
CS425: Game Programming 1
Lecture 2: Particle System

8/28/2013

Lecturer: Jyh-Ming Lien

1 Introduction

1.1 Data Structure

State of a particle s =

[
x
ẋ

]
=

[
x
v

]
, where x and position and v is the velocity.

State of a particle system Given n particles in a particle system, we can represent the system as

S =

s1
s2
· · ·
sn

1.2 Physics Engine

Physics engine is usually used in game to simulate the motion of objects, such as particles. The following
simple procedule is the core of a physics engine (using a particle system as an example).

1. Get states of particles (positions and velocities)

2. Get forces F applied to each particles

3. Compute derivatives from the forces F

4. Using ODE solvers to compute the new positions and velocities

5. Set the states back to the particles

2 Forces

There are many different type of forces, such as gravity and friction. In general, when multiple forces are
applied to a single particle, these forces are combined linearly (with weights) into a single force F (as the F
in step 3 above). There are typically three types of forces:

1. Unary Forces:

• Gravity

• Viscous drag

1

2. N -ary Forces:

• mass-spring system (usually used for modeling deformable objects)

• flocking system (coherence, alignment, separation)

• fluid dynamics (Navier-stroke equations)

3. Spatial related forces:

• collision

• wind

• user interaction

2.1 Viscous drag

This is similar to sampling in spring system. This is highly recommended for stability in simulating particles.

F = −kdv,

where kd is a user defined constant and v is the linear velocity.

2.2 Hook’s law spring

This is similar to sampling in spring system. This is highly recommended for stability in simulating particles.

F = −
(
ks(|`| − r) + kd

v`

|`|

)
`

|`|
,

where ks and kd are spring and damping constants, ` is the vector pointing at the particle and parallel to the
spring (i.e., a vector between two connected particles), r is the resting length of the spring, and, finally, v is
the linear velocity of the particle .

2.3 Flocking

Flocking system is used to simulate the motion of a group of coherent entities, like a school of fishes and a
flock of birds. The motion is governed by three simple local rules, whose forces are linearly combined to
create the flocking force. For a given particle, its flocking force is defined as:

F = kcoFcoherent + kseFseparation + kalFalignment,

where kco, kse, kal are user defined constants that can be used to influence the behavior of the flock. Each
of these threes forces are defined as the following.

Coherence Fcoherent = x−Onei

Separation Fseparation = Onei − x

Alignment Falignment = Vnei

2

Here Onei is the centroid of the positions of the neighboring particles and Vnei is the averaged velocity
of of the neighboring particles. The neighboring particles of a given particle can be defined in many ways,
such as particles within δ distance from the given particle or k closest particles.

2.4 User interaction

Allows user to exert force to particles. Idea is to attached a spring between the mouse pointer and particles.

2.5 Collision

Given that we found the collision of a particle between state sn and sn+1 with a plane P = {N,O}, we
can find the exact collision state s′n+1 where the particle is on the colliding plane P . Here, N is the normal
direction of P and O is a point on P . You can find s′n+1 using binary search since sn is above (inside) and
sn+1 is below (outside) the plane (or any 2D/3D objects).

sn

sn+1

s0n+1
N

O
P

Collision response To handle collision, we decompose the velocity of the particle at s′n+1 into two vectors:
vN and vT , where vN is parallel to N and vT is perpendicular to N (i.e. parallel to the plane). The new
velocity of the particle at s′n+1 now becomes

v′n+1 = vT + kr(−vN) ,

where kr is called restitution coefficient, a property of the plane. We then continue to simulate the particle
from s′n+1 with this new velocity.

Constact We say that the particle is in contact with the plane P if vN = ∅. If an external force F is applied
to push the particle into P a contact force is applied back as −F .

Friction Friction force is applied in the direction opposite to vT and is proportional to the external force
pushing the particle into P . Therefore, F = −kf (−FextN)vT , where kf is friction constant and Fext is an
external force applied on the particle.

3

