<u>CS633 Lecture 10</u> <u>Delaunay Triangulations</u>

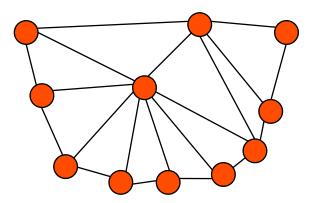
Jyh-Ming Lien

Department of Computer Science George Mason University

Based on Glenn Eguchi's slides

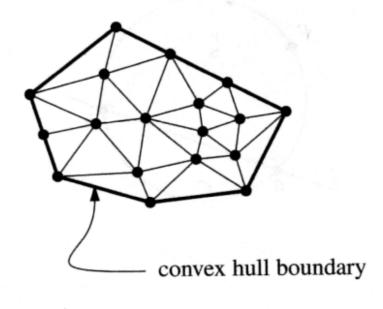
Triangulation

• *Triangulation*: Given a set of points P, triangulation of P is a planar subdivision whose bounded faces are triangles with vertices from P



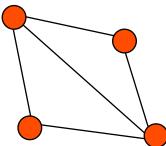
Triangulation is made of triangles

- Internal faces must be triangles, otherwise they could be triangulated further
- Outer polygon must be convex hull



Triangulation: Properties

• *triangulation* of set of points P: a maximal planar subdivision whose vertices are elements of P

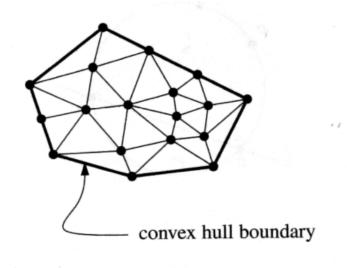


 maximal planar subdivision: a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity

Triangulation: Properties

For P consisting of n points, all triangulations contain 2n-2-k triangles, 3n-3 edges

- n = number of points in P
- k = number of points on convex hull of P

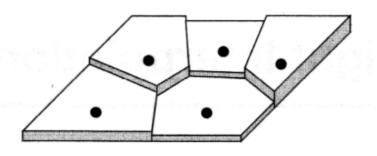


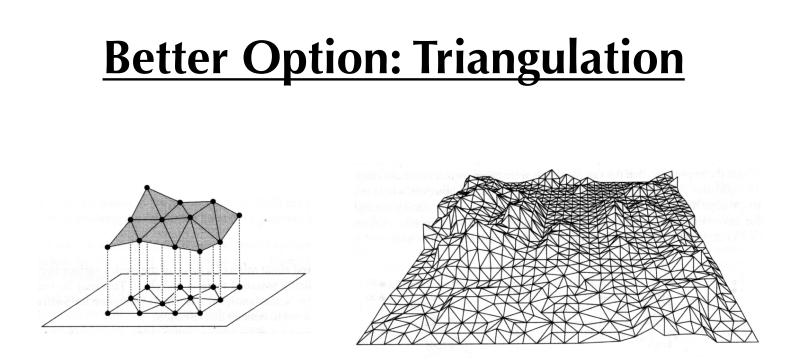
Application: Terrains

- Set of data points $P \subset \mathbb{R}^2$
- Height *f*(p) defined at each point p in P
- How can we most naturally approximate height of points not in P?

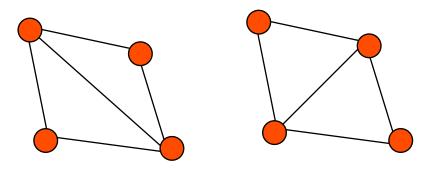
Option: Discretize

- Let f(p) = height of nearest point for points not in P
- Does not look natural



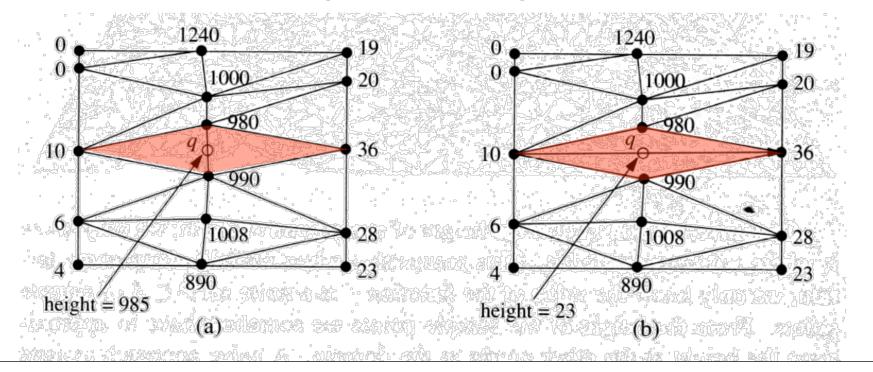


However given a point set, there can be many triangulations



Terrain Problem

- Some triangulations are "better" than others
- Avoid skinny triangles, i.e. maximize minimum angle of triangulation

