
1

CS633 Lecture 12
Convex hulls

Jyh-Ming Lien

Department of Computer Science
George Mason University

Based on Jason C. Yang’s note Dec 03, 2008

2

Outline

• 3D Convex hull

• Put it all together
– Convex hull vs. half-space intersection

– Convex hull vs. Delaunay & Voronoi diagrams
– Voronoi diagram vs. Line arrangements
– Convex hull vs. Line arrangements

3

Problem Statement

• Given P: set of n points in 3-space

• Return:
– Convex hull of P: CH(P)

– Smallest convex object s.t.
all elements of P on or in
the interior of CH(P).

4

• Complexity of CH for n points in 3-space is O(n)

• Given a convex polytope with n vertices
– The number of edges is at most 3n-6

– The number of facets is at most 2n-4

Complexity

5

Complexity

• Each face has at least 3 arcs

• Each arc incident to two faces

(2/3)ne ≥ nf

• Using Euler’s formula (|V|-|E|+|F|=2)

nf ≤ 2n-4 ne ≤ 3n-6

This remains true for any polyhedron without handles

6

Algorithm

• Randomized incremental algorithm

• Steps:
– Initialize the algorithm
– Loop over remaining points

Add pr to the convex hull of Pr-1 to transform
 CH(Pr-1) to CH(Pr)
 [for integer r≥1, let Pr:={p1,…,pr}]

Main Idea:
Incrementally insert new points into the
intermediate Convex Hull.

7

Initialization

• Need a CH to start with

• Build a tetrahedron using 4 points in P
– Start with two distinct points in P: p1 and p2

– Walk through P to find p3 that does not lie on the line through
p1 and p2

– Find p4 that does not lie on the plane through p1, p2, p3

– Special case: No such points exist?

• Compute random permutation p5,…,pn
of the remaining points

8

Inserting Points into CH

• Add pr to the convex hull of Pr-1 to
transform CH(Pr-1) to CH(Pr)
 [for integer r≥1, let Pr:={p1,…,pr}]

• Two Cases:
1) Pr is inside or on the boundary of CH(Pr-1)

 CH(Pr) = CH(Pr-1)

2) Pr is outside of CH(Pr-1)

9

Case 2: Pr outside CH(Pr-1)

• Determine horizon of pr on CH(Pr-1)
– Closed curve of edges enclosing the visible

region of pr on CH(Pr-1)

10

Visibility

• Consider plane hf containing a facet f of
CH(Pr-1)

• f is visible from a point if that point lies
in the open half-space on the other side
of hf

11

CH(Pr-1) → CH(Pr)

• Remove visible facets from CH(Pr-1)

• Find horizon: Closed curve of edges of CH(Pr-1)

• Form CH(Pr) by connecting each horizon edge
to pr to create a new triangular facet

12

Algorithm So Far…

• Initialization
– Form tetrahedron CH(P4) from 4 points in P

– Compute random permutation of remaining pts.

• For each remaining point in P
– pr is point to be inserted

– If pr is outside CH(Pr-1) then
• Determine visible region
• Find horizon and remove visible facets
• Add new facets by connecting each horizon edge to pr

?
?

13

How to Find Visible Region

• Naïve approach:
– Test every facet with respect to pr

– Total computation time: O(n2)

• Trick is to work ahead:
Maintain information to aid in determining

visible facets

14

Conflict Lists

• For each facet f maintain
 Pconflict(f) ⊆ {pr+1, …, pn}

 containing points to be inserted that can see f

• For each pt, where t > r, maintain
 Fconflict(pt)

 containing facets of CH(Pr) visible from pt

• p and f are in conflict because they cannot
coexist on the same convex hull

15

Conflict Graph G

• Bipartite graph
– pts not yet inserted
– facets on CH(Pr)

• Arc for every
point-facet conflict

• Conflict sets for a
point or facet can
be returned in
linear time

At any step of our algorithm, we know all conflicts
between the remaining points and facets on the current CH

?

