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CS633 Lecture 09
Voronoi Diagram

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on Allen Miu’s lecture notes
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Independently Rediscovered Many Times

It is a fundamental concept

Descartes Astronomy 1644 “Heavens”
Dirichlet  Math   1850 Dirichlet tesselation
Voronoi  Math  1908 Voronoi diagram
Boldyrev  Geology  1909 area of influen polygons
Thiessen Meteorology 1911 Theissen polygons
Niggli  Crystallography 1927 domains of action
Wigner & Seitz Physics  1933 Wigner-Seitz regions
Frank & Casper Physics  1958 atom domains
Brown  Ecology  1965 areas potentially available
Mead  Ecology  1966 plant polygons
Hoofd et al. Anatomy  1985 capillary domains
Icke  Astronomy 1987 Voronoi diagram

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha, 99 
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Fun Stuff

• Paul Chew’s Jave applet
– http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

• Simon Barber’s flash
– http://www.quasimondo.com/archives/voronoi1.html

• FLIGHT404’s Blog
– http://www.flight404.com/blog/?p=82

• Scott Snibbe’s Blog
– http://www.snibbe.com/scott/bf/index.htm

Soap Bubbles 
dragonfly's wing 
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Post Office:  What is the area of service?

e

e : Voronoi edge

v

v : Voronoi vertex

pi

 pi : site
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Definition of Voronoi Diagram

• Let P be a set of n distinct points (sites) in the plane.

• The Voronoi diagram of P is the subdivision of the plane into 
n cells, one for each site.

• A point q lies in the cell corresponding to a site pi ∈ P iff  
Euclidean_Distance( q, pi ) < Euclidean_distance( q, pj ), for each pi 
∈ P, j ≠ i.
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1 site
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Two sites

Voronoi Diagram is a line
that extends infinitely in 
both directions, and the
two half planes on either
side.
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Collinear sites
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Non-collinear sites

A Voronoi vertex is 
the center of an empty 
circle touching 3 or 
more sites.

v

Half lines

A vertex has
degree ≥ 3
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Voronoi Cells and Segments

v
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Voronoi Cells and Segments

v

Unbounded CellBounded Cell

Segment
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Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams? 

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above
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Who wants to be a Millionaire?

vWhich of the following is true for
2-D Voronoi diagrams? 

Four or more non-collinear sites are…
1. sufficient to create a bounded cell
2. necessary to create a bounded cell
3. 1 and 2
4. none of above
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Degenerate Case: 
no bounded cells!

v
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Summary of Voronoi Properties
 A point q lies on a Voronoi edge between sites pi 

and pj iff  the largest empty circle centered at q 
touches only pi and pj

–  A Voronoi edge is a subset of  locus of points 
equidistant from pi and pj

e

e : Voronoi edge

v

v : Voronoi vertex

pi

 pi : site points
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Summary of Voronoi Properties
 A point q is a vertex iff  the largest empty circle 

centered at q touches at least 3 sites
– A Voronoi vertex is an intersection of 3 more 

segments, each equidistant from a pair of sites

e

e : Voronoi edge

v

v : Voronoi vertex

pi

pi : site points
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Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Duality and degenerate cases
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Linear complexity {|v|, |e| = O(n)}

Intuition: Not all bisectors are Voronoi edges!

e

e : Voronoi edge

pi

pi : site points
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Linear complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6
Proof: (Easy Case)

…

Collinear sites: |v| = 0, |e| = n – 1
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Linear complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6
Proof: (General Case)

• Euler’s Formula: for connected, planar graphs,
|v| – |e| + f = 2 

Where:

|v| is the number of vertices

|e| is the number of edges

f   is the number of faces
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Linear complexity {|v|, |e| = O(n)}

