<u>CS633 Lecture 12</u> <u>Convex hulls</u>

Jyh-Ming Lien

Department of Computer Science George Mason University

Based on Jason C. Yang's note

Dec 03, 2008

Outline

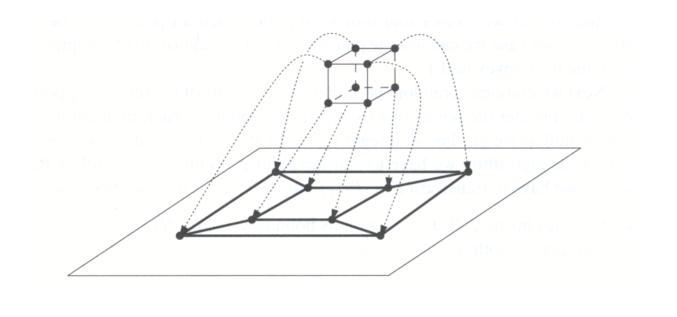
- 3D Convex hull
- Put it all together
 - Convex hull vs. half-space intersection
 - Convex hull vs. Delaunay & Voronoi diagrams
 - Voronoi diagram vs. Line arrangements
 - Convex hull vs. Line arrangements

Problem Statement

- Given *P*: set of *n* points in 3-space
- Return:
 - Convex hull of P: CH(P)
 - Smallest convex object s.t.
 all elements of *P* on or in the interior of *CH*(*P*).

Complexity

- Complexity of *CH* for *n* points in 3-space is *O*(*n*)
- Given a convex polytope with *n* vertices
 - The number of edges is at most 3n-6
 - The number of facets is at most 2n-4

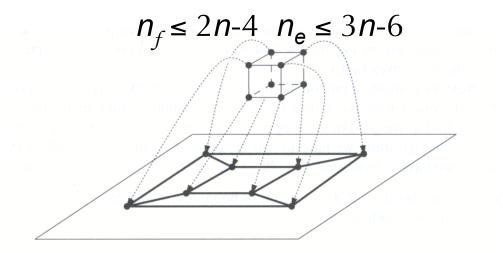


Complexity

- Each face has at least 3 arcs
- Each arc incident to two faces

 $(2/3)n_e \ge n_f$

• Using Euler's formula (|V|-|E|+|F|=2)



This remains true for any polyhedron without handles

<u>Algorithm</u>

- Randomized incremental algorithm
- Steps:
 - Initialize the algorithm
 - Loop over remaining points Add p_r to the convex hull of P_{r-1} to transform $C\mathcal{H}(P_{r-1})$ to $C\mathcal{H}(P_r)$ [for integer $r \ge 1$, let $P_r := \{p_1, \dots, p_r\}$]

Main Idea:

Incrementally insert new points into the intermediate Convex Hull.

Initialization

- Need a *CH* to start with
- Build a tetrahedron using 4 points in *P*
 - Start with two distinct points in *P*: p_1 and p_2
 - Walk through *P* to find p_3 that does not lie on the line through p_1 and p_2
 - Find p_4 that does not lie on the plane through p_1 , p_2 , p_3
 - Special case: No such points exist?
- Compute random permutation *p*₅,...,*p*_n of the remaining points

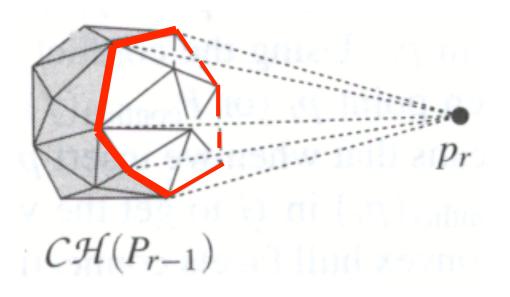
Inserting Points into *CH*

- Add p_r to the convex hull of P_{r-1} to transform $CH(P_{r-1})$ to $CH(P_r)$ [for integer $r \ge 1$, let $P_r := \{p_1, \dots, p_r\}$]
- Two Cases:

1) P_r is inside or on the boundary of $CH(P_{r-1})$ $CH(P_r) = CH(P_{r-1})$ 2) P_r is outside of $CH(P_{r-1})$

