Cs425 Lecture #4

1

• Flocking

Flock/Crowd/Group

- 2D shepherding
 - User controls a sheepdog through a spring-mass force
 - Sheep runs away from the dog
 - Sheep exhibits flocking behaviors and avoids obstacles
 - A level is finished when all sheep are in the pen.
- Implement physics engine using
 - Euler's method
 - Midpoint method
 - RK4
- Using Html 5 canvas & javascript
 - Skeleton code will be provided
 - Crash course this Wed (bring your laptop)
- Create 3 game levels with increasing difficulty

• Time:

- starting Sept. 11. 4:30 pm,
- end: Oct 1st. 3pm (right before the class).
 - We will have you demo your game in class.
- Total is **100** points.

Bonus points

- Create 1 additional level with predators, wolfs (patrol from points A to B), tigers (circle around an obstacle), dinosaurs (stand at point A) that run after sheep when the sheep is too close 10%
- Create 1 additional level with ducks, cows, geese that can get mixed into the sheep. The shepherd's goal is to separate them so only sheep are herded into the pen. 10%

Flocks

- Exhibits many contrasts
 - Made of discrete birds yet overall motion seems fluid
 - Randomly arrayed, yet magnificently synchronized
 - Intentional centralized control
 - Local perception of the world

Flocks

- Exhibits many contrasts
 - Made of discrete birds yet overall motion seems fluid
 - Randomly arrayed, yet magnificently synchronized
 - Intentional centralized control
 - Local perception of the world
- Basic Features
 - Flocking
 - Avoid Obstacles
 - React to predators

Natural Flocks

- Natures 2 opposing forces
 - Stay closer to flock
 - Protection from predators
 - Easy availability and detection of food
 - Avoid collisions with peers.

Natural Flocks

- Natures 2 opposing forces
 - Stay closer to flock
 - Protection from predators
 - Easy availability and detection of food
 - Avoid collisions with peers.
- Individual bird has localized and filtered perception of the rest of the flock.

Simulated Flocks

Simulated Flocks

- The Rules are stated as
 - Collision avoidance
 - Velocity Matching
 - Flock Centering

Navigating Obstacles

Avoiding Obstacles

• Steer-to-avoid approach

• Boid only considers obstacles directly in front of it

Avoiding Obstacles

Avoiding Obstacles

- Steer-to-avoid approach
 - Boid only considers obstacles directly in front of it
 - Finds silhouette edge of obstacle closest to point of eventual impact
 - A vector is computed that will aim the boid at a point one body length beyond the silhouette edge

Obstacles in PA1

- We will only have two types of obstacles
 - Disks

Obstacles in PA1

• We will only have two types of obstacles

Collision

- When you find your sheep/dog is inside the obstacle
 - Compute the collision state $\,s_{n+1}^{\prime}\,$
 - Find the collision time $t' = \frac{s'_{n+1} s_n}{s_{n+1} s_n}$
 - Find the new velocity $v_{n+1}' = v_T + k_r(-v_N)$
 - v_T is the velocity parallel to P at t'
 - v_N is the velocity perpendicula

• Simulate from t' to t

Sheep/Dog

Repulsive force from dog to sheep

$$F = k_{dog} \left(\frac{N}{|N|^2} \right)$$
 sheep
$$N = Pos_{sheep} - Pos_{dog}$$
 dog