
Procedural Modeling

Procedural Modeling

•Goal:
–Describe 3D models algorithmically

•Best for models resulting from ...
–Repeating processes
–Self-similar processes
–Random processes

•Advantages:
–Automatic generation
–Concise representation
–Parameterized classes of models

Perlin Noises in 2-D

Terrain Example

F.K. Musgrave

Example: Seashells

•Create 3D polygonal surface models of
seashells

Example: Seashells

•Create 3D polygonal surface models of
seashells

“Modeling Seashells,”
Deborah Fowler, Hans Meinhardt,
and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92),
Chicago, Illinois, July, 1992, p 379-387.

Example: Seashells

•Create 3D polygonal surface models of
seashells

Fowler et al. Figure 7

“Modeling Seashells,”
Deborah Fowler, Hans Meinhardt,
and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92),
Chicago, Illinois, July, 1992, p 379-387.

Example: Seashells

•Sweep generating curve around helico-spiral
axis

Example: Seashells

•Sweep generating curve around helico-spiral
axis

Helico-spiral definition:

Example: Seashells

•Sweep generating curve around helico-spiral
axis

Fowler et al. Figure 1

Helico-spiral definition:

Example: Seashells

•Generate different shells by varying
parameters

Example: Seashells

•Generate different shells by varying
parameters

Fowler et al. Figure 2
Different helico-spirals

Example: Seashells

•Generate different shells by varying
parameters

Example: Seashells

•Generate different shells by varying
parameters

Fowler et al. Figure 3
Different generating curves

Example: Seashells

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Example: Seashells

Fowler et al. Figures 4,5,7

Generate many interesting shells
with a simple procedural model!

Fractals

Fractals

•Useful for describing natural 3D
phenomenon

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants
–Clouds

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants
–Clouds
–Water

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants
–Clouds
–Water
–Feathers

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants
–Clouds
–Water
–Feathers
–Fur

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants
–Clouds
–Water
–Feathers
–Fur
–etc.

Fractals

•Useful for describing natural 3D
phenomenon
–Terrain

–Plants
–Clouds
–Water
–Feathers
–Fur
–etc.

H&B Figure 10.80

Fractal Generation

•Deterministically self-similar fractals
–Parts are scaled copies of original

•Statistically self-similar fractals
–Parts have same statistical properties as original

Deterministic Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with scaled copy of
original

Deterministic Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with scaled copy of
original

H&B Figure 10.68

Deterministic Fractal Generation

•Apply generator repeatedly

Deterministic Fractal Generation

•Apply generator repeatedly

H&B Figure 10.69

Koch Curve

Deterministic Fractal Generation

•Useful for creating interesting shapes!

Deterministic Fractal Generation

Mandelbrot Figure X

•Useful for creating interesting shapes!

Deterministic Fractal Generation

•Useful for creating interesting shapes!

Deterministic Fractal Generation

•Useful for creating interesting shapes!

Deterministic Fractal Generation

Mandelbrot Figure 46

•Useful for creating interesting shapes!

Deterministic Fractal Generation

•Useful for creating interesting shapes!

Deterministic Fractal Generation

•Useful for creating interesting shapes!

Deterministic Fractal Generation

H&B Figures 75 & 109

•Useful for creating interesting shapes!

Fractal Generation

•Deterministically self-similar fractals
–Parts are scaled copies of original

•Statistically self-similar fractals
–Parts have same statistical properties as original

Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar
random pattern

Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar
random pattern

Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar
random pattern

Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar
random pattern

Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar
random pattern

Random Midpoint Displacement

Statistical Fractal Generation

•Example: terrain

Statistical Fractal Generation

•Example: terrain

Statistical Fractal Generation

•Example: terrain

Statistical Fractal Generation

•Example: terrain

Statistical Fractal Generation

•Example: terrain

H&B Figure 10.83b

Statistical Fractal Generation

•Useful for creating mountains

Statistical Fractal Generation

H&B Figure 10.83a

•Useful for creating mountains

Statistical Fractal Generation

•Useful for creating 3D plants

Statistical Fractal Generation

H&B Figure 10.82

•Useful for creating 3D plants

Statistical Fractal Generation

•Useful for creating 3D plants

Statistical Fractal Generation

H&B Figure 10.79

•Useful for creating 3D plants

L-Systems

•Developed by Aristid Lindenmayer to model
the development of plants

•Based on parallel string-rewriting rules
•Excellent for modeling organic objects and

fractals

L-Systems Grammar

• Begin with a set of “productions” (replacement rules)
and a “seed” axiom

• In parallel, all matching productions are replaced
with their right-hand sides

• Ex:
– Rules:

•B -> ACA
•A -> B

– Axiom: AA
– Sequence: AA, BB, ACAACA, BCBBCB, etc.