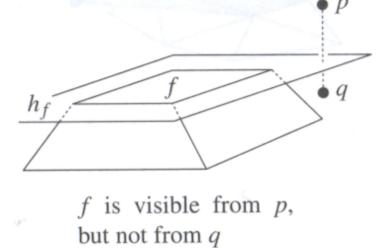
Case 2: P_r outside $CH(P_{r-1})$

- Determine *horizon* of p_r on $CH(P_{r-1})$
 - Closed curve of edges enclosing the **visible** region of p_r on $CH(P_{r-1})$



Visibility

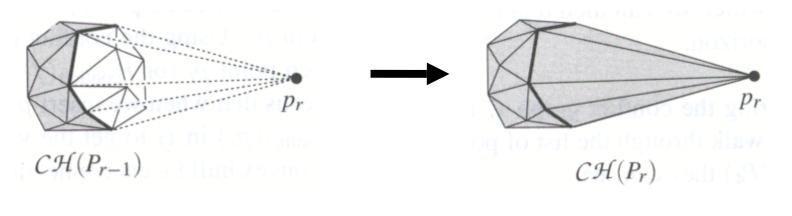
- Consider plane h_f containing a facet f of $CH(P_{r-1})$
- *f* is *visible* from a point if that point lies in the open half-space on the other side of *h_f*



$\underline{CH}(\underline{P}_{r-1}) \rightarrow \underline{CH}(\underline{P}_r)$

• Remove *visible* facets from $CH(P_{r-1})$

- Find *horizon*: Closed curve of edges of $CH(P_{r-1})$
- Form *CH*(*P_r*) by connecting each horizon edge to *p_r* to create a new triangular facet



Algorithm So Far...

- Initialization
 - Form tetrahedron $CH(P_4)$ from 4 points in P
 - Compute random permutation of remaining pts.
- For each remaining point in P
 - $-p_r$ is point to be inserted
 - If p_r is outside $CH(P_{r-1})$ then
 - Determine visible region
 - Find horizon and remove visible facets
 - Add new facets by connecting each horizon edge to p_r

?

How to Find Visible Region

- Naïve approach:
 - Test every facet with respect to p_r
 - Total computation time: $O(n^2)$
- Trick is to work ahead: Maintain information to aid in determining visible facets

Conflict Lists

• For each facet *f* maintain

 $P_{\text{conflict}}(f) \subseteq \{p_{r+1}, \dots, p_n\}$

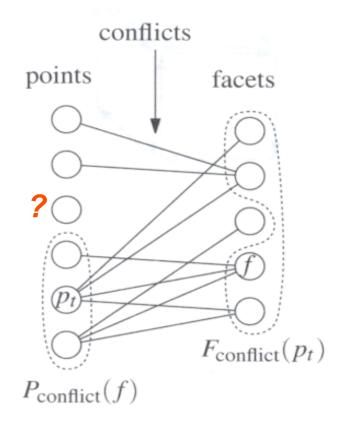
containing points to be inserted that can see f

• For each p_t , where t > r, maintain

 $F_{\text{conflict}}(p_t)$ containing facets of $CH(P_r)$ visible from p_t

• *p* and *f* are in *conflict* because they cannot coexist on the same convex hull

Conflict Graph G

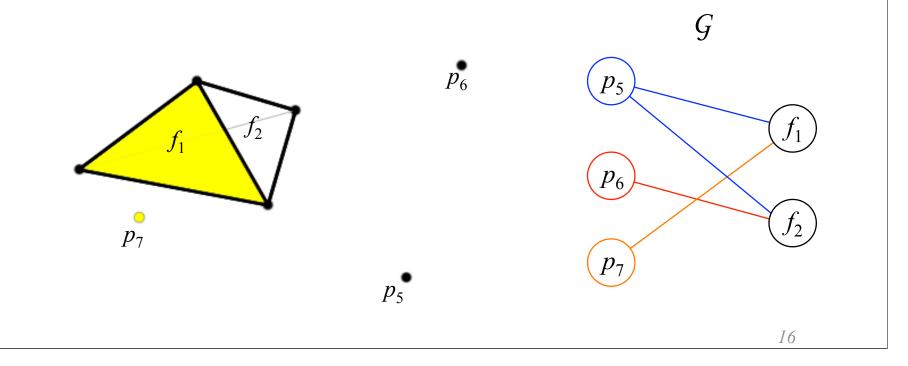


- Bipartite graph
 - pts not yet inserted
 - facets on $CH(P_r)$
- Arc for every point-facet conflict
- Conflict sets for a point or facet can be returned in linear time

