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1 Rigid-Body System

1.1 Elements
State The state Y (¢) of a rigid-body system at time ¢ usually comprises of the following elements:

X(t)
R(t)
T(t)

Y(t) = .
F(t)

X (t) is the positions of the center of mass (COMs) of the rigid objects, R(t) is the orientations, 7'(t)
and F'(t) are torques and forces, respectively.

Examples Here is an example:

ODE solver Assume that an ODE solver is provided, this can be Euler’s method, midpoint method, or
RK4. The ODE solver should have the following form ODE( Y[], int len, double h, DYDTFUN dydt)

Function DYDTFUN the derivative function is defined as:

typedef void (* DYDTFUN)( double ¢, double Y[], double dY'[])

Rigid vs. Particle The main differences between a particle system and a rigid-body system are:
e more states to track due to rotation

e more complex dydt due to rotation

2 Rotation

Euler Angles Denoted as (7, 7y, ;) where ry, r,, r, are angles specifying rotations around x, y and z
axes, respectively. However, the order that you apply rotation matters: ex. xyz or zyx



Rotation Matrix Denoted as
Tex Tyx Tax
R(t) = |rey Tyy Tay
Tez Tyz Tzz
Each volume of R(t) specifies the orientation of x, y, and z axes. To show this, we can multiply each axis
with R(t):

R(t) [0 = |ray| ,R(E) [1| = |[ryy|,R({&) |0 = |72y

For a matrix to be a rotation matrix the following requirement must be met.

e Each column must be orthogonal to each other

e Each column is a unit vector

To maintain these properties, R(t) must be corrected after R(t) is derived by ODE.
Quaternions A quaternion has four values: (s, vs), where s is scalar and v is a 3d vector. Using a
quaternion ¢ = (s, vs) to represent orientation, ¢ has the following properties:

e If ¢ specifies a rotate # radian about a unit vector u then

qg= (cos(g),sin(g)u)

The inverse of g is ¢~ which is simply —q = (s, —v).

the multiplication of two quaternions ¢, g2 is:

q1 X g2 = (5152 — v1V2, S1V2 + S2U1 + V1 X V2)

rotate a point p by ¢ is written as

gxpxq?

rotate p by ¢; and then by ¢ is written as
(a201)p(g2q1) ™"

e quaternions are better than matrix because

— ¢ can be normalized easily (this is the most important property for rigid body simulation)
— ¢ can be interpolated by treating ¢ as a point on a unit sphere. More specifically, the arc con-
necting two such points on sphere is:
sin ((1 —t)0) g1 + sin(t0)q2
sin(6)

slerp(qu, q2,t) =

— ¢ can be converted to rotation matrix easily



3 Rigid body status

Linear velocity V(¢) = & X (t) is the linear velocity of the center of mass.

Angular velocity w(t) is the direction that the body is spinning about. ||w(¢)|| is how fast the body rotates
about w(t). Remember that w(t) is a 3D vector.

3.1 Relationship between w(t) and R()

Imagine that the rigid body is made of a collection of points. Let p be one of them and let O be the center
of mass of this rigid body.

w(t) and R(t) Letr = p — O, the velocity of p at time ¢ caused by rotation w(t) is:

(2)
/ w
e

N

Decomposition Break r into r = a + b where a is parallel to w(t) and b is perpendicular to w(t).

Relationship The vector a has no effect on p’s velocity. The velocity must be perpendicular to b and w(t)
(i.e. tangent to the circle in the figure above). Therefore, the velocity of p is defined as

x, y and z Axes Given a rotation matrix R(¢), recall that each column of R(T") represents the direction
(orientation) of z, y and z axes. Therefore, the velocity of x axis due to w(t) is similarly we can formulate

the same for y and 2 axes. Finally, we can say that

3.2 Combine V(¢) and w(r)

At time ¢, the location of the rigid body is z(¢) and linear velocity is v(t), and the location of a point on the
body is p(t).



The derivative of p(t) The velocity of p(t) is

And, we know that the position is p(t) = R(¢)p(t = 0) + x(t). Finally, we can rewrite p(t) as:

4 Force and Torque

Force Similar to particle systems, there will force applied to the rigid bodies (gravities, wind, collision, ..)

Apply force Forces are applied to single points on the rigid body. Let us denote F,(t) as the force applied
to point p at time ¢.

Torque Force F),(t) produces torque:

Note that 7,(¢) is perpendicular to F},(t) and to (p(t) —x(t)), therefore, it F},(t) is parallel to (p(t)—x(t)),
Tp(t) = 0.

Total force and torque Total force in the system on the body B is

S Linear Momentum and Angular Momentum

Instead of storing velocities, a typical rigid body system usually stores momentum due to the fact that
angular momentum will stay constant of the torque is zero (this is not true for angular velocity).

Linear momentum P, = m,,v describes the resistance to the change of linear motion of a particle p. Let
us see how this is formulated for the rigid body.



Derivative of Linear momentum We know that P = F(t) (newton’s 2nd law), so to compute P(t) we
integrate F'(t) using ODE solver.

Angular momentum Angular momentum L(¢) is a measure of resistance to the change of rotation. The
idea of L(t) is very similar to linear momentum. More specifically,

where I(t) is a 3 by 3 matrix called inertia. Inertia is similar to mass but different in the way that I(¢)
is the distribution of mass. More on this later.

Derivative of Angular momentum L (t) = 7(t), so to compute L(t) we integrate 7(t) using ODE solver.

6 inertia Tensor

The inertia I(¢) is a 3 by 3 matrix describing the distribution of mass in the body B. More specifically,

mp(ri +72) —MpTzTy —MpTeTs
I(t) = —MpTyTy mp(Tg% +72) —MpTy T ,
PEB | —MypT, Ty —myprsry  mp(r2 + 7‘5)

where r = p(t) — x(t) and m,, is the mass of p.

Bad news (t) changes when B rotates. It is really not a good idea to recompute /(t) after every rotation.
The time complexity of recomputing I(¢) is linear to the number of points.

What can we do? We can factor I(¢) so only the part related to rotation is recomputed.

mp(rg +72) —MpTeTy —MpTeTs
I(t) = ZpEB —mpryry  mp(ry +12) =T
—MpTTy —MpTTy my(r2 + 7"73)

Note that I is the identity matrix. Now let us rewrite the last sentence.



I(t) = ZpeB mp (TTT'JI — rrT)

Use Iyoqy  The matrix Iy,q, is invariant to rotation so we can compute Ip,q, before simulation started and
use it over and over. Recall that angular momentum L(t) = I(t)w(¢). To compute w(t) from torque 7(¢)
we need w(t) = I~1(¢t)L(t).

'ty =

Final remark The state of the rigid body system is again:

What is next? We will talk about the implementation of these on Wed.



