CS425: Game Programming 1
Lecture 6: Collision Detection
9/18/2013

Lecturer: Jyh-Ming Lien

1 Introduction

1.1 Collision Detection
1. Intersection between two line segments
2. Intersection between a point and a polygon
3. Intersection between two polygons

4. Intersection between n polygons

For many collision detection methods and applications, the point of intersection of two line segments are
used. Therefore, we start this lecture by looking into the computation of the intersection between two line
segments and then intersection between a point and a polygon. We will then discuss intersections between
two polygons and intersections among n polygons.

2 Two line segments

Let the two segments have endpoints a and b and c and d, and let L, and L4 be the lines containing the two
segments. A common method is to solve slop-intercept equation for L, and L., simultaneously. However,
definition involves slop has many special cases, e.g. a vertical line has slop to the infinity. Instead, we will
use a parametric representation of the two segments.

parameterization Let A = b — a and C = d — c¢; these vectors point along the segments. Any point on
the line L, can be represented as the vector sum:

p(s) =a+ sA

parameter s The variable s is called the parameter of this equation. Consider the values obtained for
s=0,s=1,and s = 1/2:
p(0) =a,
p(l)=a+A=a+b—a="0,and,

p(1/2) = (a+0)/2

Another line Similarly we can represent L. as = ¢(t) = ¢ + tC. The line segment between ¢ and d is
corresponding to values between ¢t = 0 and ¢t = 1.

Intersection The intersection between the parameterized line is then:

D = CLo(dc—Cl)—i-bo(Cl —d1)+d0(b1—a1)+60(a1 —bl)
s = |ap(dy —c1) + co(ar — dy) + do(c1 — a1)]/D
t = [ao(cl—bl)—l—co(al —C1)—|—d0(b1 —al)]/D

Here ap and a; are the x and y coordinates of point a. Same rule applies to points b;, ¢;, d;, where
i=1{1,2}.

Question: What does it mean when D = 0?

Implementation bool SEGSEGINT(double a[2], double b[2], double c[2], double d[2], double x[2])

Problems:

Implementation Let us try again.
SEGSEGINT(double a[2], double b[2], double c[2], double d[2], double x[2])

3 A point and a polygon

Given a 2d point ¢ and a polygon P, check if ¢ is inside P or not. Let P be represented as a list of n vertices,
ie, P={v,v9, -+ ,un}.

P is convex This can be done in O(n) time by

P is NOT convex This can be done in several ways.

Implementation Let us implement the case that P is not convex.
bool INTERSECT(double q[2], polygon P)

Problems:

Implementation Let us try again.
bool INTERSECT(double q[2], polygon P)

4 Two polygons

Given two polygons P = {vy,va, -+ ,vp} and Q = {ug, ua, -+, Um}.
If both P and () are circles
If both P and () are axis-aligned boxes

If both P and () are oriented boxes An oriented box is a box whose edges are not parallel to the x or y
axes.

If both P and () are convex The intersection can be found in O(n + m) time by

If both P and () are NOT convex Intersection can be found in several ways. Let use try brute force first.

Implementation bool POLYPOLYINT(polygon P, polygon Q)

Bounding Volume (BV) Bound P and @ using circles, boxes, or oriented boxes.

Implementation with BV bool POLYPOLYINT(polygon P, polygon Q)

Bounding Volume Hierarchy (BVH) Bound P and () using a tree of circles, boxes, or oriented boxes.

Implementation with BVH In this case we will have to build BVH first.
BVHtree POLYPOLYINT(polygon P)

bool POLYPOLYINT(polygon P, polygon Q)

5 Multibody collision detection: n polygons

Given n polygons { Py, Py, P, - - - , P, }, report pairs of polygons { P;, P;} such that P; U P; # ().
Brute Force Make O(n?) poly-poly intersection calls.

Plan sweep This is one of the most efficient way but very difficult to implement.

Interval tree Slower than plan sweep but simpler to implement. The main idea is to project the polygons
to x and y axes and the check which intervals overlap.

1D Interval tree Given a list of n intervals Z = {I;,Is,---,I,}, a node of this 1D interval tree is
constructed as the following.