At any step of our algorithm, we know all conflicts between the remaining points and facets on the current CH

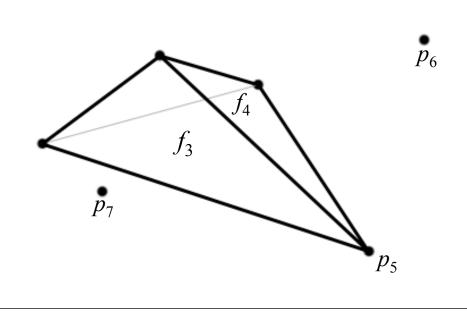
Initializing G

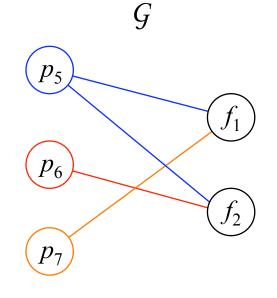
- Initialize G with $CH(P_4)$ in linear time
- Walk through $P_{5\sim n}$ to determine which facet each point can see



Updating G

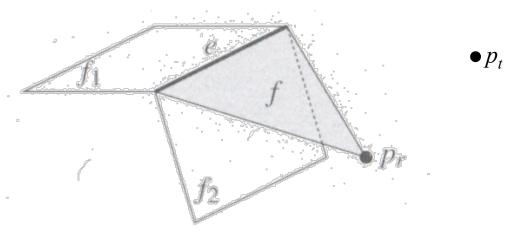
- Discard visible facets from *p_r* by removing neighbors of *p_r* in *G*
- Remove p_r from G
- Determine new conflicts





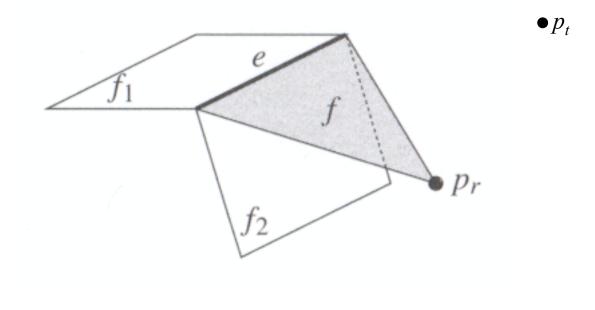
Determining New Conflicts

- If p_t can see <u>new f</u>, it can see edge e of f.
- *e* on horizon of p_r , so *e* was already in and visible from p_t in $CH(P_{r-1})$
- If p_t sees e, it saw either f_1 or f_2 in $CH(P_{r-1})$
- p_t was in $P_{\text{conflict}}(f_1)$ or $P_{\text{conflict}}(f_2)$ in $CH(P_{r-1})$



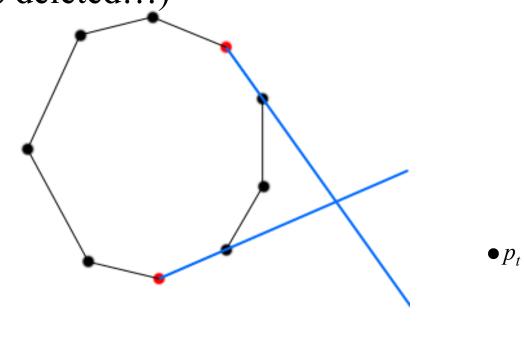
Determining New Conflicts

 Conflict list of *f* can be found by testing the points in the conflict lists of *f*₁ and *f*₂ in *CH*(*P*_{*r*-1})



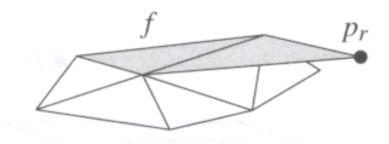
What About the Other Facets?

- $P_{\text{conflict}}(f)$ for any f unaffected by p_r remains unchanged
- Deleted facets not on horizon already accounted for (they are deleted...)



