CS633 Lecture 10 Delaunay Triangulations

Jyh-Ming Lien

Department of Computer Science
 George Mason University

Based on Glenn Eguchi's slides

Triangulation

- Triangulation: Given a set of points P , triangulation of P is a planar subdivision whose bounded faces are triangles with vertices from P

Triangulation is made of triangles

- Internal faces must be triangles, otherwise they could be triangulated further
- Outer polygon must be convex hull

Triangulation: Properties

- triangulation of set of points P: a maximal planar subdivision whose vertices are elements of P

- maximal planar subdivision: a subdivision S such that no edge connecting two vertices can be added to S without destroying its planarity

Triangulation: Properties

For P consisting of n points, all triangulations contain $2 n-2-k$ triangles, 3n-3 edges

- $\mathrm{n}=$ number of points in P
- $\mathrm{k}=$ number of points on convex hull of P

Application: Terrains

- Set of data points $\mathrm{P} \subset R^{2}$
- Height $f(\mathrm{p})$ defined at each point p in P
- How can we most naturally approximate height of points not in P ?

Option: Discretize

- Let $f(\mathrm{p})=$ height of nearest point for points not in P
- Does not look natural

Better Option: Triangulation

However given a point set, there can be many triangulations

Terrain Problem

- Some triangulations are "better" than others
- Avoid skinny triangles, i.e. maximize minimum angle of triangulation

height $=985$

height $=23$
(b)

Best Triangulations

- Best triangulation is triangulation that is angle optimal, i.e. has the largest angle vector. Maximizes minimum angle.
- Create angle vector of the sorted angles of triangulation $T, \mathrm{~A}(T)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{3 \mathrm{~m}}\right)$ with α_{1} being the smallest angle
- $\mathrm{A}(T)$ is larger than $\mathrm{A}\left(T^{\prime}\right)$ iff there exists an i such that $\alpha_{j}=\alpha_{j}^{\prime}$ for all $\mathrm{j}<\mathrm{i}$ and $\alpha_{i}>\alpha^{\prime}$,

Transform Triangulations

- Given two triangulations, one can always transform to the other one by flipping edges

Angle Optimal Triangulations

Consider two adjacent triangles of T:

- If the two triangles form a convex quadrilateral, we could have an alternative triangulation by performing an edge flip on their shared edge.

Illegal Edges

- Edge e is illegal if:

$$
\min _{1 \leqslant i \leqslant 6} \alpha_{i}<\min _{1 \leqslant i \leqslant 6} \alpha_{i}^{\prime} .
$$

- Only difference between T containing e and T^{\prime} with e flipped are the six angles of the quadrilateral

Illegal Triangulations

- If triangulation T contains an illegal edge e, we can make $A(T)$ larger by flipping e
- In this case, T is an illegal triangulation

Testing for Illegal Edges

- If $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}, \mathrm{p}_{\mathrm{l}}$ form a convex quadrilateral and do not lie on a common circle, exactly one of $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ and $\mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{l}}$ is an illegal edge.

- The edge $p_{i} p_{j}$ is illegal iff p_{l} lies inside C.

Computing Legal Triangulations

1. Compute a triangulation of input points P
2. Flip illegal edges of this triangulation until all edges are legal

- Algorithm terminates because there is a finite number of triangulations
- Too slow to be interesting...

Delaunay Graphs

- Before we can understand an interesting solution to the terrain problem, we need to understand Delaunay Graphs
- Delaunay Graph of a set of points P is the dual graph of the Voronoi diagram of P

Delaunay Graphs

To obtain $\mathscr{D} G(P)$:

- Calculate $\operatorname{Vor}(P)$
- Place one vertex in each site of the $\operatorname{Vor}(P)$

Constructing Delaunay Graphs

If two sites s_{i} and s_{j} share an edge (s_{i} and s_{j} are adjacent), create an arc between v_{i} and v_{j}, the vertices located in sites s_{i} and S_{j}

Constructing Delaunay Graphs

Finally, straighten the arcs into line segments. The resultant graph is $\mathcal{D G}(\mathrm{P})$.

