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Motion Planning
in continuous spaces

start

goal obstacles

(Basic) Motion Planning 
(in a nutshell):

Given a movable object, find a 
sequence of valid configurations 
that moves the object from the 
start to the goal. 



Main Steps In Motion Planning

Workspace

Configuration space

Discretization

Search

Path or no solution



Classical Motion Planning

• Given a point robot and a workspace 
described by polygons

• Roadmap methods
– Visibility graph
– Cell decomposition
– Retraction



Roadmap Methods

roadmap

Capture the connectivity of  Cfree with a roadmap (graph or 
network) of  one-dimensional curves



Roadmap Methods

Path Planning with a Roadmap
Input: configurations qinit and qgoal , and B
Output: a path in Cfree connecting qinit and qgoal 

1. Build a roadmap in Cfree (preprocessing)
• roadmap nodes are free configurations (or semi-free)
• two nodes connected by edge if  can (easily) move 
between them

2. Connect qinit and qgoal to roadmap nodes vinit and vgoal

3. Find a path in the roadmap between vinit and vgoal
 - directly gives a path in Cfree



difficult
part

Roadmap Methods
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Visibility Graph

• A visibility graph of C-space for a given C-obstacle is an 
undirected graph G where
– nodes in G correspond to vertices of C-obstacle

– nodes connected by edge in G if
• they are connected by an edge in C-obstacle, or

• the straight line segment connecting them lies entirely in Cfree

– (could add qinit and qgoal as roadmap nodes)



Visibility Graph

• Brute Force Algorithm
– add all edges in C-obstacle to G
– for each pair of vertices (x, y) of C-obstacle, add the edge (x, y) 

to G if the straight line segment connecting them lies entirely 
in cl(C-free)

• test (x; y) for intersection with all O(n) edges of C-obstacle
• O(n2) pairs to test, each test takes O(n) time



Visibility Graph

• Brute Force Algorithm
– add all edges in C-obstacle to G
– for each pair of vertices (x, y) of C-obstacle, add the edge (x, y) 

to G if the straight line segment connecting them lies entirely 
in cl(C-free)

• test (x; y) for intersection with all O(n) edges of C-obstacle
• O(n2) pairs to test, each test takes O(n) time

Complexity: O(n3), n is number of  vertices in C-obstacle



Visibility Graph

• A better algorithm?



Visibility Graph

• A better algorithm?



Visibility Graph

• An even better algorithm?



Visibility Graph

• Visibility graphs (Good news)
– are conceptually simple
– shortest paths (if the query cannot see each other)
– we have efficient algorithms if WS is polygonal

• O(n2), where n is number of vertices of C-obstacle
• O(k + n log n), where k is number of edges in G

– we can make a 'reduced' visibility graph (don't need all edges)



Visibility Graph in 3-D

• Visibility graphs don't necessarily contain 
shortest paths in R3

– in fact finding shortest paths in R3 is NP-hard [Canny 1988]

– (1 + ε²) approximation algorithm [Papadimitriou 1985]

Bad news: really only suitable for two-dimensional C



Reduced Visibility Graph
• we don't really need all the edges in the visibility graph (even if 

we want shortest paths)

• Definition: Let L be the line passing through an edge (x; y) in the 
visibility graph G. The segment (x; y) is a tangent segment iff  L is 
tangent to C-obstacle at both x and y.



Reduced Visibility Graph

• It turns out we need only keep
– convex vertices of C-obstacle
– non-CB edges that are tangent segments



Reduced Visibility Graph
• Reduced visibility graphs are easier to build

– construct convex hull of each C-obstacle piece eliminate non-convex 
vertices

– construct pairwise tangents between each convex C-obstacle piece

• easy to construct tangents between two convex polygons
– How?



Reduced Visibility Graph

• Reduced visibility graph does not work if 
the convex hulls of two obstacles 
intersect

16



Voronoi Diagram for Point Sets

• Voronoi diagram of point set X consists of straight line segments, 
constructed by
– computing lines bisecting each pair of points and their intersections
– computing intersections of these lines
– keeping segments with more than one nearest neighbor

• segments of Vor(X) have largest clearance from X and regions 
identify closest point of X



Voronoi Diagram for Point Sets

• When C = R2 and polygonal C-obstacle, Vor(Cfree) consists of a finite 
collection of straight line segments and parabolic curve segments (called 
arcs)

– straight arcs are defined by two vertices or two edges of C-obstacle, i.e., the 
set of points equally close to two points (or two line segments) is a line



Voronoi Diagram for Point Sets
• Naive Method of Constucting V or(Cfree)

– compute all arcs (for each vertex-vertex, edge-edge, and vertex-edge 
pair)