Fine Point

- Coplanar facets
 - p_r lies in the plane of a face of $CH(P_{r-1})$



- *f* is not visible from *p_r* so we merge created triangles coplanar to *f*
- New facet has same conflict list as existing facet

Final Algorithm

- Initialize $CH(P_4)$ and G
- For each remaining point
 - Determine visible facets for p_r by checking G
 - Remove $F_{\text{conflict}}(p_r)$ from CH
 - Find horizon and add new facets to CH and G
 - Update *G* for new facets by testing the points in existing conflict lists for facets in $CH(P_{r-1})$ incident to *e* on the new facets
 - Delete p_r and $F_{\text{conflict}}(p_r)$ from G

Expected Number of Facets Created

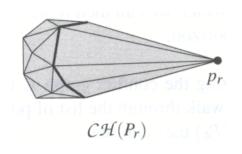
• Will show that expected number of facets created by our algorithm is at most 6*n*-20

• Initialized with a tetrahedron = 4 facets

Expected Number of New Facets

- Backward analysis:
 - Remove p_r from $CH(P_r)$
 - Number of facets removed same as those created by p_r
 - Number of edges incident to p_r in $CH(P_r)$ is degree of p_r :

 $\deg(p_{r'} CH(P_r))$



Expected Degree of *p*_{*r*}

- Convex polytope of *r* vertices has at most 3*r*-6 edges
- Sum of degrees of vertices of $CH(P_r)$ is 6r-12
- Expected degree of p_r bounded by (6r-12)/r

 $E[\deg(p_r, \mathcal{CH}(P_r))] = \frac{1}{r-4} \sum_{i=5}^r \deg(p_i, \mathcal{CH}(P_r))$ $\leqslant \frac{1}{r-4} \left(\left\{ \sum_{i=1}^r \deg(p_i, \mathcal{CH}(P_r)) \right\} - 12 \right)$

$$\leqslant \quad \frac{6r - 12 - 12}{r - 4} = 6.$$

25

Expected Number of Created Facets

- 4 from initial tetrahedron
- Expected total number of facets created by adding p_5, \ldots, p_n

 $4 + \sum_{r=5}^{n} \mathbb{E}[\deg(p_r, \mathcal{CH}(P_r))] \leq 4 + 6(n-4) = 6n - 20.$

Running Time

- Initialization $\Rightarrow O(n \log n)$
- Creating and deleting facets \Rightarrow O(n)
 - Expected number of facets created is O(n)
- Deleting p_r and facets in $F_{\text{conflict}}(p_r)$ from *G* along with incident arcs $\Rightarrow O(n)$
- Finding new conflicts $\Rightarrow O(?)$

Total Time to Find New Conflicts

• For each edge e on horizon we spend $O(\operatorname{card}(P(e)) \text{ time})$

where $P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_{12})$

- Total time is $O(\Sigma_{e \in L} \operatorname{card}(P(e)))$ bounded by expected value of $\Sigma \operatorname{card}(P(e))$
- Lemma 11.6 The expected value of Σ_ecard(P(e)), where the summation is over all horizon edges that appear at some stage of the algorithm is O(nlogn)

Running Time

- Initialization $\Rightarrow O(n)$
- Creating and deleting facets $\Rightarrow O(n)$
- Updating $G \Rightarrow O(n)$
- Finding new conflicts ⇒ **O**(*n***log***n*)
- Total Running Time is O(nlogn)

Higher Dimensional Convex Hulls

• Upper Bound Theorem:

The worst-case combinatorial complexity of the convex hull of n points in *d*-dimensional space is $\Theta(n \lfloor d/2 \rfloor)$

• Our algorithm generalizes to higher dimensions with expected running time of $\Theta(n^{\lfloor d/2 \rfloor})$

Outline

• 3D Convex hull

- Put it all together
 - Convex hull vs. half-space intersection
 - Convex hull vs. Delaunay & Voronoi diagrams
 - Voronoi diagram vs. Line arrangements
 - Convex hull vs. Line arrangements

Half-Plane Intersection

- Convex hulls and intersections of half planes are dual concepts
- To compute the intersection of halfplanes, we can
 - Convert planes into points in dual space
 - Compute a convex hull in dual space
 - Convert the convex hull back to primal space
- Will this always work?

