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Arrangements and Duality

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on the lecture notes of Sanjay Sthapit 
(UNC) and Darius Jazayeri (MIT)
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Arrangements of Lines

• L is a set of n lines in a 
plane

• An arrangement A(L) of L 
is the subdivision of a 
plane by L

• The complexity of A(L) is 
the total number of 
vertices, edges, and faces 
of the subdivision
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Simple Arrangements

• An arrangement is simple if 
it does not contain 
– parallel lines

– 3 or more lines with a 
common intersection point

simple

not simple

Question:

Complexity of simple arrangement
vs.

Complexity of non-simple arrangement
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Complexity of Arrangements

• For a set L of n lines on a plane and their 
arrangement A(L):

– number of vertices in A(L) = n(n - 1)/2 

– number of edges in A(L)   = n2

– number of faces in A(L)    = n2/2 + n/2 + 1

Total complexity of an arrangement is O(n2)
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Complexity of Arrangements

• For a set L of n lines on a plane and their 
arrangement A(L):

– number of vertices in A(L) = n(n - 1)/2

• Proof :
 (n-1)+(n-2)+(n-3)+…+2+1= n(n-1)/2

2+1+0=3
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Complexity of Arrangements

• For a set L of n lines on a plane and their 
arrangement A(L):
– number of edges in A(L) = n2

• Proof : (by induction)
Strategy: Assume it’s correct for (n-1) and show that it is still correct 

when one more line l is added

(n-1)2

+(n-1) // From old n-1 lines
+n       // From l 
= n2

l
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Complexity of Arrangements

1. Add an extra vertex at infinity 
2. join all line open-ended edges 

to this vertex

 By Euler’s formula
 V - E + F = 2

 ⇒ F = 2 - (V + 1) + E

         = 2 - (n(n-1)/2 + 1) + n2

         = n2/2 + n/2 + 1

• For a set L of n lines on a plane and their arrangement A(L):

–number of faces in A(L) = n2/2 + n/2 + 1

Proof
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Data Structure for Arrangement

• Doubly connect edge list (Again)

Similar to Voronoi/Delaunay diagram, we can add a bounding box
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Build An Arrangement

• Incremental algorithm
– Add one line at a time

Walk around each face, to 
find the next intersection 
(new vertex)

l
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Time Complexity of Building 
An Arrangement

• Depends on the complexity of all faces 
intersected by each new line

This is called the “Zone” 
of line l

l
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Time Complexity of Building 
An Arrangement

• Zone complexity
– Total number of vertices/edges/faces in the zone

• Zone theorem
– The complexity of a zone of a line in an 

arrangement of n lines on the plane is O(n)
• In particular, zn ≤ 6n

⇒We can build an arrangement in time:

         1+2+…+n=O(n2)
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Proof of Zone Theorem
zn ≤ 6n

• Given an arrangement of n lines
• Assume l is a horizontal line

• Prove by induction: take a way one line 
– So we have zn ≤ 6n-6

• Put is back the line we remove, show that zn ≤ 6n

A

B
C

D

E

L1
L2 L3

L4

h

A
B C

D

F

L1
L2 L3

L4

h L5

Remove L5

E
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Proof of Zone Theorem
zn ≤ 6n

• Instead of counting total complexity, we count # of 
“left edges” of each face

• We prove ln ≤ 3n

A

B
C

D

E

L1
L2 L3

L4

h

A
B C

D

F

L1
L2 L3

L4

h L5

Remove L5

E

ln ≤ 3n ln-1 ≤ 3n-3

We prove that adding one line will add at most 3 left edges! 
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Proof of Zone Theorem
ln ≤ 3n

• Adding one line will add at most 3 left edges
– One from the new line added

– Two from the old left edge

• The line r we pick to remove/add is the line whose intersection 
with h is rightmost, L5 in our case

A

B
C

D

E

L1
L2 L3

L4

h

A
B C

D

F

L1
L2 L3

L4

h L5

Remove L5

E
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Proof of Zone Theorem
ln ≤ 3n

• At most one new left edge is added
– The line r only contribute one left edge

– The line r that contribute multiple left edges, must have another line 
intersecting h on its right

• Example, L2  and L3

A

B
C

D

E

L1
L2 L3

L4

h

A
B C

D

F

L1
L2 L3

L4

h L5

Remove L5

E
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Proof of Zone Theorem
ln ≤ 3n