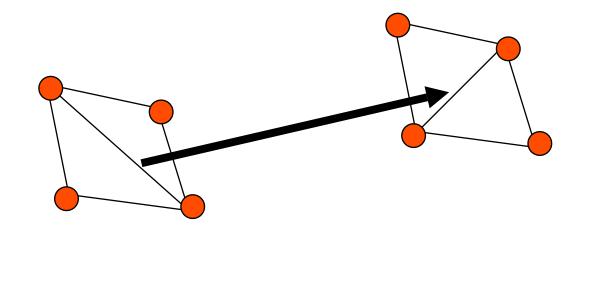


Best Triangulations

- Best triangulation is triangulation that is *angle optimal*, i.e. has the largest angle vector. Maximizes minimum angle.
- Create *angle vector* of the sorted angles of triangulation *T*, A(*T*) = (α_1 , α_2 , α_3 , ... α_{3m}) with α_1 being the smallest angle
- A(*T*) is larger than A(*T'*) iff there exists an i such that $\alpha_i = \alpha'_i$ for all j < i and $\alpha_i > \alpha'_1$

Transform Triangulations

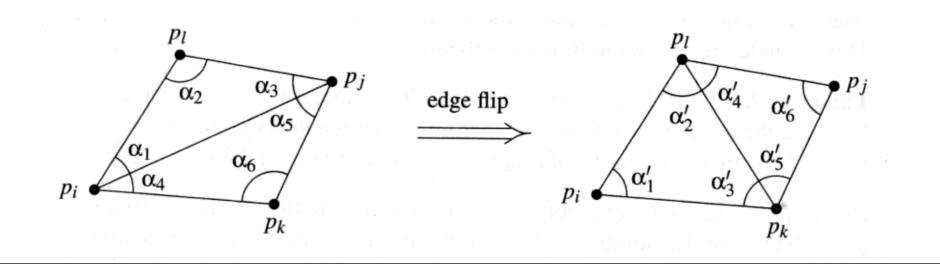
• Given two triangulations, one can always transform to the other one by flipping edges



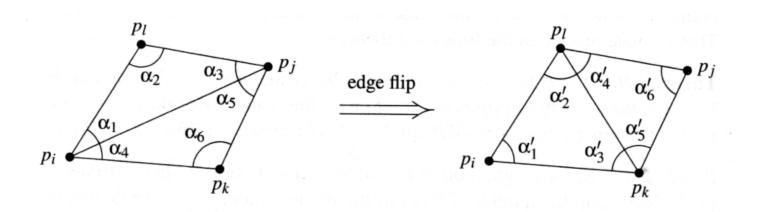
Angle Optimal Triangulations

Consider two adjacent triangles of T:

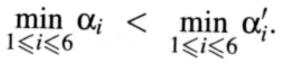
• If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an *edge flip* on their shared edge.



Illegal Edges



• Edge *e* is illegal if:



• Only difference between *T* containing *e* and *T'* with *e* flipped are the six angles of the quadrilateral

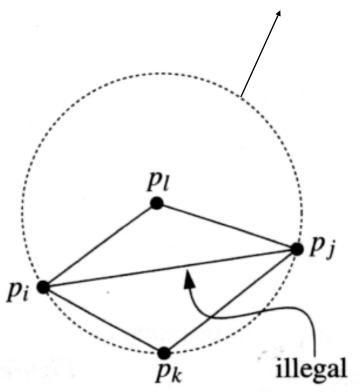
Illegal Triangulations

- If triangulation *T* contains an illegal edge e, we can make A(*T*) larger by flipping e
- In this case, T is an *illegal triangulation*

Testing for Illegal Edges

Circumcircle

• If p_i , p_j , p_k , p_l form a convex quadrilateral and do not lie on a common circle, exactly one of $p_i p_j$ and $p_k p_l$ is an illegal edge.



The edge p_ip_j is illegal iff p_l lies inside
 C.

Computing Legal Triangulations

- 1. Compute a triangulation of input points *P*
- 2. Flip illegal edges of this triangulation until all edges are legal
- Algorithm terminates because there is a finite number of triangulations
- Too slow to be interesting...

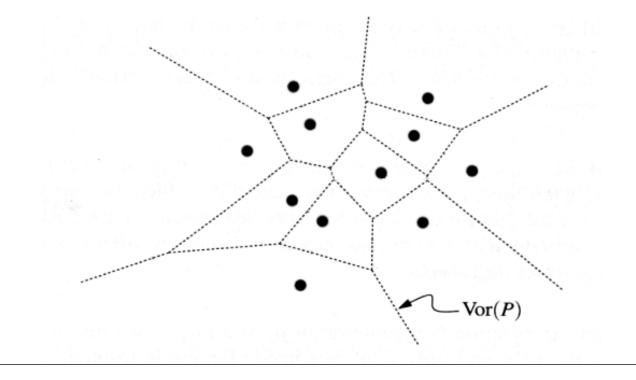
Delaunay Graphs

- Before we can understand an interesting solution to the terrain problem, we need to understand Delaunay Graphs
- Delaunay Graph of a set of points P is the dual graph of the Voronoi diagram of P