Half-Plane Intersection

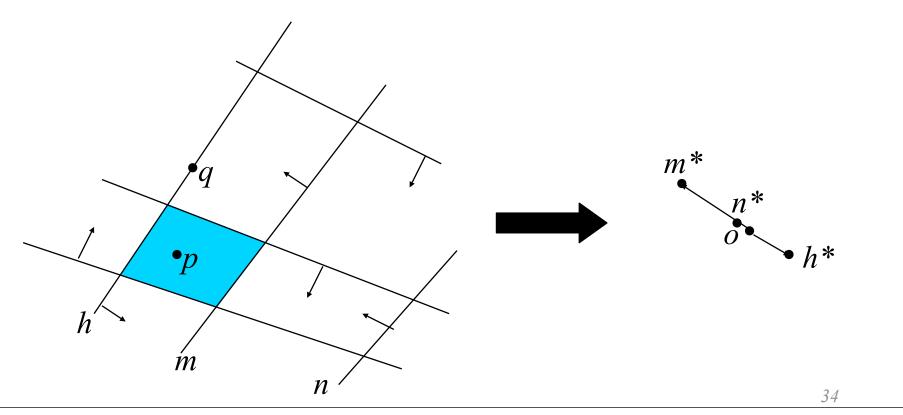
 If we do not leave the Euclidean plane, there cannot be any general duality that turns the intersection of a set of half-planes into a convex hull. Why? Intersection of half-planes can be empty! And Convex hull is well defined.

• Conditions for duality:

- Intersection is not empty
- At least one point in the interior is known.

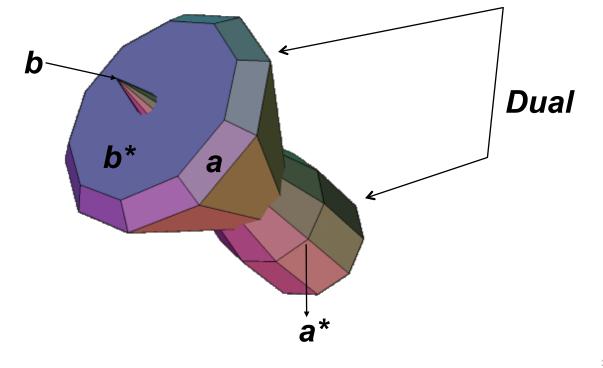
Example

- Given a halfspace $h = \{n_q, q\}$
- Given a point *p* in the intersection
- Point $h^* = n_q / ((q-p) \bullet n_q)$