16

Initializing G

• Initialize G with CH(P4) in linear time

• Walk through P5~n to determine which
facet each point can see

f1
f2

p6

p5

p7

p6

p7

p5

f2

f1

G

17

p5

f2

f1

Updating G

• Discard visible facets from pr by
removing neighbors of pr in G

• Remove pr from G

• Determine new conflicts

p6

p7

G

f1
f2

f3

f4

p5

p7

p6

18

Determining New Conflicts
• If pt can see new f, it can see edge e of f.

• e on horizon of pr, so e was already in and
visible from pt in CH(Pr-1)

• If pt sees e, it saw either f1 or f2 in CH(Pr-1)

• pt was in Pconflict(f1) or Pconflict(f2) in CH(Pr-1)

pt

19

Determining New Conflicts

• Conflict list of f can be found by testing
the points in the conflict lists of f1 and f2
in CH(Pr-1)

pt

20

What About the Other Facets?

pt

• Pconflict(f) for any f unaffected by pr remains
unchanged

• Deleted facets not on horizon already accounted
for (they are deleted…)

21

Fine Point

• Coplanar facets
– pr lies in the plane of a face of CH(Pr-1)

• f is not visible from pr so we merge created
triangles coplanar to f

• New facet has same conflict list as existing
facet

22

Final Algorithm

• Initialize CH(P4) and G

• For each remaining point
– Determine visible facets for pr by checking G

– Remove Fconflict(pr) from CH

– Find horizon and add new facets to CH and G

– Update G for new facets by testing the points in existing
conflict lists for facets in CH(Pr-1) incident to e on the new
facets

– Delete pr and Fconflict(pr) from G

23

Expected Number of Facets Created

• Will show that expected number of
facets created by our algorithm is at most
6n-20

• Initialized with a tetrahedron = 4 facets

24

Expected Number of New Facets

• Backward analysis:
– Remove pr from CH(Pr)

– Number of facets removed same as those
created by pr

– Number of edges incident to pr in CH(Pr) is
degree of pr :

deg(pr, CH(Pr))

25

Expected Degree of pr
• Convex polytope of r vertices has at most 3r-6 edges

• Sum of degrees of vertices of CH(Pr) is 6r-12

• Expected degree of pr bounded by (6r-12)/r

26

Expected Number of Created Facets

• 4 from initial tetrahedron
• Expected total number of facets created

by adding p5,…,pn

27

Running Time

• Initialization ⇒ O(nlogn)

• Creating and deleting facets ⇒ O(n)
– Expected number of facets created is O(n)

• Deleting pr and facets in Fconflict(pr) from
G along with incident arcs ⇒ O(n)

• Finding new conflicts ⇒ O(?)

28

Total Time to Find New Conflicts

• For each edge e on horizon we spend

 O(card(P(e)) time

 where P(e) ← Pconfict(f1)∪ Pconflict(f12)

• Total time is O(Σe∈Lcard(P(e)))
 bounded by expected value of Σcard(P(e))

• Lemma 11.6 The expected value of Σecard(P(e)),
where the summation is over all horizon edges that
appear at some stage of the algorithm is O(nlogn)

29

Running Time

• Initialization ⇒ O(n)

• Creating and deleting facets ⇒ O(n)
• Updating G ⇒ O(n)

• Finding new conflicts ⇒ O(nlogn)

• Total Running Time is O(nlogn)

30

Higher Dimensional Convex Hulls

• Upper Bound Theorem:

 The worst-case combinatorial complexity of
the convex hull of n points in d-
dimensional space is Θ(n d/2)

• Our algorithm generalizes to higher
dimensions with expected running time of
Θ(n d/2)

31

Outline

• 3D Convex hull

• Put it all together
– Convex hull vs. half-space intersection

– Convex hull vs. Delaunay & Voronoi diagrams
– Voronoi diagram vs. Line arrangements
– Convex hull vs. Line arrangements

32

Half-Plane Intersection

• Convex hulls and intersections of half
planes are dual concepts

• To compute the intersection of half-
planes, we can
– Convert planes into points in dual space
– Compute a convex hull in dual space

– Convert the convex hull back to primal space

• Will this always work?