• At most two old left edges are split
– Adding a line r will divide each cell in the zone to at most two cells

– Let intersection r and h be x

– Cells left to x, will be “clipped” (one sub cell will not be in the zone)

– Cells contain or right to x, will be “split” (both sub cells will be in the zone)

A

B
C

D

E

L1
L2 L3

L4

h x
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Proof of Zone Theorem
ln ≤ 3n

• At most two old left edges are split
– Only the rightmost face will be split by r 

• Face must be convex so at most two edges will be split

– The line r only “clips” other faces
• Clipping does not increase the number of left edges

A

B
C

D

E

L1
L2 L3

L4

h

A
B C

D

F

L1
L2 L3

L4

h L5

Remove L5

E
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Summary

• Complexity of an arrangement of n lines 
in a plane O(n2)

• Building an arrangement of n lines in a 
plane takes O(n2) time
– Zone theorem

• The zone of a line is a set of faces intersecting 
the line

• Complexity of a zone is linear to the number of 
lines



19

Applications of Arrangements

• Ray tracing rendering
• Compute Voronoi diagram

– K closest computation

• Visibility graph
• Hidden surface removal
• Ham (cheese) sandwich cut
• Motion planning
• …
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Ray-Tracing Rendering

• Shooting rays from each pixel
– Decide which object hits the rays
– Determine the color of the pixel



21

Ray-Tracing Rendering

• One of the oldest problems in rendering
– anti-aliasing 

From wikipedia

Supersampling
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Supersampling

• Human vision is sensitive to regularity

x4 zoom
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Supersampling

• We need generate our samples at random 
(regularity is BAD)

• Finding an optimal distribution depends on the 
objects to be rendered

• Instead, we generate a multiple random 
samplings and pick the one that is the best

• How do we measure the quality of a sample?
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Supersampling

• Assume: our scene is made of polygons
• Most likely, one pixel will be intersected 

by an edge of a polygon
1

S1

1U

Bad samples

S1

U

Better samples
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Discrepancy

• Let’s focus on the pixel
– Pixel is a 1x1 square U
– A half-plane h divide the square into 2 regions

– µ(h) = area of (U∩ h)
– µS(h) = #(S∩ h)/#(S)

S1

U 1

S1

U 1

1

1

µ(h)

h

µS(h)=0.1 µS(h)=0.4
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Discrepancy

• Let’s focus on the pixel
– Discrepancy of S, ΔS(h)= | µS(h) - µ(h) |

S1

U 1

S1

U 1

1

1

µ(h)

h

ΔS(h)=0.35

Assume µ(h)=0.45

ΔS(h)=0.05
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Discrepancy

• We want the discrepancy to be as small 
as possible

• Given a set of samples, what is its worst 
discrepancy for any given half-plane?

ΔS(H)= max(| µS(h) - µ(h) |) |
h ∈ H

where H is a set of all possible half planes
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Summary

• Given a set of samples, we can measure its quality by 
computing the worst discrepancy ΔS

• We generate several sets of samples and pick the one 
with the best quality

Note: A uniform distribution will have the lowest 
discrepancy, but  a uniform distribution produces regularity. 

Question: How to compute ΔS(H)= max(| µS(h) - µ(h) |)
h ∈ H

There are an infinite number of possible half-planes…We 
can’t just loop over all of them.
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Computing Discrepancy

• The line of the half-plane of maximum 
discrepancy must pass through one of the 
sample points

S1

U 1

1

1 If h does not pass though any point, 
we can always increase the 
discrepancy by translating h until it 
touches at least one point
i.e, Same µS(h), but increasing/decreasing µ(h)

• We only have to consider that cases
1. When h passes through 1 point
2. When h passes through 2 points

h
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Computing Discrepancy

• When h passes through 1 point
– There are infinite number of such h

S1

U 1

1

1
hθ

We only need to find local extrema of µ(hθ) 
• At local maximum of µ(hθ) and µS(h)<µ(hθ)

• At local minimum of µ(hθ) and µS(h)>µ(hθ)

There are only constant number of these, each will 
take us O(n) time to compute ΔS(hθ) 

Maximum discrepancy only happen at 
certain cases!!

Total time complexity is O(n2)
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Computing Discrepancy

• When h passes through 2 points
– There are O(n2) of such h

S1

U 1

1

1 h

Each will take us O(n) time to compute 
ΔS(h) 

Total time complexity is O(n3)

Need a faster algorithm for this!