Delaunay Graphs

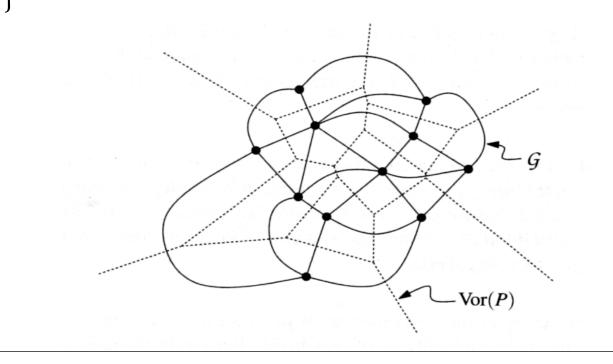
To obtain $\mathcal{D}G(\mathbf{P})$:

- Calculate *Vor(P*)
- Place one vertex in each site of the *Vor*(*P*)



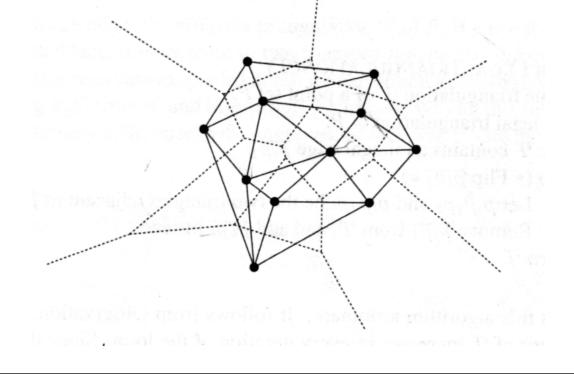
Constructing Delaunay Graphs

If two sites s_i and s_j share an edge (s_i and s_j are adjacent), create an arc between v_i and v_j , the vertices located in sites s_i and s_i



Constructing Delaunay Graphs

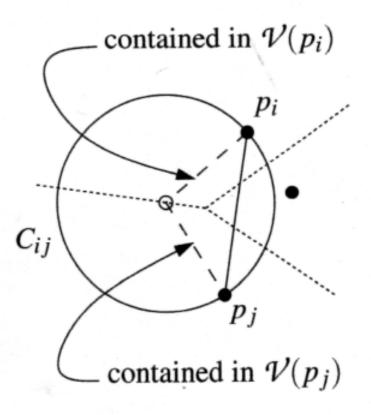
Finally, straighten the arcs into line segments. The resultant graph is $\mathcal{DG}(P)$.



Properties of Delaunay Graphs

No two edges cross; $\mathcal{DG}(P)$ is a planar graph.

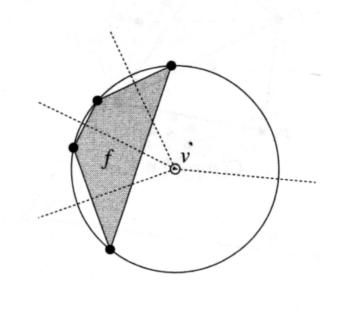
• Largest empty circle property



Delaunay Triangulations

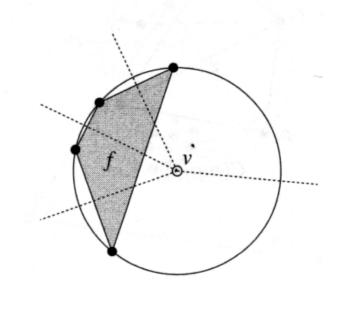
Delaunay graph is a triangulation if all points are in general position

 No four or more points on a circle



Delaunay Triangulations

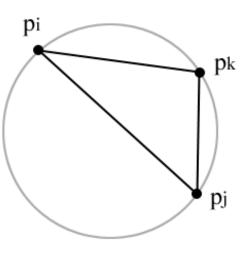
• These points form empty convex polygons, which can be triangulated.



Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

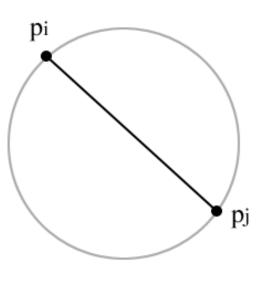
• Three points p_i , p_j , $p_k \in P$ are vertices of the same face of the $\mathcal{DG}(P)$ iff the circle through p_i , p_j , p_k contains no point of P on its interior.



Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

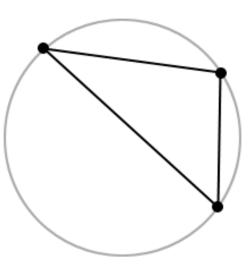
 Two points p_i, p_j ∈ P form an edge of DG(P) iff there is a closed disc C that contains p_i and p_j on its boundary and does not contain any other point



Properties of Delaunay Triangles

From the previous two properties...

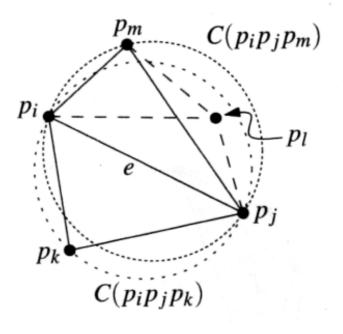
• A triangulation *T* of *P* is a *DT*(*P*) iff the circumcircle of any triangle of *T* does not contain a point of *P* in its interior



Legal Triangulations, revisited

A triangulation T of P is legal iff T is a $\mathcal{DT}(P)$.

