ the leaf node of the disappearing arc and its associated circle events in the event queue

2. Update D:

- Add vertex to corresponding edge record in doubly linked list
- Create new edge record in doubly linked list


## 3. Update $\mathbf{Q}$ :

- Check the new triplets formed by the former neighboring arcs for potential circle events


## A Circle Event



## Add vertex to corresponding edge record



## Deleting disappearing arc



## Deleting disappearing arc



## Create new edge record



A new edge is traced out by the new break point $<p_{k}, p_{m}>$

## Check the new triplets for potential circle events



## Minor Detail

- Algorithm terminates when $\mathrm{Q}=\varnothing$, but the beach line and its break points continue to trace the Voronoi edges
- Terminate these "half-infinite" edges via a bounding box


## Algorithm Termination



## Algorithm Termination



## Algorithm Termination



Terminate half-lines with a bounding box!
$Q \longdiv { \varnothing }$

$l$


## Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
- Intuitions
- Data Structures
- Algorithm
- Running Time Analysis
- Demo
- Duality and degenerate cases


## Handling Site Events

1. Locate the leaf representing the existing arc Running Time that is above the new site

- Delete the potential circle event in the event
$\mathrm{O}(\log n)$ queue

2. Break the arc by replacing the leaf node with a sub tree representing the new arc
$\mathrm{O}(1)$ and break points
3. Add a new edge record in the link list
$\mathrm{O}(1)$
4. Check for potential circle event(s), add them to queue if they exist
$\mathrm{O}(1)$

- Store in the corresponding leaf of T a pointer to the new circle event in the queue


## Handling Circle Events

1. Delete from T the leaf node of the disappearing arc and its associated

Running Time
$\mathrm{O}(\log n)$ circle events in the event queue
2. Add vertex record in doubly link list
3. Create new edge record in doubly link list
4. Check the new triplets formed by
$\mathrm{O}(1)$
$\mathrm{O}(1)$ the former neighboring arcs for potential circle events

## Total Running Time

- Each new site can generate at most two new arcs
$\Rightarrow$ beach line can have at most $2 n-1$ arcs
$\Rightarrow$ at most $\mathrm{O}(n)$ site and circle events in the queue
- Site/Circle Event Handler O(log $n$ )
$\Rightarrow \mathrm{O}(n \log n)$ total running time


## Is Fortune's Algorithm Optimal?

- We can sort numbers using any algorithm that constructs a Voronoi diagram!



## Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
- Intuitions
- Data Structures
- Algorithm
- Running Time Analysis
- Duality and degenerate cases


## Voronoi Diagram/Convex Hull Duality

Sites sharing a half-infinite edge are convex hull


## Degenerate Cases

- Events in Q share the same y-coordinate
- Can additionally sort them using $x$ coordinate
- Circle event involving more than 3 sites
- Current algorithm produces multiple degree 3 Voronoi vertices joined by zero-length edges
- Can be fixed in post processing


## Degenerate Cases

- Site points are collinear (break points neither converge or diverge)
- Bounding box takes care of this
- One of the sites coincides with the lowest point of the circle event
- Do nothing


## Site coincides with circle event:

1. New site detected
2. Break one of the arcs an infinitesimal distance away from the arc's end point


## Site coincides with circle event



## Summary of Fortune's algorithm

- Optimal
- Sweep line algorithm
- Site events

- Circle events



## Other Ways Computing Voronoi Diagram

- Divide-and-conquer



## Other Ways Computing Voronoi Diagram

- Lifting: three dimensional convex hull
- We will learn about this in Chapter 9
- Incremental
- We will learn about this in Chapter 9, too


## Other Ways Computing Voronoi Diagram

- Using Graphics hardware (GPU)


Perspective, $3 / 4$ view


Parallel, top view

## Ordinary

- Point sites
- Nearest Euclidean distance


## Generalized

- Higher-order site geometry
- Varying distance metrics


Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha, 99

Higher-order Sites

Weighted Distances


## Summary

- Voronoi diagram is a useful planar subdivision of a discrete point set
- Voronoi diagrams have linear complexity and can be constructed in $\mathrm{O}(n \log n)$ time


## Homework Assignment

- 7.10, 7.11

