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Convex hulls
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Outline

• 3D Convex hull

• Put it all together
– Convex hull vs. half-space intersection

– Convex hull vs. Delaunay & Voronoi diagrams
– Voronoi diagram vs. Line arrangements
– Convex hull vs. Line arrangements
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Problem Statement

• Given P: set of n points in 3-space

• Return:
– Convex hull of P: CH(P)

– Smallest convex object s.t. 
all elements of P on or in
the interior of CH(P).
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• Complexity of CH for n points in 3-space is O(n)

• Given a convex polytope with n vertices
– The number of edges is at most 3n-6 

– The number of facets is at most 2n-4

Complexity
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Complexity

• Each face has at least 3 arcs

• Each arc incident to two faces

(2/3)ne ≥ nf

• Using Euler’s formula (|V|-|E|+|F|=2)

nf  ≤ 2n-4  ne ≤ 3n-6

This remains true for any polyhedron without handles
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Algorithm

• Randomized incremental algorithm

• Steps:
– Initialize the algorithm
– Loop over remaining points

Add pr to the convex hull of Pr-1 to transform 
 CH(Pr-1) to CH(Pr)
  [for integer r≥1, let Pr:={p1,…,pr}]

Main Idea:
Incrementally insert new points into the 
intermediate Convex Hull.
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Initialization

• Need a CH to start with

• Build a tetrahedron using 4 points in P
– Start with two distinct points in P: p1 and p2

– Walk through P to find p3 that does not lie on the line through 
p1 and p2

– Find p4 that does not lie on the plane through p1, p2, p3

– Special case: No such points exist?

  

• Compute random permutation p5,…,pn 
of the remaining points
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Inserting Points into CH

• Add pr to the convex hull of Pr-1 to 
transform CH(Pr-1) to CH(Pr)
 [for integer r≥1, let Pr:={p1,…,pr}]

• Two Cases:
1) Pr is inside or on the boundary of CH(Pr-1)

                    CH(Pr) = CH(Pr-1)

2) Pr is outside of CH(Pr-1)
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Case 2: Pr outside CH(Pr-1)

• Determine horizon of pr on CH(Pr-1)
– Closed curve of edges enclosing the visible 

region of pr on CH(Pr-1)
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Visibility

• Consider plane hf containing a facet f of 
CH(Pr-1)

• f is visible from a point if that point lies 
in the open half-space on the other side 
of hf
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CH(Pr-1) → CH(Pr)

• Remove visible facets from CH(Pr-1)

• Find horizon: Closed curve of edges of CH(Pr-1)

• Form CH(Pr) by connecting each horizon edge 
to pr to create a new triangular facet
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Algorithm So Far…

• Initialization
– Form tetrahedron CH(P4) from 4 points in P

– Compute random permutation of remaining pts.

• For each remaining point in P
– pr is point to be inserted

– If pr is outside CH(Pr-1) then
• Determine visible region
• Find horizon and remove visible facets
• Add new facets by connecting each horizon edge to pr

?
?
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How to Find Visible Region

• Naïve approach:
– Test every facet with respect to pr

– Total computation time: O(n2)

• Trick is to work ahead:
Maintain information to aid in determining 

visible facets
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Conflict Lists

• For each facet f maintain
 Pconflict( f ) ⊆ {pr+1, …, pn}

 containing points to be inserted that can see f

• For each pt, where t > r, maintain
 Fconflict(pt) 

 containing facets of CH(Pr) visible from pt

• p and f are in conflict because they cannot 
coexist on the same convex hull
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Conflict Graph G

• Bipartite graph 
– pts not yet inserted
– facets on CH(Pr)

• Arc for every 
point-facet conflict

• Conflict sets for a 
point or facet can 
be returned in 
linear time

At any step of our algorithm, we know all conflicts 
between the remaining points and facets on the current CH

?
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Initializing G 

• Initialize G with CH(P4) in linear time

• Walk through P5~n to determine which 
facet each point can see

f1
f2

p6

p5

p7

p6

p7

p5

f2

f1

G
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p5

f2

f1

Updating G

• Discard visible facets from pr  by 
removing neighbors of pr in G

• Remove pr from G

• Determine new conflicts

p6

p7

G

f1
f2

f3

f4

p5

p7

p6
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Determining New Conflicts
• If pt can see new f, it can see edge e of f.