Properties of Delaunay Graphs

No two edges cross; $\mathscr{D} G(P)$ is a planar graph.

- Largest empty circle property

Delaunay Triangulations

- Delaunay graph is a triangulation if all points are in general position
- No four or more points on a circle

Delaunay Triangulations

- These points form empty convex polygons, which can be triangulated.

Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

- Three points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{k}} \in P$ are vertices of the same face of the $\mathscr{D} G(P)$ iff the circle through $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}$ contains no point of P on its interior.

Properties of Delaunay Triangles

From the properties of Voronoi Diagrams...

- Two points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}} \in P$ form an edge of $\mathscr{D} G(P)$ iff there is a closed disc C that contains p_{i} and p_{j} on its boundary and does not contain any other point

Properties of Delaunay Triangles

From the previous two properties...

- A triangulation T of P is a $\mathscr{D T}(P)$ iff the circumcircle of any triangle of T does not contain a point of P in its interior

Legal Triangulations, revisited

A triangulation T of P is legal iff T is a $\mathscr{D} T(\mathrm{P})$.

- DT \rightarrow Legal: Empty circle property implies that all DT are legal
- Legal \rightarrow DT: All legal triangles have empty circles

$C\left(p_{i} p_{j} p_{k}\right)$

DT and Angle Optimal

The angle optimal triangulation is a $\mathscr{D T}$

- If P is in general position, $\mathscr{D T}(P)$ is unique and thus, is angle optimal

What if multiple $\mathcal{D T}$ exist for P ?

- the minimum angle of each of the $\mathscr{D T}$ is the same
- Thus, all the $\mathscr{D T}$ are equally "good" for the terrain problem. All DT maximize the minimum angle

Terrain Problem, revisited

Therefore, the problem of finding a triangulation that maximizes the minimum angle is reduced to the problem of finding a Delaunay Triangulation.

So how do we find the Delaunay Triangulation?

How do we compute $\mathscr{D T}(P)$?

- We could compute $\operatorname{Vor}(P)$ then dualize into $\operatorname{DT}(P)$
- Plane sweep algorithm $\mathrm{O}(n \log n)$ time
- Instead, we will compute $\mathscr{D T}(P)$ using a randomized incremental method
- $\mathrm{O}(n \log n)$ expect time
- Provide point location data structure
- Good for height query

Algorithm Overview

1. Initialize triangulation T with a "big enough" helper bounding triangle that contains all points P.
2. Randomly choose a point p_{r} from P
3. Find the triangle Δ that p_{r} lies in
4. Subdivide Δ into smaller triangles that have p_{r} as a vertex
5. Flip edges until all edges are legal
6. Repeat steps 2-5 until all points have been added to T

Let's skip steps 1, 2, and 3 for now...

Triangle Subdivision: Case 1 of 2

Assuming we have already found the triangle that p_{r} lives in, subdivide Δ into smaller triangles that have p_{r} as a vertex.

Two possible cases:

Triangle Subdivision: Case 2 of 2

2) p_{r} falls on an edge between two adjacent triangles

Which edges are illegal?

- Before we subdivided, all of our edges were legal
- After we add our new edges, some of the edges of T may now be illegal, but which ones?

New Edges are Legal

Are the new edges (edges involving p_{r}) legal?
Consider any new edge $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{\mathrm{l}}$.
Before adding $p_{r} p_{l}$,

- p_{l} was part of some triangle $p_{i} p_{j} p_{l}$
- Circumcircle C of $p_{i}, \mathrm{p}_{\mathrm{j}}$, and p_{l} did not contain any other points of P in its interior

New edges incident to p_{r} are Legal

- If we shrink C, we can find a circle C^{\prime} that passes through $p_{r} p_{1}$
- C^{\prime} contains no points in its interior.
- Therefore, $\mathrm{p}_{\mathrm{r}} \mathrm{p}_{\mathrm{l}}$ is legal.