Claim: For n ≥ 3, |v| ≤ 2n − 5 and |e| ≤ 3n − 6

Proof: (General Case)
• For Voronoi graphs, f = n ⇒ (|v| +1) – |e| + n = 2

epi

p∞

To apply Euler’s Formula, we
“planarize” the Voronoi diagram 
by connecting half lines to 
an extra vertex.
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Linear complexity {|v|, |e| = O(n)}
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Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Duality and degenerate cases
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Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…
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Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…
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Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…
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Constructing Voronoi Diagrams

Brute force algorithm
– a half plane intersection…

Repeat for each site

Running Time: 
O( n2 log n )



28

Constructing Voronoi Diagrams

• We should be able to do better
– the linear complexity of Voronoi diagram

• Fortune’s Algorithm ‘87
– Sweep line algorithm

• Voronoi diagram constructed as horizontal 
line sweeps the set of sites from top to bottom

• Maintains portion of diagram which cannot 
change due to sites below sweep line, 
keeping track of incremental changes for each 
site (and Voronoi vertex) it “sweeps”
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Constructing Voronoi Diagrams

What is the invariant we are looking for?

Maintain a representation of the locus of points q that 
are closer to some site pi above the sweep line than to 

the line itself (and thus to any site below the line).

e
v

pi

Sweep Line
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Constructing Voronoi Diagrams
Which points are closer to a site above the sweep line 

Sweep Line

pi

The set of parabolic arcs form a beach-line that bounds 
the locus of all such points 

Equidistance
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Constructing Voronoi Diagrams
Break points trace out Voronoi edges.

Equidistance

Sweep Line

pi

Break point

Beach line
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Constructing Voronoi Diagrams
Arcs flatten out as sweep line moves down.

Sweep Line

pi
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Eventually, the middle arc disappears.
Constructing Voronoi Diagrams

Sweep Line

pi

q
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We have detected a circle that is empty (contains no sites) 

Constructing Voronoi Diagrams

Sweep Line

pi

q

Voronoi vertex!
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Beach Line properties

• voronoi edge = break point trajectory
– Emergence of a new break point(s) (from formation of a new arc or 

a fusion of two existing break points) identifies a new edge

• voronoi vertices = collision of break points = 
disappeared parabolic curve 
– Decimation of an old arc identifies new vertex
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Break

• 10 Minutes
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Demo

• A visual implementation of Fortune's Voronoi algorithm
– by Allan Odgaard & Benny Kjær Nielsen
– Source code is available

– http://www.diku.dk/hjemmesider/studerende/duff/Fortune/

“It is notoriously difficult to obtain a practical implementation 
of an abstractly described geometric algorithm” 
                                                        – Steven Fortune
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Data Structures

• Current state of the Voronoi diagram
– Doubly linked list of half-edge, vertex, cell records

• Current state of the sweep line
– Keep track of break points

– Keep track of arcs currently on beach line

• Priority event queue
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Doubly Linked List (D)
• Divide segments into uni-directional half-edges
• A chain of counter-clockwise half-edges forms a cell
• Define a half-edge’s “twin” to be its opposite half-edge of the same 

segment

e
v

  Cell(pi)
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Balanced Binary Tree (T)
• Internal nodes represent break points between two arcs

– Also contains a pointer to the D record of the edge being traced

• Leaf nodes represent arcs, each arc is in turn represented by 
the site that generated it
– Also contains a pointer to a potential circle event

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

pi

pj
pk

pl

l

Not stored
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Event Queue (Q)

• An event is an interesting point encountered by the 
sweep line as it sweeps from top to bottom
– Sweep line makes discrete stops, rather than a continuous 

sweep

– Site Events (when the sweep line encounters a new site point) 

– Circle Events (when the sweep line encounters the bottom of 
an empty circle touching 3 or more sites).

• Events are prioritized based on y-coordinate



42

Site Event

A new arc appears when a new site appears.  

l
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Site Event

A new arc appears when a new site appears.  

l
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Site Event

Original arc above the new site is broken into two
 Number of arcs on beach line is O(n)

l
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Circle Event

An arc disappears whenever an empty circle touches three 
or more sites and is tangent to the sweep line.