- DT → Legal: Empty circle property implies that all DT are legal
- Legal \rightarrow DT: All legal triangles have empty circles



DT and Angle Optimal

The angle optimal triangulation is a \mathcal{DT}

• If *P* is in general position, *DT*(*P*) is unique and thus, is angle optimal

What if multiple *DT* exist for P?

- the minimum angle of each of the *DT* is the same
- Thus, all the *DT* are equally "good" for the terrain problem. All *DT* maximize the minimum angle

Terrain Problem, revisited

Therefore, the problem of finding a triangulation that maximizes the minimum angle is reduced to the problem of finding a Delaunay Triangulation.

So how do we find the Delaunay Triangulation?

How do we compute DT(P)?

- We could compute Vor(P) then dualize into DT(P)
 - Plane sweep algorithm O(*n* log *n*) time
- Instead, we will compute *DT*(*P*) using a randomized incremental method
 - $-O(n \log n)$ expect time
 - Provide point location data structure
 - Good for height query

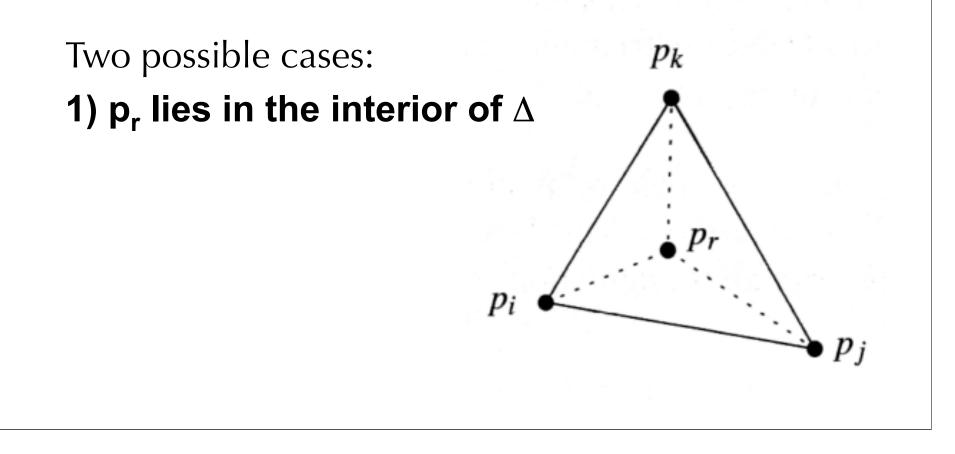
Algorithm Overview

- 1. Initialize triangulation *T* with a "big enough" helper bounding triangle that contains all points *P*.
- 2. Randomly choose a point p_r from *P*
- 3. Find the triangle Δ that p_r lies in
- 4. Subdivide Δ into smaller triangles that have p_r as a vertex
- 5. Flip edges until all edges are legal
- 6. Repeat steps 2-5 until all points have been added to *T*

Let's skip steps 1, 2, and 3 for now...

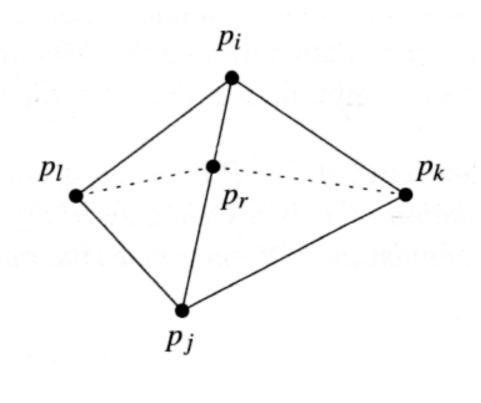
Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that p_r lives in, subdivide Δ into smaller triangles that have p_r as a vertex.



Triangle Subdivision: Case 2 of 2

2) p_r falls on an edge between two adjacent triangles



Which edges are illegal?

- Before we subdivided, all of our edges were legal
- After we add our new edges, some of the edges of T may now be illegal, but which ones?

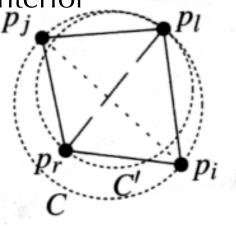
New Edges are Legal

Are the new edges (edges involving p_r) legal?

Consider **any** new edge $p_r p_l$.

Before adding $p_r p_{l'}$

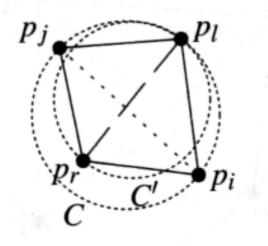
- p_1 was part of some triangle $p_i p_j p_l$
- Circumcircle *C* of p_i, p_j, and p_l did not contain any other points of *P* in its interior



New edges incident to p_r are Legal

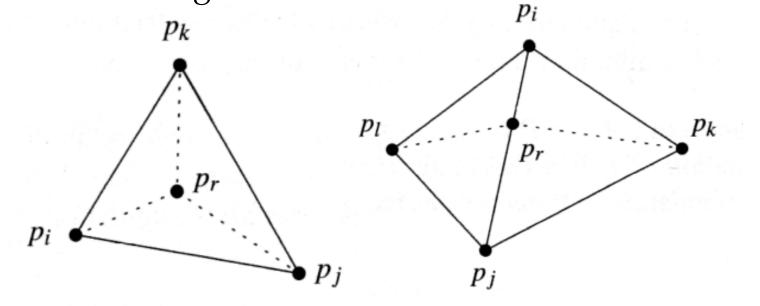
- If we shrink *C*, we can find a circle *C*' that passes through p_rp₁
- C' contains no points in its interior.
- Therefore, p_rp_l is legal.