Any new edge incident p_{r} is legal

Outer Edges May Be Illegal

- An edge can become illegal only if one of its incident triangles changed
- Outer edges of the incident triangles $\left\{p_{j} p_{k^{\prime}}\right.$ $\left.p_{i} p_{k^{\prime}} p_{i} p_{j}\right\}$ or $\left\{p_{i} p_{l}, p_{l} p_{j^{\prime}}, p_{j} p_{k^{\prime}}, p_{k} p_{i}\right\}$ may have become illegal.

Flip Illegal Edges

- Now that we know which edges have become illegal, we flip them
- However, after the edges have been flipped, the edges incident to the new triangles may now be illegal.
- So we need to recursively flip edges...

LegalizeEdge

$\mathrm{p}_{\mathrm{r}}=$ point being inserted
$p_{i} p_{j}=$ edge that may need to be flipped
$\operatorname{LegalizeEdge}\left(\mathrm{p}_{\mathrm{r}}, \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}, T\right)$

- if $p_{i} p_{j}$ is illegal
- then Let $p_{i} p_{j} p_{l}$ be the triangle adjacent to $p_{r} p_{i} p_{j}$ along $p_{i} p_{j}$
- Replace $p_{i} p_{j}$ with $p_{r} p_{l}$
- LegalizeEdge ($\left.\mathrm{p}^{\prime}, \mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{l}}, T\right)$

Flipped edges are incident to \mathbf{p}_{r}

Notice that when LeGALIZEEDGE flips edges, these new edges are ALL incident to p_{r}

- By the same logic as earlier, we can shrink the circumcircle of $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}} \mathrm{p}_{1}$ to find a circle that passes through p_{r} and p_{1}
- Thus, the new edges are legal

Bounding Triangle

Remember, we skipped step 1 of our algorithm.

1. Begin with a "big enough" helper bounding triangle that contains all points.
Let $\left\{\mathrm{p}_{-3}, \mathrm{p}_{-2}, \mathrm{p}_{-1}\right\}$ be the vertices of our bounding triangle.
"Big enough" means that the triangle:

- contains all points of P in its interior.
- will not destroy edges between points in P .

Triangle Location Step

Remember, we skipped step 3 of our algorithm.
3. Find the triangle T that p_{r} lies in

- Take an approach similar to Point Location approach
- Maintain a point location structure \mathcal{D}, a directed acyclic graph (DAG)

Structure of \mathcal{D}

- Leaves of \mathscr{D} correspond to the triangles of the current triangulation.
- Maintain cross pointers between leaves of \mathscr{D} and the triangulation.
- Begin with a single leaf, the bounding triangle $\mathrm{p}_{-1} \mathrm{p}_{-2} \mathrm{p}_{-3}$

Subdivision and \mathcal{D}

- Whenever we split a triangle Δ_{1} into smaller triangles Δ_{a} and Δ_{b} (and possibly Δ_{c}), add the smaller triangles to D as leaves of Δ_{1}

Subdivision and \mathscr{D}

$\Delta_{1} \Delta \Delta_{2}$
\Downarrow split Δ_{1}

Edge Flips and \mathcal{D}

- Whenever we perform an edge flip, create leaves for the two new triangles.
- Attach the new triangles as leaves of the two triangles replaced during the edge flip.

Edge Flips and \mathcal{D}

$\Downarrow \operatorname{flip} \overline{p_{i} p_{j}}$

Searching \mathscr{D}

$\mathrm{p}_{\mathrm{r}}=$ point we are searching with

1. Let the current node be the root node of \mathcal{D}.
2. Look at child nodes of current node. Check which triangle p_{r} lies in.
3. Let current node $=$ child node that contains p_{r}
4. Repeat steps 2 and 3 until we reach a leaf node.

Searching \mathcal{D}

- Each node has at most 3 children.
- Each node in path represents a triangle in D that contains p_{r}
- Therefore, takes O (number of triangles in \mathscr{D} that contain p_{r})

Properties of \mathcal{D}

Notice that the:

- Leaves of \mathscr{D} correspond to the triangles of the current triangulation
- Internal nodes correspond to destroyed triangles, triangles that were in an earlier stage of the triangulation but are not present in the current triangulation

Algorithm Overview

1. Initialize triangulation T with helper bounding triangle. Initialize \mathcal{D}.
2. Randomly choose a point p_{r} from P.
3. Find the triangle Δ that p_{r} lies in using \mathcal{D}.
4. Subdivide Δ into smaller triangles that have p_{r} as a vertex. Update \mathscr{D} accordingly.
5. Call LeGALIzEEDGE on all possibly illegal edges, using the modified test for illegal edges. Update \mathscr{D} accordingly.
6. Repeat steps 2-5 until all points have been added to T.