33

Half-Plane Intersection

• If we do not leave the Euclidean plane, there cannot
be any general duality that turns the intersection of a
set of half-planes into a convex hull. Why?
 Intersection of half-planes can be empty!
 And Convex hull is well defined.

• Conditions for duality:
– Intersection is not empty

– At least one point in the interior is known.

34

Example

• Given a halfspace h={nq, q}

• Given a point p in the intersection

• Point h*= nq/((q-p)• nq)

h

q

p
o

h*

m
n

n*
m*

35

Example

• Image from qhull
– Each facet becomes a vertex
– Each vertex becomes a facet

Dual

a

a*

b

b*

36

Kernel/Art Gallery Problem

• Kernel of a polygon is a set of points that
can see very points in the polygon
– Given a point G that is in the kernel, we can

compute the kernel

G

37

Kernel/Art Gallery Problem

G

38

Kernel/Art Gallery Problem

G

Any point in the kernel can see the same
or even more than G

39

Convex hull vs. Voronoi/Delaunay

• Convex hull can be computed from
Voronoi/Delaunay diagrams

e
v

pi

40

Convex hull vs. Voronoi/Delaunay

• k-d Voronoi/Delaunay diagrams can be
computed from (k+1)-d convex hull

41

1D Delaunay Triangulation

• Input P={x1, x2,…xn}

• U:=(y=x2) a parabola

• Lift every point to U, i.e.,
– p*i={xi,xi

2}

• Compute the convex hull of P*

• Project the connectivity down

42

2D Delaunay Triangulation

• Input P={(x1, y1), (x2, y2), …, (xn, yn)}

• U:=(z=x2+y2) a parabolid

• Lift every point to U, i.e.,
– p*i={xi, yi, xi

2+yi
2}

• Compute the convex hull of P*

• Project the connectivity down

43

Why does it work?

• p*={p, p2}
• Tangent line at p*

– Slop is 2p

– y=2p(x-p)- p2

• Raise the tangent line by r2

– y=2p(x-p)- p2 +r2

– What’s the intersection between the line and the
curve?

• x2=2p(x-p)- p2 +r2

⇒ x=p±r

44

Why does it work?

5

r2 =4

73

45

Why does it work?

• p*={a, b, a2+b2}
• Tangent plane at p*

– Slop is (1, 1, 2a+2b)
– z=2ax+2by-(a2+b2)

• Raise the tangent plane by r2

– z=2ax+2by-(a2+b2)+r2

– What’s the intersection between the line and the
curve?

• x2+y2=2ax+2by-(a2+b2)+r2

⇒ (x-a)2+(y-b)2=r2

46

Why does it work?

• Let h be a tangent plane for a facet of the convex hull
• Lower h so that h tangents paraboloid, call h*

• Let the distance between h and h* be r2

• Now, we know
– The projection of the intersection of h and the parabloid is a

circle with radius r

• The circle is empty because
– All other points are above h
– All other points are more than r2 distance away from h*

• The project of the tangent point is a vertex of the
Voronoi diagram

47

Voronoi vs. Arrangement

• x1 and x2

• Line x1*: y=2 x1 x- x1
2

• Line x2*: y=2 x2 x- x2
2

• Intersection
– 2 x1 x- x1

2 =2 x2 x- x2
2

48

Why does it work?

• Input P={x1, x2,…xn}

• Lift
– a ⇔ a, a2

• Duality transform
– (a,b) ⇔ y=2ax-b

• Arrangement of lines in dual space

• Project vertices with level=0

49

Convex Hulls vs. Arrangement

• Upper convex hull of a set of points is
essentially the lower envelope of a set of
lines
– similar with lower convex hull and upper

envelope

50

Conclusion

Convex
hull

Voronoi
diagram

Delaunay
triangulation

Arrangements
of Lines