Any new edge incident p_r is legal



Outer Edges May Be Illegal

- An edge can become illegal only if one of its incident triangles changed
- Outer edges of the incident triangles {p_jp_k, p_ip_k, p_ip_j} or {p_ip₁, p₁p_j, p_jp_k, p_kp_i} may have become illegal.



Flip Illegal Edges

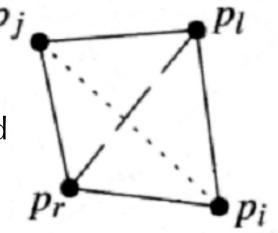
- Now that we know which edges have become illegal, we flip them
- However, after the edges have been flipped, the edges incident to the new triangles may now be illegal.
- So we need to recursively flip edges...

LegalizeEdge

 p_r = point being inserted $p_i p_j$ = edge that may need to be flipped

LegalizeEdge($p_r, p_i p_{j'}, T$)

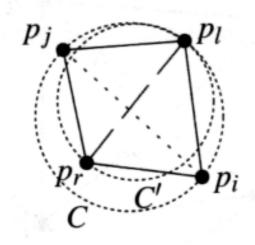
- **if** p_ip_j is illegal
- **then** Let $p_i p_j p_l$ be the triangle adjacent to $p_r p_i p_j$ along $p_i p_j$
- Replace p_ip_j with p_rp_l
- LEGALIZEEDGE($p_r, p_i p_l, T$)



Flipped edges are incident to p_r

Notice that when LEGALIZEEDGE flips edges, these new edges are ALL incident to p_r

- By the same logic as earlier, we can shrink the circumcircle of $p_i p_j p_l$ to find a circle that passes through p_r and p_l
- Thus, the new edges are legal



Bounding Triangle

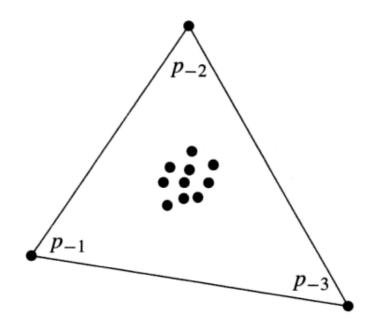
Remember, we skipped step 1 of our algorithm.

1. Begin with a "big enough" helper bounding triangle that contains all points.

Let $\{p_{-3}, p_{-2}, p_{-1}\}$ be the vertices of our bounding triangle.

"Big enough" means that the triangle:

- contains all points of P in its interior.
- will not destroy edges between points in P.



Triangle Location Step

Remember, we skipped step 3 of our algorithm. 3. Find the triangle T that p_r lies in

- Take an approach similar to Point Location approach
- Maintain a point location structure *D*, a directed acyclic graph (DAG)

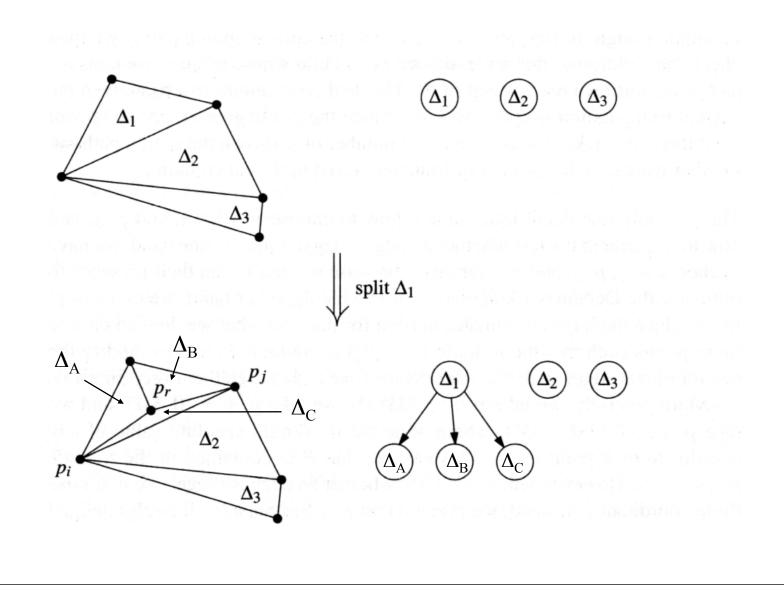
$\underline{\textbf{Structure of }\mathcal{D}}$

- Leaves of *D* correspond to the triangles of the current triangulation.
- Maintain cross pointers between leaves of *D* and the triangulation.
- Begin with a single leaf, the bounding triangle p₋₁p₋₂p₋₃