• e on horizon of pr, so e was already in and 
visible from pt in CH(Pr-1)

• If pt sees e, it saw either f1 or f2 in CH(Pr-1)

• pt was in Pconflict(f1) or Pconflict(f2) in CH(Pr-1)

pt
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Determining New Conflicts

• Conflict list of f can be found by testing 
the points in the conflict lists of f1 and f2 
in CH(Pr-1)

pt
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What About the Other Facets?

pt

• Pconflict(f) for any f unaffected by pr remains 
unchanged

• Deleted facets not on horizon already accounted 
for (they are deleted…)



21

Fine Point

• Coplanar facets
– pr lies in the plane of a face of CH(Pr-1)

• f is not visible from pr so we merge created 
triangles coplanar to f

• New facet has same conflict list as existing 
facet
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Final Algorithm

• Initialize CH(P4) and G

• For each remaining point
– Determine visible facets for pr by checking G

– Remove Fconflict(pr) from CH

– Find horizon and add new facets to CH and G

– Update G for new facets by testing the points in existing 
conflict lists for facets in CH(Pr-1) incident to e on the new 
facets

– Delete pr and Fconflict(pr) from G
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Expected Number of Facets Created

• Will show that expected number of 
facets created by our algorithm is at most 
6n-20

• Initialized with a tetrahedron = 4 facets
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Expected Number of New Facets

• Backward analysis:
– Remove pr from CH(Pr)

– Number of facets removed same as those 
created by pr

– Number of edges incident to pr in CH(Pr) is 
degree of pr :

deg(pr, CH(Pr))
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Expected Degree of pr
• Convex polytope of r vertices has at most 3r-6 edges

• Sum of degrees of vertices of CH(Pr) is 6r-12

• Expected degree of pr bounded by (6r-12)/r
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Expected Number of Created Facets

• 4 from initial tetrahedron
• Expected total number of facets created 

by adding p5,…,pn
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Running Time

• Initialization ⇒ O(nlogn)

• Creating and deleting facets ⇒ O(n)
– Expected number of facets created is O(n)

• Deleting pr and facets in Fconflict(pr) from 
G along with incident arcs ⇒ O(n)

• Finding new conflicts ⇒ O(?)
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Total Time to Find New Conflicts

• For each edge e on horizon we spend

  O(card(P(e)) time

 where P(e) ← Pconfict(f1)∪ Pconflict(f12)

• Total time is O(Σe∈Lcard(P(e)))
 bounded by expected value of Σcard(P(e))

• Lemma 11.6 The expected value of Σecard(P(e)), 
where the summation is over all horizon edges that 
appear at some stage of the algorithm is O(nlogn)
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Running Time

• Initialization ⇒ O(n)

• Creating and deleting facets ⇒ O(n)
• Updating G ⇒ O(n)

• Finding new conflicts ⇒ O(nlogn)

• Total Running Time is O(nlogn)
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Higher Dimensional Convex Hulls

• Upper Bound Theorem:

   The worst-case combinatorial complexity of 
the convex hull of n points in d-
dimensional space is Θ(n d/2)

• Our algorithm generalizes to higher 
dimensions with expected running time of 
Θ(n d/2)
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Outline

• 3D Convex hull

• Put it all together
– Convex hull vs. half-space intersection

– Convex hull vs. Delaunay & Voronoi diagrams
– Voronoi diagram vs. Line arrangements
– Convex hull vs. Line arrangements
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Half-Plane Intersection

• Convex hulls and intersections of half 
planes are dual concepts

• To compute the intersection of half-
planes, we can 
– Convert planes into points in dual space
– Compute a convex hull in dual space

– Convert the convex hull back to primal space

• Will this always work?
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Half-Plane Intersection

• If we do not leave the Euclidean plane, there cannot 
be any general duality that turns the intersection of a 
set of half-planes into a convex hull.  Why?
 Intersection of half-planes can be empty!
 And Convex hull is well defined.

