Cs425 Lecture \#4

- Flocking

Flock/Crowd/Group

Programming Assignment 1

Programming Assignment 1

Programming Assignment 1

- 2D shepherding
- User controls a sheepdog through a spring-mass force
- Sheep runs away from the dog
- Sheep exhibits flocking behaviors and avoids obstacles
- A level is finished when all sheep are in the pen.
- Implement physics engine using
- Euler's method
- Midpoint method
- RK4
- Using Html 5 canvas \& javascript
- Skeleton code will be provided
- Crash course this Wed (bring your laptop)
- Create 3 game levels with increasing difficulty

Programming Assignment 1

- Time:
- starting Sept. 11. 4:30 pm,
- end: Oct 1st. 3pm (right before the class).
- We will have you demo your game in class.
- Total is 100 points.
- Bonus points
- Create 1 additional level with predators, wolfs (patrol from points A to B), tigers (circle around an obstacle), dinosaurs (stand at point A) that run after sheep when the sheep is too close 10\%
- Create 1 additional level with ducks, cows, geese that can get mixed into the sheep. The shepherd's goal is to separate them so only sheep are herded into the pen. 10%

Flocks

- Exhibits many contrasts
- Made of discrete birds yet overall motion seems fluid
- Randomly arrayed, yet magnificently synchronized
- Intentional centralized control
- Local perception of the world

Flocks

- Exhibits many contrasts
- Made of discrete birds yet overall motion seems fluid
- Randomly arrayed, yet magnificently synchronized
- Intentional centralized control
- Local perception of the world
- Basic Features
- Flocking
- Avoid Obstacles
- React to predators

Natural Flocks

- Natures 2 opposing forces
- Stay closer to flock
- Protection from predators
- Easy availability and detection of food
- Avoid collisions with peers.

Natural Flocks

- Natures 2 opposing forces
- Stay closer to flock
- Protection from predators
- Easy availability and detection of food
- Avoid collisions with peers.
- Individual bird has localized and filtered perception of the rest of the flock.

Simulated Flocks

Simulated Flocks

- The Rules are stated as
- Collision avoidance
- Velocity Matching
- Flock Centering

Navigating Obstacles

Attempt to fly directly toward a surface

Attempt at finding a passageway

Avoiding Obstacles

- Steer-to-avoid approach
- Boid only considers obstacles directly in front of it

Avoiding Obstacles

Avoiding Obstacles

- Steer-to-avoid approach
- Boid only considers obstacles directly in front of it
- Finds silhouette edge of obstacle closest to point of eventual impact
- A vector is computed that will aim the boid at a point one body length beyond the silhouette edge

Obstacles in PA 1

- We will only have two types of obstacles
- Disks

Obstacles in PA 1

- We will only have two types of obstacles
$F=K_{\text {obst }} \cdot \frac{n}{r^{2}} \quad \begin{aligned} & r: \text { distance to the obstacle } \\ & n: \text { normal direction at the contact point }\end{aligned}$

Collision

- When you find your sheep/dog is inside the obstacle
- Compute the collision state s_{n+1}^{\prime}
- Find the collision time $t^{\prime}=\frac{s_{n+1}^{\prime}-s_{n}}{s_{n+1}-s_{n}}$
- Find the new velocity $v_{n+1}^{\prime}=v_{T}+k_{r}\left(-v_{N}\right)$
- v_{T} is the velocity parallel to P at t'
- v_{N} is the velocity perpendicula
- Simulate from \dagger^{\prime} to \dagger

Sheep/Dog

- Repulsive force from dog to sheep

$$
F=k_{d o g}\left(\frac{N}{|N|^{2}}\right)
$$