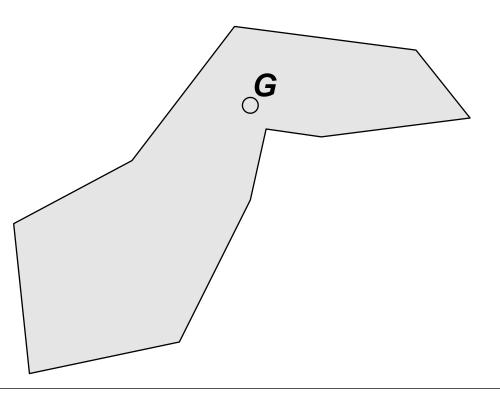
Example

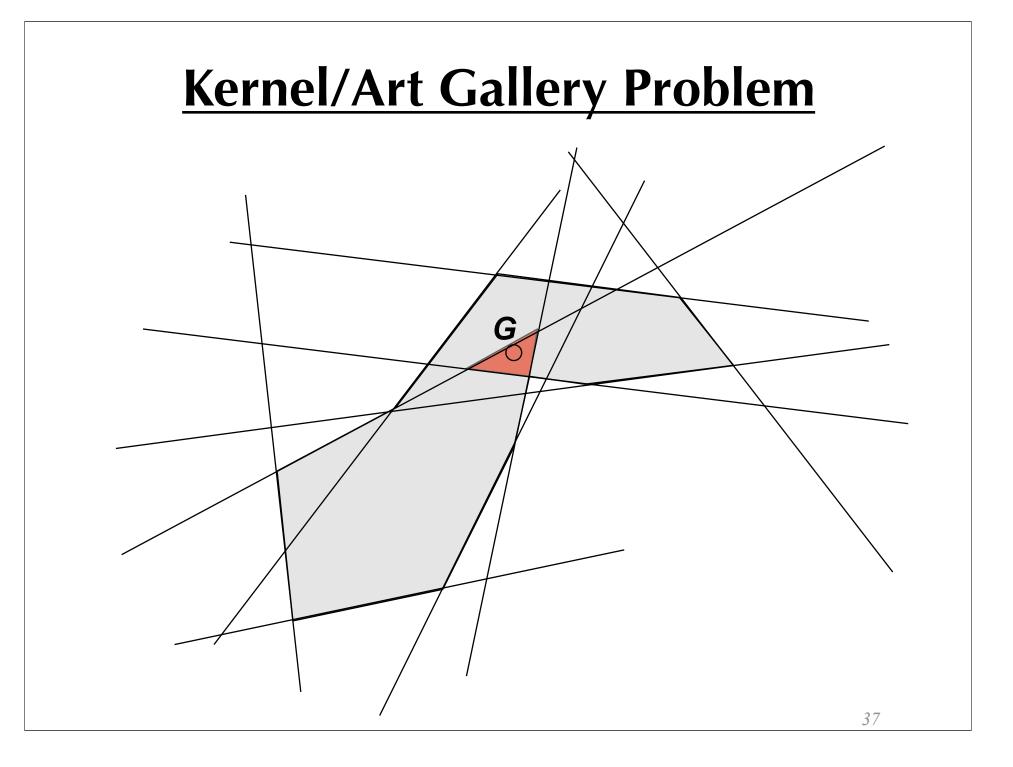
- Image from *qhull*
 - Each facet becomes a vertex
 - Each vertex becomes a facet



Kernel/Art Gallery Problem

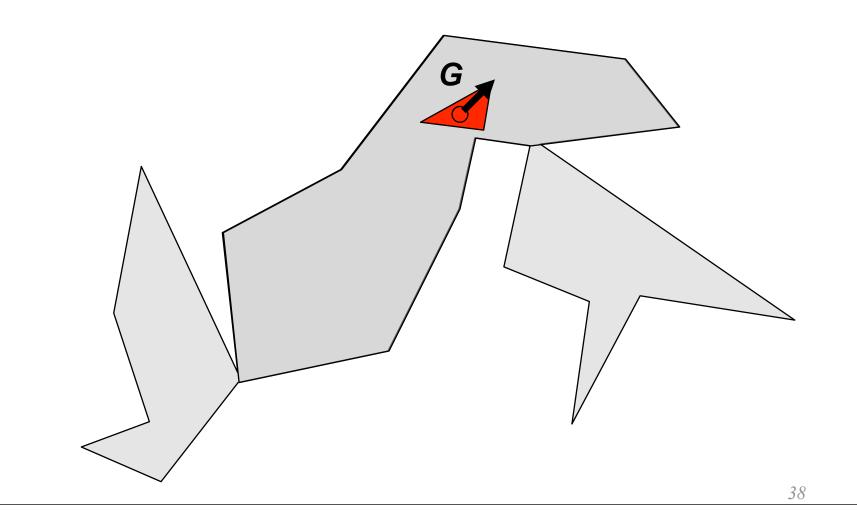
- Kernel of a polygon is a set of points that can see very points in the polygon
 - Given a point G that is in the kernel, we can compute the kernel