$\underline{\textbf{Subdivision and }\mathcal{D}}$

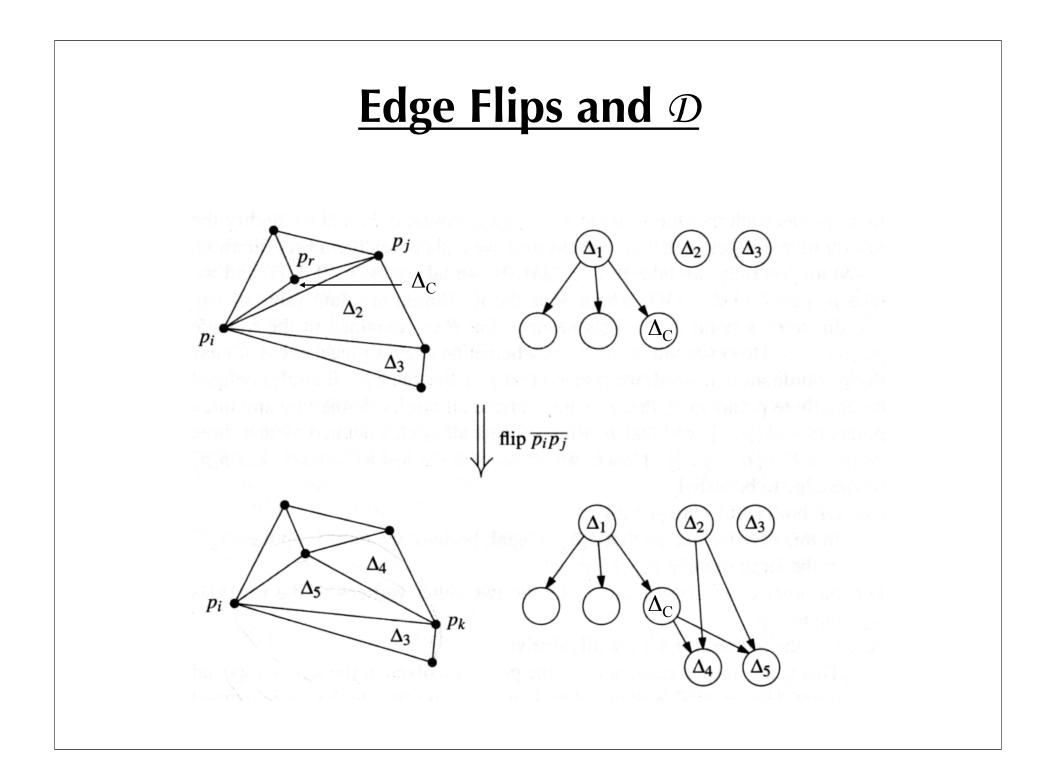
• Whenever we split a triangle Δ_1 into smaller triangles Δ_a and Δ_b (and possibly Δ_c), add the smaller triangles to D as leaves of Δ_1

Subdivision and \mathcal{D}



Edge Flips and \mathcal{D}

- Whenever we perform an edge flip, create leaves for the two new triangles.
- Attach the new triangles as leaves of the two triangles replaced during the edge flip.



$\underline{\textbf{Searching}} \ \mathcal{D}$

- p_r = point we are searching with
- 1. Let the current node be the root node of \mathcal{D} .
- Look at child nodes of current node.
 Check which triangle p_r lies in.
- **3.** Let current node = child node that contains p_r
- 4. Repeat steps 2 and 3 until we reach a leaf node.

$\underline{\textbf{Searching}} \ \mathcal{D}$

- Each node has at most 3 children.
- Each node in path represents a triangle in \mathcal{D} that contains p_r
- Therefore, takes O(number of triangles in \mathcal{D} that contain p_r)

Properties of \mathcal{D}

Notice that the:

- Leaves of *D* correspond to the triangles of the current triangulation
- Internal nodes correspond to *destroyed triangles*, triangles that were in an earlier stage of the triangulation but are not present in the current triangulation

Algorithm Overview

- 1. Initialize triangulation T with helper bounding triangle. Initialize D.
- 2. Randomly choose a point p_r from *P*.
- **3.** Find the triangle Δ that p_r lies in using \mathcal{D} .
- 4. Subdivide Δ into smaller triangles that have p_r as a vertex. Update \mathcal{D} accordingly.
- 5. Call LEGALIZEEDGE on all possibly illegal edges, using the modified test for illegal edges. Update *D* accordingly.
- 6. Repeat steps 2-5 until all points have been added to *T*.

Break

• 10 Min Break

Analysis Goals

• Expected storage required is: O(*n*)

• Expected running time of algorithm is: O(*n* log *n*)

First, some notation...

• $P_r = \{p_1, p_2, ..., p_r\}$

- Points added by iteration r

•
$$\Omega = \{ p_{-3}, p_{-2}, p_{-1} \}$$

- Vertices of bounding triangle

•
$$\mathcal{D}G_{\mathsf{r}} = \mathcal{D}G(\Omega \cup \mathsf{P}_{\mathsf{r}})$$

– Delaunay graph as of iteration r

Sidetrack: Expected Number of ∆s

Lemma 9.11 Expected number of triangles created by DELAUNAYTRIANGULATION is 9n+1.

• In initialization, we create 1 triangle (bounding triangle).