Break

- 10 Min Break

Analysis Goals

- Expected storage required is: $\mathrm{O}(n)$
- Expected running time of algorithm is:

$$
\mathrm{O}(n \log n)
$$

First, some notation...

- $\mathrm{P}_{\mathrm{r}}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{r}}\right\}$
- Points added by iteration r
- $\Omega=\left\{\mathrm{p}_{-3}, \mathrm{p}_{-2}, \mathrm{p}_{-1}\right\}$
- Vertices of bounding triangle
- $\mathscr{D} G_{\mathrm{r}}=\mathscr{D} G\left(\Omega \cup \mathrm{P}_{\mathrm{r}}\right)$
- Delaunay graph as of iteration r

Sidetrack: Expected Number of Δs

Lemma 9.11 Expected number of triangles created by
DelaunayTriangulation is $9 n+1$.

- In initialization, we create 1 triangle (bounding triangle).

Expected Number of Triangles

In iteration r where we add $p_{r^{\prime}}$

- in the subdivision step, we create at most 4 new triangles. Each new triangle creates one new edge incident to p_{r}
- each edge flipped in LegalizEEdge creates two new triangles and one new edge incident to p_{r}

Expected Number of Triangles

Let $\mathrm{k}=$ number of edges incident to p_{r} after insertion of p_{r}, the degree of p_{r}

- We have created at most $2(\mathrm{k}-3)+3$ triangles.
- -3 and +3 are to account for the triangles created in the subdivision step
The problem is now to find the expected degree of p_{r}

Expected Degree of p_{r}

Use backward analysis:

- Fix P_{r}, let p_{r} be a random element of P_{r}
- $\mathcal{D G}_{\mathrm{r}}$ has 3(r+3)-6 edges
- Total degree of $P_{r} \leq 2[3(r+3)-9]=6 r$
$E\left[\right.$ degree of random element of $\left.P_{r}\right] \leq 6$

Triangles created at step r

Using the expected degree of p_{r}, we can find the expected number of triangles created in step r.
$\operatorname{deg}\left(\mathrm{p}_{\mathrm{r}}, \mathcal{D} G_{\mathrm{r}}\right)=$ degree of p_{r} in $\mathscr{D} G_{\mathrm{r}}$

E [number of triangles created in step $r] \leqslant \mathrm{E}\left[2 \operatorname{deg}\left(p_{r}, \mathcal{D} \mathcal{G}_{r}\right)-3\right]$

$$
\begin{aligned}
& =2 \mathrm{E}\left[\operatorname{deg}\left(p_{r}, \mathcal{D} \mathcal{G}_{r}\right)\right]-3 \\
& \leqslant 2 \cdot 6-3=9
\end{aligned}
$$

Expected Number of Triangles

Now we can bound the number of triangles:
≤ 1 initial $\Delta+\Delta$ s created at step $1+\Delta \mathrm{s}$ created at step $2+\ldots+\Delta$ s created at step n
$\leq 1+9 n$

Expected number of triangles created is $9 n$ +1 .

Storage Requirement

- \mathcal{D} has one node per triangle created
- $9 \mathrm{n}+1$ triangles created
- $\mathrm{O}(\mathrm{n})$ expected storage

Expected Running Time

Let's examine each step...

1. Begin with a "big enough" helper bounding triangle that contains all points.
$\mathrm{O}(1)$ time, executed once $=\mathrm{O}(1)$
2. Randomly choose a point p_{r} from P.
$\mathrm{O}(1)$ time, executed n times $=\mathrm{O}(n)$
3. Find the triangle Δ that p_{r} lies in. Skip step 3 for now...