– compute all intersection points (dividing arcs into segments)

– keep segments which are closest only to the vertices/edges that 



Retraction

• Retraction ρ : Cfree → Vor(Cfree)

To find a path:
1. compute Vor(Cfree)
2. find paths from qinit and qgoal to ρ(qinit) and ρ(qgoal), respectively
3. search Vor(Cfree) for a set of  arcs connecting ρ(qinit) and ρ(qgoal)



Cell Decomposition

• Idea: decompose Cfree into a collection K of non-overlapping 
cells such that the union of all the cells exactly equals the free C-
space

• Cell Characteristics:
– geometry of cells should be simple so that it is easy to compute a 

path between any two configurations in a cell
– it should be pretty easy to test the adjacency of two cells, i.e., 

whether they share a boundary
– it should be pretty easy to find a path crossing the portion of the 

boundary shared by two adjacent cells

• Thus, cell boundaries correspond to 'criticalities' in C, i.e., 
something changes when a cell boundary is crossed. No such 
criticalities in C occur within a cell.



Cell Decomposition



Difficult

Cell Decomposition



Difficult

• Preprocessing:
– represent Cfree as a collection of cells (connected regions of Cfree )

• planning between configurations in the same cell should be 'easy'

– build connectivity graph representing adjacency relations between cells 
• cells adjacent if can move directly between them

• Query:
– locate cells kinit and kgoal containing start and goal configurations

– search the connectivity graph for a 'channel' or sequence of adjacent cells 
connecting kinit and kgoal 

– find a path that is contained in the channel of cells

• Two major variants of methods:
– exact cell decomposition:

• set of cells exactly covers Cfree 
• complicated cells with irregular boundaries (contact constraints)
• harder to compute

– approximate cell decomposition:
• set of cells approximately covers Cfree 
• simpler cells with more regular boundaries

Cell Decomposition



Convex Decomposition
• A convex polygonal decomposition K of Cfree is a finite collection of convex 

polygons, called cells, such that the interiors of any two cells do not intersect and 
the union of all cells is Cfree.

– Two cells k and k’ ∈ K are adjacent iff k∩k’ is a line segment of non-zero length (i.e., not 
a single point)

• The connectivity graph associated with a convex polygonal decomposition K of 
Cfree is an undirected graph G where

– nodes in G correspond to cells in K
– nodes connected by edge in G iff corresponding cells adjacent in K



Convex Decomposition



Convex Decomposition



Convex Decomposition

Bad news: Computing convex decomposition is 
not easy nor can be done efficiently. In fact the 
problem is NP hard to generate minimum 
number of convex components for polygon with 
holes



Trapezoidal Decomposition

• Basic Idea: at every vertex of C-obstacle, extend a 
vertical line up and down in Cfree until it touches a C-
obstacle or the boundary of Cfree

trapezoid



Trapezoidal Decomposition

• Sweep line algorithm
– Add vertical lines as we 

sweep from left to right

– Events need to be handled 
accordingly



Trapezoidal Decomposition

• Sweep line algorithm
– Add vertical lines as we 

sweep from left to right

– Events need to be handled 
accordingly

trapezoidal decomposition can be built in O(n log n) time



Approx. Cell Decomposition

• Construct a collection of non-overlapping cells such 
that the union of all the cells approximately covers the 
free C-space!

• Cell characteristics
– Cell should have simple shape
– Easy to test adjacency of two cells 

– Easy to find path across two adjacent cells



Approx. Cell Decomposition

• Each cell is
– Empty
– Full
– Mixed

• Different resolution
– Different roadmap



Approx. Cell Decomposition

• Higher resolution around CBs



Approx. Cell Decomposition

• Hierarchical approach
– Find path using empty and mixed cells
– Further decompose mixed cells into smaller cells



Approx. Cell Decomposition
• Advantages:

– simple, uniform decomposition
– easy implementation

– adaptive 

• Disadvantages:
– large storage requirement 
– Lose completeness 

• Bottom line 1: We sacrifice exactness for simplicity and efficiency

• Bottom line 2: Approx. cell decomposition methods are 
practically for lower dimension C, i.e., dof <5, b/c they generate 
too many cells, i.e. (Nd) cells in d dimension



Potential Field Methods

• Approach initially proposed for real-time 
collision avoidance [Khatib, 86].

– Hundreds of papers published on it



Potential Field Methods



Potential Field+Grid Search

• Superimpose a grid over C-space

• Each cell has a potential value

• Search from start to goal on the grid 
using best-first search or A* search



Potential Field Methods

• At each step move an increment in the 
direction that minimizes the energy
+ Good heuristic for high DOF

– Can get trapped in local minima
• use some probabilistic motion to escape

– Oscillations can also occur


