(CS633 Lecture 12
Convex hulls

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on Jason C. Yang's note

Dec 03, 2008

Outline

e 3D Convex hull

e Put it all together
— Convex hull vs. half-space intersection
— Convex hull vs. Delaunay & Voronoi diagrams
— Voronoi diagram vs. Line arrangements
— Convex hull vs. Line arrangements

Problem Statement

e Given P: set of n points in 3-space

¢ Return:
— Convex hull of P: ¢H(P)

— Smallest convex object s.t.
all elements of P on or in
the interior of CH(P).

Complexity

« Complexity of ¢H for n points in 3-space is O(n)

e Given a convex polytope with n vertices
— The number of edges is at most 3n-6

— The number of facets is at most 2n-4

Complexity

e Fach face has at least 3 arcs
e Fach arc incident to two faces

e Using Euler’s formula (|V/|-|E|+|F|=2)

f52n4 ne_3n6

This remains true for any polyhedron without handles

Algorithm

e Randomized incremental algorithm

o Steps:
— Initialize the algorithm

— Loop over remaining points
Add p, to the convex hull of P, to transform

CHP,) to CHP,)
[for integer r=1, let P..={p,,....p,}]

Main Ildea:
Incrementally insert new points into the
intermediate Convex Hull.

Initialization

e Need a CH to start with

e Build a tetrahedron using 4 points in P
— Start with two distinct points in P: p, and p,

— Walk through P to find p, that does not lie on the line through
p, and p,
— Find p, that does not lie on the plane through p,, p,, p;

— Special case: No such points exist?

e Compute random permutation p,...,p
of the remaining points

n

Inserting Points into C#

e Add p. to the convex hull of P, to

transform CH(P,._,) to CH(P,)
[for integer =1, let P.:={p,,....p,}]

e Two Cases:
1) P, is inside or on the boundary of ¢c#H(P..,)

C}KP,/) — C}[(P,/_l)
2) P, is outside of CH(P,)

Case 2: P _outside CH(P.)

e Determine horizon of p, on CH(P,.,)

— Closed curve of edges enclosing the visible
region of p, on CHP,,)

Visibility

e Consider plane &, containing a facet f'of
CHP,))

« fis visible from a point if that point lies
in the open half-space on the other side
Of hf (Y%

f 1s visible from p,
but not from ¢

CH(P..,) = CH(P)

e Remove visible facets from CH(P,)

e Find horizon: Closed curve of edges of CH(P,)

e Form CH(P,) by connecting each horizon edge
to p. to create a new triangular facet

CH(Pr)

Algorithm So Far...

e |nitialization
— Form tetrahedron C#(P,) from 4 points in P

— Compute random permutation of remaining pts.

 For each remaining point in P
— p, is point to be inserted

— If p, is outside CH(P,.,) theg

e Determine visible region

?

e Find horizon and remove visible facets
e Add new facets by connecting each horizon edge to p,

How to Find Visible Region

e Naive approach:

— Test every facet with respect to p,

— Total computation time: O(n?)

e Trick is to work ahead:

Maintain information to aid in determining
visible facets

Contlict Lists

e For each facet f maintain

Pconflict(f) C {pr+19 "‘9pn}
containing points to be inserted that can see f

e For each p, where t > r, maintain

Fconflict(pt)
containing facets of CH(P,) visible from p,

« p and fare in conflict because they cannot
coexist on the same convex hull

Conflict Graph ¢

conflicts ® B]partlte graph
Pmﬂls facets — p‘[g Not yet inserted
O— O — facets on CH(P)
O——=0
20 5 e Arc for every
{ L point-facet conflict
'. /\4//-/ ® COntht sets for d
_/r ‘conflict\ Pt)

noint or facet can
be returned in
Inear time

/)\‘\.‘Hﬂitl \ /)

At any step of our algorithm, we know all conflicts
between the remaining points and facets on the current CH'

Initializing ¢
e Initialize G with C#H(P,) in linear time

e Walk through P._ to determine which
facet each point can see

P

Updating ¢

e Discard visible facets from p, by

removing neighbors of p.in G
e Remove p from ¢

e Determine new conflicts

Ps

Determining New Conflicts

e If p. can see new f, it can see edge e of f.

e on horizon of p,, so e was already in and
visible from p. in CH(P, ;)
o If p sees e, it saw either f; or £, in CH(P, ;)

* P, Was In Pconflict(fl) or Pconflict<f2) In Cj_l(Pr-l)

fi / y b

Determining New Conflicts

* Conflict list of f'can be found by testing
the points in the conflict lists of f; and £,

in CHP,)

®p,

.: ¥ Dy

What About the Other Facets?

e P_ _q.(f) for any funaffected by p. remains
unchanged

* Deleted facets not on horizon already accounted
for (they are deleted...)

®p,

Fine Point

e Coplanar facets
— p, lies in the plane of a face of CH(P, ,)

/ — Dr

=9

» fis not visible from p, so we merge created
triangles coplanar to f

e New facet has same conflict list as existing
facet

Final Algorithm

e Initialize C#(P,) and G

* For each remaining point
— Determine visible facets for p, by checking G

— Remove F (p,) from CH

conflict

— Find horizon and add new facets to ¢#and ¢
— Update @ for new facets by testing the points in existing
conflict lists for facets in CH(P, ;) incident to e on the new

facets

— Delete p, and F__ . (p,) from G

Expected Number of Facets Created

e Will show that expected number of

facets created by our algorithm is at most
6n-20

e |nitialized with a tetrahedron = 4 facets

Expected Number of New Facets

e Backward analysis:
— Remove p, from CH(P)

— Number of facets removed same as those
created by p,

— Number of edges incident to p,_in CH(P,) is
degree of p, :

deg(p,, CH(P))

Expected Degree of p.

e Convex polytope of r vertices has at most 37-6 edges

e Sum of degrees of vertices of CH(P,) is 6r-12

e Expected degree of p. bounded by (6r-12)/r

E[dcg(lp,.. CH(P,))}

/N

/N

I : .
PR ive 2 deg(pi, CH(P,))

r—4 =
] Y deg(pi, CH(P 12
- Htt’c pi, CH(Py)) p — 12

Expected Number of Created Facets

e 4 from initial tetrahedron

e Expected total number of facets created
by adding p,...,p,

4 + Z Eldeg(p,, CH(P,))] <4+ 6(n—4) = 6n-20.