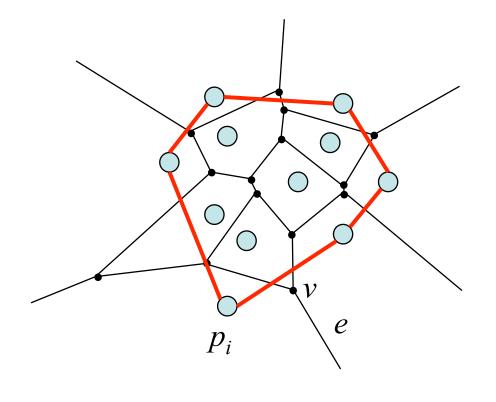
Kernel/Art Gallery Problem

Any point in the kernel can see the same or even more than G



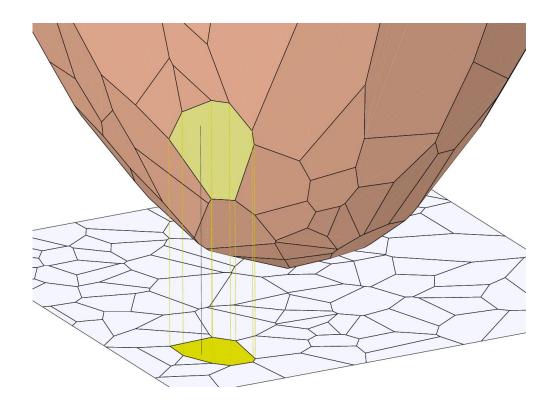
Convex hull vs. Voronoi/Delaunay

 Convex hull can be computed from Voronoi/Delaunay diagrams



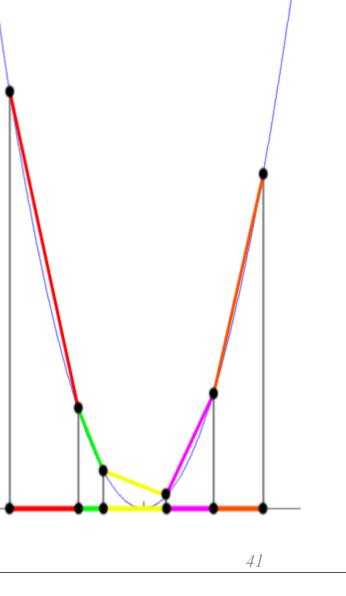
Convex hull vs. Voronoi/Delaunay

 k-d Voronoi/Delaunay diagrams can be computed from (k+1)-d convex hull



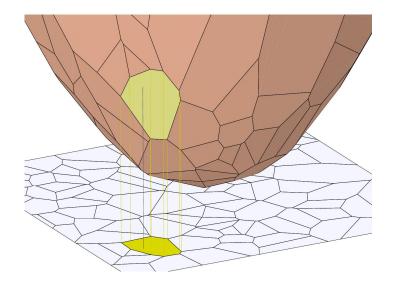
1D Delaunay Triangulation

- Input $P = \{x_1, x_2, ..., x_n\}$
- U:=($y=x^2$) a parabola
- Lift every point to U, i.e., - $p^*_i = \{x_i, x_i^2\}$
- Compute the convex hull of P*
- Project the connectivity down



2D Delaunay Triangulation

- Input $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
- U:= $(z=x^2+y^2)$ a parabolid
- Lift every point to U, i.e., $- p^*_i = \{x_i, y_i, x_i^2 + y_i^2\}$
- Compute the convex hull of P*
- Project the connectivity down



- $p *= \{p, p^2\}$
- Tangent line at *p**
 - Slop is 2p
 - $-y=2p(x-p)-p^2$
- Raise the tangent line by r^2
 - $-y=2p(x-p)-p^2+r^2$
 - What's the intersection between the line and the curve?
 - $x^2 = 2p(x-p) p^2 + r^2$
 - $\Rightarrow x = p \pm r$



- $p *= \{a, b, a^2+b^2\}$
- Tangent plane at *p**
 - Slop is (1, 1, 2a+2b)
 - $-z=2ax+2by-(a^2+b^2)$
- Raise the tangent plane by r^2
 - $z = 2ax + 2by (a^2 + b^2) + r^2$
 - What's the intersection between the line and the curve?
 - $x^2+y^2=2ax+2by-(a^2+b^2)+r^2$ $\Rightarrow (x-a)^2+(y-b)^2=r^2$

- Let *h* be a tangent plane for a facet of the convex hull
- Lower *h* so that *h* tangents paraboloid, call *h**
- Let the distance between *h* and h^* be r^2
- Now, we know
 - The projection of the intersection of *h* and the parabloid is a circle with radius *r*
- The circle is empty because
 - All other points are above *h*
 - All other points are more than r^2 distance away from h^*
- The project of the tangent point is a vertex of the Voronoi diagram

Voronoi vs. Arrangement

• x_1 and x_2

- Line $x_1^*: y=2x_1x-x_1^2$
- Line $x_2^*: y=2 x_2 x_2 x_2^2$
- Intersection

$$-2x_1x - x_1^2 = 2x_2x - x_2^2$$

- Input $P = \{x_1, x_2, ..., x_n\}$
- Lift
 - $-a \Leftrightarrow a, a^2$
- Duality transform - $(a,b) \Leftrightarrow y=2ax-b$
- Arrangement of lines in dual space
- Project vertices with level=0

Convex Hulls vs. Arrangement

- Upper convex hull of a set of points is essentially the lower envelope of a set of lines
 - similar with lower convex hull and upper envelope