• Strings are converted to graphic representations via
interpretation as turtle graphics commands

Turtle Commands

lFx: move forward one step, drawing a line
l fx: move forward one step, without drawing a

line
l+x: turn left by angle ∂
l -x: turn right by angle ∂

L-Systems Example:
Koch Snowflake

•Axiom: F-F-F-F ∂ :90 degrees
•F -> F-F+F+FF-F-F+F

L-Systems Example:
Dragon Curve

•Axiom:Fl ∂ :90 degrees n:10 iterations

•Fl -> Fl+Fr+

•Fr -> Fl-Fr-

L-Systems for Plants

• L-Systems can capture a large array of plant species

• Designing rules for a specific species can be challenging

L-system

• alphabet: {a,b}

• initiator: a

• production rules:
– a -> b

– b -> ba

• generations:
– a

– b

– ba

– bab

– babba

– babbabab

– babbababbabba

– babbababbabbababbabab
29

L-system

30

flowers

branch

cell

PovTree

L-Systems

L-Systems

•Generation of plants
Prusinkiewicz, Lindenmayer; 1990

•Environment-sensitive
Prusinkiewicz, James, Mech; 1994

•Interaction (Open L-System)
Mech, Prusinkiewicz; 1996

•Ecosystems
Deussen, et al.; 1998

L-Systems Grammar:
Extensions

•Basic L-Systems have inspired a large number
of variations
–Context sensitive: productions look at neighboring

symbols
–Bracketed: save/restore state (for branches)
–Stochastic: choose one of n matching productions

randomly
–Parametric: variables can be passed between

productions

L-Systems: Further Readings

•Algorithmic Botany
–Covers many variants of L-Systems, formal

derivations, and exhaustive coverage of different
plant types.

–http://algorithmicbotany.org/papers

•PovTree
–http://propro.ru/go/Wshop/povtree/povtree.html
–http://arbaro.sourceforge.net/

http://algorithmicbotany.org/papers
http://algorithmicbotany.org/papers
http://propro.ru/go/Wshop/povtree/povtree.html
http://propro.ru/go/Wshop/povtree/povtree.html
http://arbaro.sourceforge.net/
http://arbaro.sourceforge.net/

L-Systems for Cities/Game Levels

• Start with a single street
• Branch & extend w/ parametric L-System
• Parameters of the string are tweaked by goals/constraints
• Goals control street direction, spacing
• Constraints allow for parks, bridges, road loops
• Once we have streets, we can form buildings with another L-System
• Building shapes are represented as CSG operations on simple shapes

The City Engine System

•Procedurally creates complex city models.

•Cities consist of:

•Street maps

•Buildings

•Facade textures

Example Zurich-London-Paris

Example Manhattan

Example Manhattan 2259

System Pipeline

Module 1: Streetmap Creation

•Input:
Image maps,
parameters for rules

•Output:
A street graph for
interactive editing

Module 2: Division into Lots

•Input:
Street graph, area
usage map

•Output:
Polygon set of
allotments for
buildings

Module 3: Building Generation

•Input:
Lot polygons, age map
and zone plan

•Output:
Building strings with
additional info

Module 4: Geometry and Facades

•Input:
Strings and building type

•Output:
City geometry and
facade texture
(procedural shader)

L-Systems for Streets

- Grouping parameters of different street patterns
- Hierarchical influences: global goals and local

constraints

Extended L-Systems

- Template successor defines 3 branches

- Parameters fields are unassigned

Extended L-Systems

- Initial parameter settings

- Design goal

Extended L-Systems

- Parameter value correction

- Influenced by local environment

Global Goals

- Could be a planned urban design
- Different goals in the same city
- Controlled by image map (user input)

Local Constraints

- Environment-sensitivity for legal streets

- Self-sensitivity for closed loops

Division into Lots

•Lot area depends on:
- Land Use map
- Population density

- Building height
- Access to street

Procedural Buildings

- Modeled with a common L-System

- L-System modules consist of geometric operations
like extrusion

CGA Shape

Production process:
•Rule-driven modification & replacement of shapes

•Iteratively evolve a design by creating more and
more details

•Sequential application (like Chomsky grammars)

53

Shape Rules

•Notation:

•A shape consists of:
– Symbol (string)

– Geometry (geometric attributes)

– Oriented bounding box called
scope (numeric attributes)

 id: predecessor : condition 4 successor : prob

54

Basic Shape Operations

•Insertion: I(obj_Id)
•Transformations: T(tx,ty,tz), S(sx,sy,sz),

Rx(α)..
•Branching: [...]

Simple example:
 1: A 4 [T(0,0,6) S(8,10,18) I(“cube”)]
 T(6,0,0) S(7,13,18) I(“cube”)
 T(0,0,16) S(8,15,8) I(“cylinder”)

55

Facade Textures

- Division into simple grid-like structures

- Structures can be layered

Layered Textures

- Two base functions form a layer

- Every layer defines a facade element

58

59

Example-Based Approach

60