• Conditions for duality:
– Intersection is not empty

– At least one point in the interior is known.
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Example

• Given a halfspace h={nq, q}

• Given a point p in the intersection

• Point h*= nq/((q-p)• nq)

h

q

p
o

h*

m
n

n*
m*
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Example

• Image from qhull
– Each facet becomes a vertex
– Each vertex becomes a facet 

Dual

a

a*

b

b*
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Kernel/Art Gallery Problem

• Kernel of a polygon is a set of points that 
can see very points in the polygon
– Given a point G that is in the kernel, we can 

compute the kernel

G
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Kernel/Art Gallery Problem

G
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Kernel/Art Gallery Problem

G

Any point in the kernel can see the same 
or even more than G
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Convex hull vs. Voronoi/Delaunay

• Convex hull can be computed from 
Voronoi/Delaunay diagrams

e
v

pi
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Convex hull vs. Voronoi/Delaunay

• k-d Voronoi/Delaunay diagrams can be 
computed from (k+1)-d convex hull
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1D Delaunay Triangulation

• Input P={x1, x2,…xn}

• U:=(y=x2) a parabola

• Lift every point to U, i.e.,
– p*i={xi,xi

2}

• Compute the convex hull of P*

• Project the connectivity down
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2D Delaunay Triangulation

• Input P={(x1, y1), (x2, y2), …, (xn, yn)}

• U:=(z=x2+y2) a parabolid

• Lift every point to U, i.e.,
– p*i={xi, yi, xi

2+yi
2}

• Compute the convex hull of P*

• Project the connectivity down
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Why does it work?

• p*={p, p2}
• Tangent line at p*

– Slop is 2p

– y=2p(x-p)- p2

• Raise the tangent line by r2

– y=2p(x-p)- p2 +r2 

– What’s the intersection between the line and the 
curve?

•  x2=2p(x-p)- p2 +r2 

⇒ x=p±r
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Why does it work?

5

r2 =4

73
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Why does it work?

• p*={a, b, a2+b2}
• Tangent plane at p*

– Slop is (1, 1, 2a+2b)
– z=2ax+2by-(a2+b2)

• Raise the tangent plane by r2

– z=2ax+2by-(a2+b2)+r2 

– What’s the intersection between the line and the 
curve?

•  x2+y2=2ax+2by-(a2+b2)+r2 

⇒ (x-a)2+(y-b)2=r2 
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Why does it work?

• Let h be a tangent plane for a facet of the convex hull 
• Lower h so that h tangents paraboloid, call h*

• Let the distance between h and h* be r2

• Now, we know
– The projection of the intersection of h and the parabloid is a 

circle with radius r

• The circle is empty because
– All other points are above h
– All other points are more than r2 distance away from h* 

• The project of the tangent point is a vertex of the 
Voronoi diagram
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Voronoi vs. Arrangement

• x1 and x2

• Line x1*: y=2 x1 x- x1
2

• Line x2*: y=2 x2 x- x2
2

• Intersection
– 2 x1 x- x1

2 =2 x2 x- x2
2
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Why does it work?

• Input P={x1, x2,…xn} 

• Lift
– a ⇔ a, a2

• Duality transform
– (a,b) ⇔ y=2ax-b

• Arrangement of lines in dual space

• Project vertices with level=0
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Convex Hulls vs. Arrangement

• Upper convex hull of a set of points is 
essentially the lower envelope of a set of 
lines
– similar with lower convex hull and upper 

envelope
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Conclusion

Convex 
hull

Voronoi
diagram

Delaunay
triangulation

Arrangements
of Lines