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi

q

Voronoi vertex!
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Event Queue Summary

• Site Events are 
– given as input
– represented by the xy-coordinate of the site point

• Circle Events are
– computed on the fly (intersection of the two 

bisectors in between the three sites)
– represented by the xy-coordinate of the lowest point 

of an empty circle touching three or more sites
– “anticipated”, these newly generated events may be 

false and need to be removed later
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Algorithm

1. Initialize 
• Event queue Q ⇐ all site events

• Binary search tree T ⇐ ∅

• Doubly linked list D ⇐ ∅

2. While Q not ∅,
• Remove event (e) from Q with largest y-

coordinate
• HandleEvent(e, T, D)
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Handling Site Events

1. Update T: 
– Locate the existing arc (if any) that is above the new site
– Break the arc by replacing the leaf node with a sub tree 

representing the new arc and its break points

2. Update D: 
– Add two half-edge records in the doubly linked list

3. Update Q: 
– Check for potential circle event(s), add them to event queue
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Locate the existing arc that is above 
the new site

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>

• The x coordinate of the new site is used for the binary search
• The x coordinate of each breakpoint along the root to leaf path
   is computed on the fly

pi

pj
pk

pl

lpm
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Break the Arc

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

Corresponding leaf replaced by a new sub-tree

pi

pj
pk

pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl
Different arcs can be identified 
by the same site! 
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Add a new edge record in the doubly 
linked list

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pm pl

< pl, pm>

< pm, pl>

pl

pi

pj
pk

pl

l
pm

New Half Edge Record
Endpoints  ∅

Pointers to two half-edge 
records

l
pm
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Checking for Potential Circle Events
• Scan for 3 consecutive arcs and 

determine if breakpoints converge
– Triples with new arc in the middle do not 

have break points that converge
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Checking for Potential Circle Events
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have break points that converge
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Checking for Potential Circle Events
• Scan for 3 consecutive arcs and 

determine if breakpoints converge
– Triples with new arc in the middle do not 

have break points that converge
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Converging break points may not always 
yield a circle event

• Appearance of a new site before the 
circle event makes the potential circle 
non-empty 

l

(The original circle event becomes a false alarm)
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Handling Site Events
1. Update T: 

– Locate the leaf representing the existing arc that is above the 
new site

• Delete the potential circle event in the event queue
– Break the arc by replacing the leaf node with a sub tree 

representing the new arc and break points

2. Update D: 
– Add a new edge record in the doubly linked list

3. Update Q: 
– Check for potential circle event(s), add them to queue if they 

exist
• Store in the corresponding leaf of T a pointer to the new circle 

event in the queue
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Handling Circle Events

1. Update T: 
• Delete from T the leaf node of the disappearing arc 

and its associated circle events in the event queue

2. Update D: 
• Add vertex to corresponding edge record in doubly 

linked list
• Create new edge record in doubly linked list

3. Update Q: 
• Check the new triplets formed by the former 

neighboring arcs for potential circle events
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A Circle Event

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl
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Add vertex to corresponding edge record

pi pj pk

< pj, pk>

< pi, pj> < pk, pl>

pi

pj

pk
pl

l
pm

pm pl

< pl, pm>

< pm, pl>

pl

Half Edge Record
Endpoints.add(x, y)

Half Edge Record
Endpoints.add(x, y)

Link!
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Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pm

pm pl

< pm, pl>
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Deleting disappearing arc

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>
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Create new edge record

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

New Half Edge Record
Endpoints.add(x, y)

A new edge is traced out by the new 
break point < pk, pm>
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Check the new triplets for 
potential circle events

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l
pmpm pl

< pm, pl>

< pk, pm>

Q y…
new circle event
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Minor Detail