Expected Number of Triangles

In iteration r where we add $p_{r'}$

- in the subdivision step, we create at most 4 new triangles. Each new triangle creates one new edge incident to p_r
- each edge flipped in LEGALIZEEDGE creates two new triangles and one new edge incident to p_r

Expected Number of Triangles

- Let k = number of edges incident to p_r after insertion of p_r , the degree of p_r
- We have created at most 2(k-3)+3 triangles.
- -3 and +3 are to account for the triangles created in the subdivision step

The problem is now to find the expected degree of p_r

Expected Degree of p_r

Use backward analysis:

- Fix P_r , let p_r be a random element of P_r
- $\mathcal{D}G_r$ has 3(r+3)-6 edges
- Total degree of $P_r \le 2[3(r+3)-9] = 6r$

E[degree of random element of P_r] ≤ 6

Triangles created at step r

Using the expected degree of p_r, we can find the expected number of triangles created in step r.

 $deg(p_{r'} \mathcal{D}G_r) = degree \text{ of } p_r \text{ in } \mathcal{D}G_r$

 $E[\text{number of triangles created in step } r] \leq E[2\deg(p_r, \mathcal{DG}_r) - 3]$ $= 2E[\deg(p_r, \mathcal{DG}_r)] - 3$ $\leq 2 \cdot 6 - 3 = 9$

Expected Number of Triangles

- Now we can bound the number of triangles:
- ≤ 1 initial Δ + Δ s created at step 1 + Δ s created at step 2 + ... + Δ s created at step n
- ≤ 1 + 9n

Expected number of triangles created is 9n +1.

Storage Requirement

- D has one node per triangle created
- 9n+1 triangles created
- O(n) expected storage

Expected Running Time

Let's examine each step...

- Begin with a "big enough" helper bounding triangle that contains all points.
 O(1) time, executed once = O(1)
- 2. Randomly choose a point p_r from P. O(1) time, executed n times = O(n)
- 3. Find the triangle Δ that p_r lies in.

Skip step 3 for now...

Expected Running Time

- 4. Subdivide Δ into smaller triangles that have p_r as a vertex. O(1) time executed n times = O(*n*)
- 5. Flip edges until all edges are legal. In total, expected to execute a total number of times proportional to number of triangles created = O(n)

Thus, total running time without point location step is O(n).

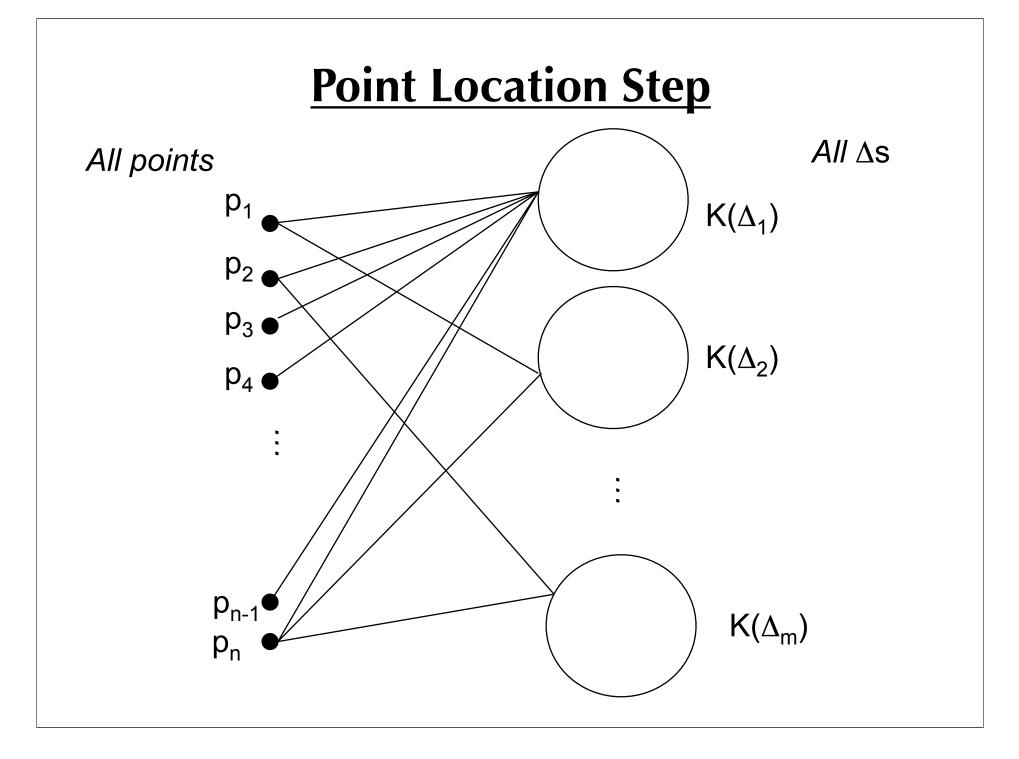
- Time to locate point p_r is
 O(number of nodes of D we visit)
 + O(1) for current triangle
- Number of nodes of D we visit
 number of destroyed triangles that contain p_r
- A triangle is destroyed by $p_{\rm r}$ if its circumcircle contains $p_{\rm r}$

We can charge each triangle visit to a Delaunay triangle whose circumcircle contains p_r

- $K(\Delta) =$ subset of points in *P* that lie in the circumcircle of Δ
- When $p_r \in K(\Delta)$, charge to Δ .
- Since we are iterating through *P*, each point in K(Δ) can be charged at most once.