Running Time

e [nitialization = O(nlogn)
e Creating and deleting facets = O(n)
— Expected number of facets created is O(n)

e Deleting p, and facets in F_ from

onflict(r)
G along with incident arcs = O(n)

e Finding new conflicts = O(?)

Total Time to Find New Conflicts

e For each edge e on horizon we spend
O(card(P(e)) time o
where P(e) < Pconﬁct(fl)U Pconflict<f12> =

e Total time is O(Z ., card(P(e)))
bounded by expected value of Zcard(P(e))

- Lemma 11.6 The expected value of Z_card(P(e)),

where the summation is over all horizon edges that
appear at some stage of the algorithm is O(nlogn)

Running Time

e |nitialization = O(n)

e Creating and deleting facets = O(n)
e Updating G= O(n)

e Finding new conflicts = O(nlogn)

e Total Running Time is O(nlogn)

Higher Dimensional Convex Hulls

« Upper Bound Theorem:

The worst-case combinatorial complexity of
the convex hull of n points in d-
dimensional space is ®(n [92])

e Our algorithm generalizes to higher

dimensions with expected running time of
O(n l42])

Outline

e Put it all together
— Convex hull vs. half-space intersection
— Convex hull vs. Delaunay & Voronoi diagrams
— Voronoi diagram vs. Line arrangements
— Convex hull vs. Line arrangements

Half-Plane Intersection

e Convex hulls and intersections of half
planes are dual concepts

e To compute the intersection of half-
planes, we can

— Convert planes into points in dual space
— Compute a convex hull in dual space
— Convert the convex hull back to primal space

e Will this always work?

Half-Plane Intersection

* |If we do not leave the Euclidean plane, there cannot
be any general duality that turns the intersection of a
set of half-planes into a convex hull. Why?

Intersection of half-planes can be empty!
And Convex hull is well defined.

« Conditions for duality:
— Intersection is not empty
— At least one point in the interior is known.

Example

e Given a halfspace h={n, q}

e Given a point p in the intersection

e Point h*= nq/((q—p)° nq)

Example

e Image from qhull

— Each facet becomes a vertex
— Each vertex becomes a facet

Dual

35

Kernel/Art Gallery Problem

e Kernel of a polygon is a set of points that
can see very points in the polygon

— Given a point G that is in the kernel, we can
compute the kernel

Kernel/Art Gallery Problem

Kernel/Art Gallery Problem

Any point in the kernel can see the same
or even more than G

Convex hull vs. Voronoi/Delaunay

e Convex hull can be computed from
Voronoi/Delaunay diagrams

Convex hull vs. Voronoi/Delaunay

 k-d Voronoi/Delaunay diagrams can be
computed from (k+1)-d convex hull

40

1D Delaunay Triangulation

e Input P={x, x,,...x,}

« U:=(y=x?) a parabola

e Lift every pointto U, i.e.,

— prEixxs

e Compute the convex hull of P*

e Project the connectivity down

2D Delaunay Triangulation

Input P={(x,,v,), (x,, ¥,), ..., (x,, v,)}
U:=(z=x?+y?) a parabolid

Lift every pointto U, i.e.,
— pr={x, XAty

Compute the convex hull of P*

Project the connectivity down

42

Why does it work?

* PP

e Tangent line at p*
— Slop is 2p
— y=2p(x-p)- p*

e Raise the tangent line by »?
— y=2p(x-p)- p* +r’

— What’s the intersection between the line and the
curve?

* X’=2p(x-p)-p? +r’
= X=p=r

Why does it work?

44

Why does it work?

 p*™={a, b, a°+b*}

e Tangent plane at p*
— Slop is (1, 1, 2a+2b)
— z=2ax+2by-(a’+b?)

e Raise the tangent plane by 7
— z=2ax+2by-(a’+b%)+r?

— What’s the intersection between the line and the
curve?

o xX’+y’=2ax+2by-(a’+b?)+r?
= (v-aP+(y-b)=r

Why does it work?

Let 2 be a tangent plane for a facet of the convex hull
Lower h so that & tangents paraboloid, call 4*

Let the distance between % and 4* be 72

Now, we know

— The projection of the intersection of 4 and the parabloid is a
circle with radius r

The circle is empty because
— All other points are above #

— All other points are more than 7 distance away from A *

The project of the tangent point is a vertex of the
Voronoi diagram

Voronoi vs. Arrangement

« x,and x,

e Linex,™: y=2x,x-x,°

e Linex,™: y=2x,x-x,°

¢ |ntersection

2 = _y.2
— 2X;X-X;=2X,%- X,

Why does it work?

Input P={x,, x,,...x}

\

Lift

—a<a, a?

Duality transform |

— (a,b) < y=2ax-b |

Arrangement of lines in dual space

Project vertices with level=0

Convex Hulls vs. Arrangement

e Upper convex hull of a set of points is
essentially the lower envelope of a set of
lines

— similar with lower convex hull and upper
envelope

primal plane dual plane

UH(P)

Conclusion

Voronoi
diagram

Delaunay

\\triangula tion

Arrangements

of Lines /