Q: Do we have to 
consider h passes 
through 3 or more 
points
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Computing Discrepancy

Construct an 
arrangement A of the 
duals of the sample 
points and h

Count the number of 
lines above and 
below h*

Use arrangement!

primal

dual
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Duality
• We can map between different ways of interpreting 2D 

values

• Points (x,y) can be mapped in a one-to-one manner to 
lines (slope,intercept) in a different space

p4=(-2,4)
l : y=x-1

p2 =(1,0)

p1=(-4,-5)

p3=(3,2)

p*3 : y=3x-2

p*2 : y=x

p*4 : y=-2x-4
p*1 : y=-3x+5

l*

duality 
transform
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Duality Transforms

• Some duality transforms :-
– Slope:    y = mx - b  ⇔ p:(m, b)
– Polar:  ax + by = 1 ⇔ p:(a, b)
– Parabolic:   y = 2ax - b  ⇔ p:(a, b)

p4=(-2,4)
l : y=x-1

p2 =(1,0)

p1=(-4,-5)

p3=(3,2)

p*3 : y=3x-2

p*2 : y=x

p*4 : y=-2x-4
p*1 : y=-3x+5

l*

duality 
transform

y = mx - b  ⇔ p:(m, b)

Q: When you move a point from left to right in primary space what will happen in dual space
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Duality Properties

• (x*)* = x

• Point p lies on line l iff point l * lies on line p*

• Lines L1 and L2 intersect at a point p iff line p* passes thru L1* and 
L2*

• If point p lies above line L, then line p* lies below point L* and 
vice-versa

p4=(-2,4)
l : y=x-1

p2 =(1,0)

p1=(-4,-5)

p3=(3,2)

p*3 : y=3x-2

p*2 : y=x

p*4 : y=-2x-4
p*1 : y=-3x+5

l*

duality 
transform

y = mx - b  ⇔ p:(m, b)
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Additional Duality Properties

• This duality transform takes
– points to lines, lines to points

• For line segments, the dual of 
a line segment s between 
points p and q is the double 
wedge between lines p* and 
q* on the dual plane
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Computing Discrepancy

Determine how many sample 
points lie below a given line

S1

U 1

1

1 h

Determine how many lines lie 
above a given vertex
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Why Duality?

• Looking at things on the dual plane 
provides new perspectives
– It does makes problem harder or easier

• For problems dealing with points, their 
structure is more apparent
– arrangement of lines
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Computing Discrepancy

1. Compute arrangement of S*
2. For each vertex we compute 

# of lines above the vertex

Determine how many lines lie 
above a given point

S*
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Computing Discrepancy

• For each line l in S*
– Compute the level of the leftmost vertex. O(n)

• Check, for all other lines li,whether li is above that vertex

– Walk along l from left to right to visit the other 
vertices on l, using the DCEL.

• Walk along l, maintaining the level as we go (by 
inspecting the edges incident to each vertex we 
encounter).

– O(n) per line
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Summary

• Given the level of a vertex in the (dualized) 
arrangement, we can compute the discrete 
measure of S wrt the h that vertex corresponds 
to in O(1) time.

• We can compute all the interesting 
discrete measures in O(n2) time.

• Thus we can compute all ΔS(h) and hence ΔS, in 
O(n2) time.
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Ham (cheese) sandwich cut

• Given a sandwich, can you cut it so that each half has 
the same amount of  ham, cheese and bread 

Ham sandwich theorem
You can always do this

But how do you compute the cut?
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Ham (cheese) sandwich cut

Find lines, such that the 
number of red/blue points 
above the line is the same 
as that below the lines

Find points, such that the 
number of red/blue lines 
above the points is the 
same as that below the 
points
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Ham (cheese) sandwich cut

• Consider blue/red (dual) points separately

Red Blue

Median Level 
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Ham (cheese) sandwich cut

• Consider blue/red (dual) points separately

Red+Blue

This is our cut!
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Constructing Vornoi Diagrams

1. Lift each 1D point a to a 2D point 
(a, a2)

• For each 2D point (a, a2), find its 
dual y=2ax-a2

1. Compute intersection of these lines 
in the dual space

2. Project the intersections of these 
duals onto the x-axis.

3. This is the Vornoi diagram.
The process generalizes to 

• Higher order diagrams (by checking vertex levels!)
• Higher dimensional space