Total time:

$$O(n + \sum_{\Delta} \operatorname{card}(K(\Delta))),$$



We want to have O(*n* log *n*) time, therefore we want to show that:

 $\sum \operatorname{card}(K(\Delta)) = O(n \log n),$

Intuitions

When no points are added to the triangulation, for any Δ K(Δ)=n

When all points are added to the triangulation, for any Δ K(Δ)=0

When **r** points are added to the triangulation, for any Δ

Expected $K(\Delta)=n/r$

Introduce some notation...

 $\mathcal{T}_{r} = \text{set of triangles of } \mathcal{D}G(\Omega \cup P_{r})$ $\mathcal{T}_{r} \setminus \mathcal{T}_{r-1}$ triangles created in stage r Rewrite our sum as:

$$\sum_{\Delta} \operatorname{card}(K(\Delta)) \longrightarrow \sum_{r=1}^{n} \left(\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) \right).$$

More notation...

 $k(P_r, q)$ = number of triangles Δ ∈ T_r such that q is contained in Δ

 $k(P_r, q, p_r)$ = number of triangles Δ ∈ T_r such that q is contained in Δ and p_r is incident to Δ

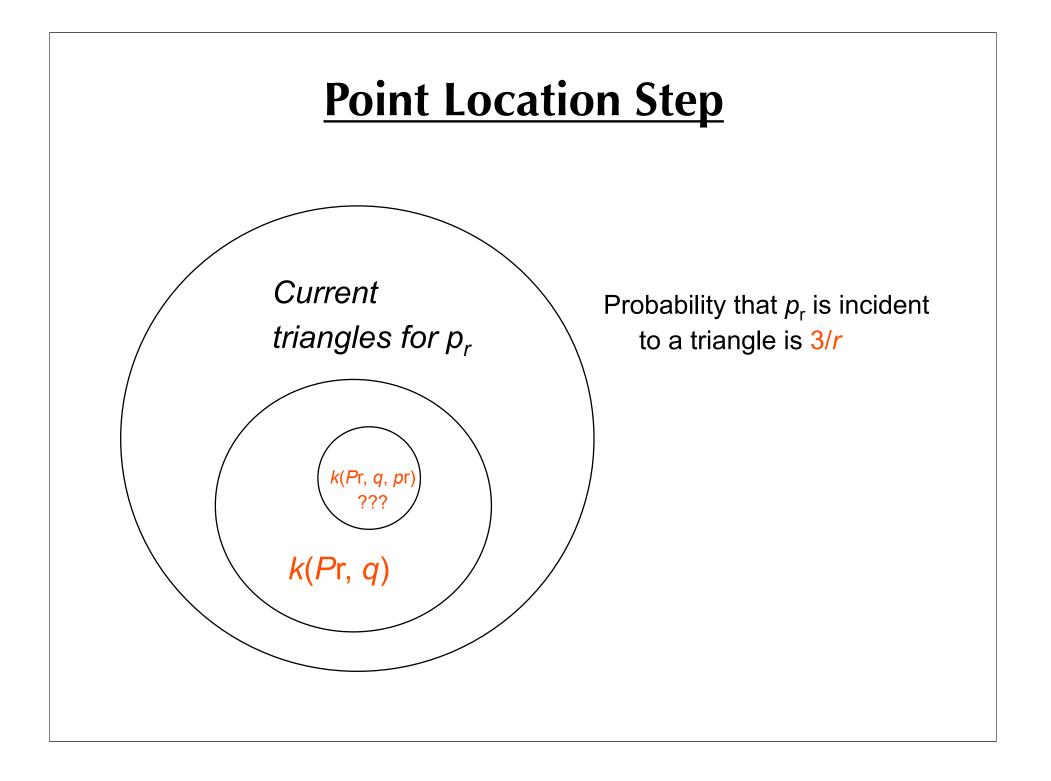
$$\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta)) = \sum_{q \in P \setminus P_r} k(P_r, q, p_r).$$

Find the $E[k(P_r, q, p_r)]$ then sum later...

- Fix $P_{r'}$ so $k(P_{r'}, q, p_{r})$ depends only on p_{r}
- Probability that p_r is incident to a triangle is 3/r (Backward analysis again!)

Thus:

$$\mathbf{E}\big[k(P_r,q,p_r)\big] \leqslant \frac{3k(P_r,q)}{r}.$$



Using: $E[k(P_r,q,p_r)] \leq \frac{3k(P_r,q)}{r}$.

We can rewrite our sum as:

$$\mathbb{E}\Big[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\Big] \leqslant \frac{3}{r} \sum_{q \in P \setminus P_r} k(P_r, q).$$

$$\mathbb{E}\Big[\sum_{\Delta \in \mathcal{T}_r \setminus \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))\Big] \leqslant \frac{3}{r} \sum_{q \in P \setminus P_r} k(P_r, q).$$

Conclusion

- Delaunay triangulation is optimal anglemaximize triangulation
- Delaunay triangulation can be done in O(nlogn) time using O(n) space
- Delaunay triangulation have many applications

Surface Reconstruction

