CS425: Game Programming 1
 Lecture 2: Particle System
 8/28/2013

Lecturer: Jyh-Ming Lien

1 Introduction

1.1 Data Structure

State of a particle $s=\left[\begin{array}{l}x \\ \dot{x}\end{array}\right]=\left[\begin{array}{l}x \\ v\end{array}\right]$, where x and position and v is the velocity.
State of a particle system Given n particles in a particle system, we can represent the system as

$$
S=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\cdots \\
s_{n}
\end{array}\right]
$$

1.2 Physics Engine

Physics engine is usually used in game to simulate the motion of objects, such as particles. The following simple procedule is the core of a physics engine (using a particle system as an example).

1. Get states of particles (positions and velocities)
2. Get forces F applied to each particles
3. Compute derivatives from the forces F
4. Using ODE solvers to compute the new positions and velocities
5. Set the states back to the particles

2 Forces

There are many different type of forces, such as gravity and friction. In general, when multiple forces are applied to a single particle, these forces are combined linearly (with weights) into a single force F (as the F in step 3 above). There are typically three types of forces:

1. Unary Forces:

- Gravity
- Viscous drag

2. N-ary Forces:

- mass-spring system (usually used for modeling deformable objects)
- flocking system (coherence, alignment, separation)
- fluid dynamics (Navier-stroke equations)

3. Spatial related forces:

- collision
- wind
- user interaction

2.1 Viscous drag

This is similar to sampling in spring system. This is highly recommended for stability in simulating particles.

$$
F=-k_{d} v,
$$

where k_{d} is a user defined constant and v is the linear velocity.

2.2 Hook's law spring

This is similar to sampling in spring system. This is highly recommended for stability in simulating particles.

$$
F=-\left(k_{s}(|\ell|-r)+k_{d} \frac{v \ell}{|\ell|}\right) \frac{\ell}{|\ell|},
$$

where k_{s} and k_{d} are spring and damping constants, ℓ is the vector pointing at the particle and parallel to the spring (i.e., a vector between two connected particles), r is the resting length of the spring, and, finally, v is the linear velocity of the particle .

2.3 Flocking

Flocking system is used to simulate the motion of a group of coherent entities, like a school of fishes and a flock of birds. The motion is governed by three simple local rules, whose forces are linearly combined to create the flocking force. For a given particle, its flocking force is defined as:

$$
F=k_{\text {co }} F_{\text {coherent }}+k_{\text {se }} F_{\text {separation }}+k_{\text {al }} F_{\text {alignment }},
$$

where $k_{c o}, k_{s e}, k_{a l}$ are user defined constants that can be used to influence the behavior of the flock. Each of these threes forces are defined as the following.

Coherence $\quad F_{\text {coherent }}=x-O_{n e i}$
Separation $\quad F_{\text {separation }}=O_{n e i}-x$
Alignment $\quad F_{\text {alignment }}=V_{\text {nei }}$

Here $O_{n e i}$ is the centroid of the positions of the neighboring particles and $V_{n e i}$ is the averaged velocity of of the neighboring particles. The neighboring particles of a given particle can be defined in many ways, such as particles within δ distance from the given particle or k closest particles.

2.4 User interaction

Allows user to exert force to particles. Idea is to attached a spring between the mouse pointer and particles.

2.5 Collision

Given that we found the collision of a particle between state s_{n} and s_{n+1} with a plane $P=\{N, O\}$, we can find the exact collision state s_{n+1}^{\prime} where the particle is on the colliding plane P. Here, N is the normal direction of P and O is a point on P. You can find s_{n+1}^{\prime} using binary search since s_{n} is above (inside) and s_{n+1} is below (outside) the plane (or any $2 \mathrm{D} / 3 \mathrm{D}$ objects).

Collision response To handle collision, we decompose the velocity of the particle at s_{n+1}^{\prime} into two vectors: v_{N} and v_{T}, where v_{N} is parallel to N and v_{T} is perpendicular to N (i.e. parallel to the plane). The new velocity of the particle at s_{n+1}^{\prime} now becomes

$$
v_{n+1}^{\prime}=v_{T}+k_{r}\left(-v_{N}\right),
$$

where k_{r} is called restitution coefficient, a property of the plane. We then continue to simulate the particle from s_{n+1}^{\prime} with this new velocity.

Constact We say that the particle is in contact with the plane P if $v_{N}=\emptyset$. If an external force F is applied to push the particle into P a contact force is applied back as $-F$.

Friction Friction force is applied in the direction opposite to v_{T} and is proportional to the external force pushing the particle into P. Therefore, $F=-k_{f}\left(-F_{\text {ext }} N\right) v_{T}$, where k_{f} is friction constant and $F_{e x t}$ is an external force applied on the particle.