• Algorithm terminates when Q = ∅, but 
the beach line and its break points 
continue to trace the Voronoi edges
– Terminate these “half-infinite” edges via a 

bounding box
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Algorithm Termination

pi pj pk

< pj, pk>

< pi, pj>

pi

pj

pk
pl

l

pmpm pl

< pm, pl>

< pk, pm>

Q ∅
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Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅
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Algorithm Termination

pi pj

< pj, pm>

< pi, pj>

pi

pj

pk
pl

l

pm

pm pl

< pm, pl>

Q ∅

Terminate half-lines 
with a bounding box!
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Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Demo
• Duality and degenerate cases
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Handling Site Events

1. Locate the leaf representing the existing arc 
that is above the new site

– Delete the potential circle event in the event 
queue

2. Break the arc by replacing the leaf node 
with a sub tree representing the new arc 
and break points

3. Add a new edge record in the link list
4. Check for potential circle event(s), add 

them to queue if they exist
– Store in the corresponding leaf of T a pointer to 

the new circle event in the queue

Running Time

O(log n)

O(1)

O(1)

O(1)
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Handling Circle Events

1. Delete from T the leaf node of the 
disappearing arc and its associated 
circle events in the event queue

2. Add vertex record in doubly link 
list

3. Create new edge record in doubly 
link list

4. Check the new triplets formed by 
the former neighboring arcs for 
potential circle events

Running Time

O(log n)

O(1)

O(1)

O(1)
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Total Running Time

• Each new site can generate at most two new 
arcs 
⇒ beach line can have at most 2n – 1 arcs
⇒ at most O(n) site and circle events in the queue

• Site/Circle Event Handler O(log n)

⇒  O(n log n) total running time
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Is Fortune’s Algorithm Optimal?
• We can sort numbers using any algorithm that 

constructs a Voronoi diagram!

-5 1 3 6 7

Number
Line
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Outline

• Definitions and Examples
• Properties of Voronoi diagrams
• Complexity of Voronoi diagrams
• Constructing Voronoi diagrams

– Intuitions
– Data Structures
– Algorithm

• Running Time Analysis
• Duality and degenerate cases
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Voronoi Diagram/Convex Hull Duality

Sites sharing a half-infinite edge are convex hull 
vertices

e
v

pi
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Degenerate Cases

• Events in Q share the same y-coordinate
– Can additionally sort them using x-

coordinate

• Circle event involving more than 3 sites
– Current algorithm produces multiple degree 

3 Voronoi vertices joined by zero-length 
edges

– Can be fixed in post processing
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Degenerate Cases

• Site points are collinear (break points 
neither converge or diverge)
– Bounding box takes care of this 

• One of the sites coincides with the 
lowest point of the circle event
– Do nothing
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Site coincides with circle event: 

1. New site detected
2. Break one of the arcs an infinitesimal distance 

away from the arc’s end point
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Site coincides with circle event



79

Summary of Fortune’s algorithm 

• Optimal
• Sweep line algorithm

– Site events

– Circle events

Images from http://www.cescg.org/CESCG99/RCuk/
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Other Ways Computing Voronoi Diagram

• Divide-and-conquer

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/DivConqVor/divConqVor.htm
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Other Ways Computing Voronoi Diagram

• Lifting: three dimensional convex hull
– We will learn about this in Chapter 9

• Incremental
– We will learn about this in Chapter 9, too
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Other Ways Computing Voronoi Diagram

• Using Graphics hardware (GPU)

Perspective, 3/4 view Parallel, top view

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha, 99 
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Kenneth E. Hoff III, Tim Culver, John Keyser, Ming 
Lin, and Dinesh Manocha, 99 

Ordinary 

• Point sites
• Nearest Euclidean distance

Generalized
• Higher-order site geometry
• Varying distance metrics

Weighted Distances

Higher-order
Sites

2.0

0.5
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Summary

• Voronoi diagram is a useful planar 
subdivision of a discrete point set

• Voronoi diagrams have linear complexity 
and can be constructed in O(n log n) 
time
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Homework Assignment

• 7.10, 7.11