Expected Running Time

4. Subdivide Δ into smaller triangles that have p_{r} as a vertex. $\mathrm{O}(1)$ time executed n times $=\mathrm{O}(n)$
5. Flip edges until all edges are legal. In total, expected to execute a total number of times proportional to number of triangles created $=\mathrm{O}(n)$

Thus, total running time without point location step is $\mathrm{O}(n)$.

Point Location Step

- Time to locate point p_{r} is

O (number of nodes of \mathcal{D} we visit)
$+\mathrm{O}(1)$ for current triangle

- Number of nodes of \mathscr{D} we visit
$=$ number of destroyed triangles that contain p_{r}
- A triangle is destroyed by p_{r} if its circumcircle contains p_{r}

We can charge each triangle visit to a Delaunay triangle whose circumcircle contains p_{r}

Point Location Step

$K(\Delta)=$ subset of points in P that lie in the circumcircle of Δ

- When $\mathrm{p}_{\mathrm{r}} \in K(\Delta)$, charge to Δ.
- Since we are iterating through P, each point in $K(\Delta)$ can be charged at most once.
Total time:

$$
O\left(n+\sum_{\Delta} \operatorname{card}(K(\Delta))\right),
$$

Point Location Step

All points

Point Location Step

We want to have $\mathrm{O}(n \log n)$ time, therefore we want to show that:
$\sum_{\Delta} \operatorname{card}(K(\Delta))=O(n \log n)$,

Intuitions

When no points are added to the triangulation, for any Δ

$$
K(\Delta)=n
$$

When all points are added to the triangulation, for any Δ

$$
K(\Delta)=0
$$

When r points are added to the triangulation, for any Δ

Expected $K(\Delta)=n / r$

Point Location Step

Introduce some notation...
$\tau_{\mathrm{r}}=$ set of triangles of $\mathscr{D G}\left(\Omega \cup P_{\mathrm{r}}\right)$
$\tau_{r} \backslash \tau_{r-1}$ triangles created in stage r
Rewrite our sum as:

New Δ s

Point Location Step

More notation...
$k\left(P_{r}, q\right)=$ number of triangles $\Delta \in \mathcal{T}_{\mathrm{r}}$ such that q is contained in Δ
$k\left(P_{r}, q, p_{r}\right)=$ number of triangles $\Delta \in \mathcal{T}_{r}$ such that q is contained in Δ and p_{r} is incident to Δ

$$
\sum_{\Delta \in \mathcal{T}_{r} \backslash \mathcal{T}_{r-1}} \operatorname{card}(K(\Delta))=\sum_{q \in P \backslash P_{r}} k\left(P_{r}, q, p_{r}\right) .
$$

Point Location Step

Find the $E\left[k\left(P_{r}, q, p_{r}\right)\right]$ then sum later...

- Fix P_{r} so $k\left(P_{r}, q, p_{r}\right)$ depends only on p_{r}
- Probability that p_{r} is incident to a triangle is $3 / r$ (Backward analysis again!)

Thus:

$$
\mathrm{E}\left[k\left(P_{r}, q, p_{r}\right)\right] \leqslant \frac{3 k\left(P_{r}, q\right)}{r} .
$$

Point Location Step

Point Location Step

Using: $\mathrm{E}\left[k\left(P_{r}, q, p_{r}\right)\right] \leqslant \frac{3 k\left(P_{r}, q\right)}{r}$.

We can rewrite our sum as:

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \tau_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant \frac{3}{r_{q}} \sum_{q \in P \mid P_{r}} k\left(P_{r}, q\right) .
$$

Point Location Step

$$
\mathrm{E}\left[\sum_{\Delta \in \mathcal{T}_{r} \tau_{r-1}} \operatorname{card}(K(\Delta))\right] \leqslant \frac{3}{r} \sum_{q \in P \backslash P_{r}} k\left(P_{r}, q\right) .
$$

Conclusion

- Delaunay triangulation is optimal anglemaximize triangulation
- Delaunay triangulation can be done in $\mathrm{O}(\mathrm{nlogn})$ time using $\mathrm{O}(\mathrm{n})$ space
- Delaunay triangulation have many applications

Surface Reconstruction

