Procedural Modeling




Procedural Modeling

* Goal:
—Describe 3D models algorithmically

e Best for models resulting from ...
—Repeating processes
—Self-similar processes
—Random processes

e Advantages:

—Automatic generation
—Concise representation
—Parameterized classes of models




Perlin Noises in 2-D
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Example: Seashells

e Create 3D polygonal surface models of
seashells
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and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92),
Chicago, lllinois, July, 1992, p 379-387.
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Fowler et al. Figure 7




Example: Seashells

e Sweep generating curve around helico-spiral
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Example: Seashells

e Sweep generating curve around helico-spiral
axis

Helico-spiral definition:
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Example: Seashells

e Sweep generating curve around helico-spiral
axis

Helico-spiral definition: center of similitude

&: of the shell
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Fowler et al. Figure 1




Example: Seashells

e Generate different shells by varying
parameters




Example: Seashells

e Generate different shells by varying
parameters

Different helico-spirals
Fowler et al. Figure 2




Example: Seashells

e Generate different shells by varying
parameters




Example: Seashells

e Generate different shells by varying
parameters

Different generating curves
Fowler et al. Figure 3




Example: Seashells




Example: Seashells

Generate many interesting shells
with a simple procedural model!
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Example: Seashells

Generate many interesting shells
with a simple procedural model!

Fowler et al. Figures 4,5,7




Fractals




Fractals

e Useful for describing natural 3D
phenomenon
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Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

—Plants
—Clouds
—Water

— Feathers
—Fur
—etc.

H&B Figure 10.80




Fractal Generation

* Deterministically self-similar fractals

—Parts are scaled copies of original

e Statistically self-similar fractals

—Parts have same statistical properties as original
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Deterministic Fractal Generation

e General procedure:
—Initiator: start with a shape

—Generator: replace subparts with scaled copy of
original

Generator

Initiator

H&B Figure 10.68




Deterministic Fractal Generation

* Apply generator repeatedly

\ X




Deterministic Fractal Generation

* Apply generator repeatedly

Koch Curve
H&B Figure 10.69




Deterministic Fractal Generation

e Useful for creating interesting shapes!




Deterministic Fractal Generation

e Useful for creating interesting shapes!
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Deterministic Fractal Generation

e Useful for creating interesting shapes!
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e Useful for creating interesting shapes!
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Deterministic Fractal Generation

e Useful for creating interesting shapes!




Deterministic Fractal Generation

e Useful for creating interesting shapes!




Deterministic Fractal Generation

e Useful for creating interesting shapes!

H&B Figures 75 & 109




Fractal Generation

e Statistically self-similar fractals

—Parts have same statistical properties as original




Statistical Fractal Generation

e General procedure:
—Initiator: start with a s

—Generator: replace su
random pattern
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Statistical Fractal Generation

e General procedure:
—Initiator: start with a shape

—Generator: replace subparts with a self-similar
random pattern
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Statistical Fractal Generation

e General procedure:
—Initiator: start with a shape

—Generator: replace subparts with a self-similar
random pattern
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Random Midpoint Displacement




Statistical Fractal Generation

e Example: terrain
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Statistical Fractal Generation

e Example: terrain




Statistical Fractal Generation

e Example: terrain

H&B Figure 10.83b



Statistical Fractal Generation

e Useful for creating mountains




Statistical Fractal Generation

e Useful for creating mountains

H&B Figure 10.83a




Statistical Fractal Generation

e Useful for creating 3D plants




Statistical Fractal Generation

e Useful for creating 3D plants
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H&B Figure 10.82




Statistical Fractal Generation

e Useful for creating 3D plants




Statistical Fractal Generation

e Useful for creating 3D plants

H&B Figure 10.79




L-Systems

* Developed by Aristid Lindenmayer to model
the development of plants

e Based on parallel string-rewriting rules

e Excellent for modeling organic objects and
fractals




L-Systems Grammar

e Begin with a set of “productions” (replacement rules)
and a “seed” axiom

e In parallel, all matching productions are replaced
with their right-hand sides

o Fx:
— Rules:
B -> ACA
oA ->B
— Axiom: AA
— Sequence: AA, BB, ACAACA, BCBBCB, etc.

e Strings are converted to graﬁhic representations via
interpretation as turtle graphics commands




Turtle Commands

e F.: move forward one step, drawing a line

e f.. move forward one step, without drawing a
line
e+ : turn left by angle ¢

e - . turn right by angle o

FFF-FF-F-F+F+FF-F-FFF




L-Systems Example:
Koch Snowflake

e Axiom: F-F-F-F 0 :90 degrees
oF -> F-F+F+FF-F-F+F




L-Systems Example:
Dragon Curve

e Axiom:F, 0 :90 degrees  n:10 iterations
® F| -> F|+Fr+
oF -> F-F -




L-Systems for Plants

P. Prusinicwicz
e |-Systems can capture a large array of plant species
e Designing rules for a specific species can be challenging




L-system

e alphabet: {a,b]

—a->b R o

— b ->ba R
* generations: *“N

d ¢

D X

bbabbababbabab

* initiator: a
e production rules: TN

’
~\ I/’
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‘\\ (’I/ "'0', &
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n=7,0=20° n=7,§=25.7°

hbabba X —F [+X]JF[-X]+X X —F [+X] [-X]FX
F —FF F—FF
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Eucalyptus







L-Systems

* Generation of plants
Prusinkiewicz, Lindenmayer; 1990

* Environment-sensitive
Prusinkiewicz, James, Mech; 1994

* Interaction (Open L-System)
Mech, Prusinkiewicz; 1996

* Ecosystems
Deussen, et al.; 1998




L-Systems Grammar:
Extensions

e Basic L-Systems have inspired a large number
of variations

—Context sensitive: productions look at neighboring
symbols

—Bracketed: save/restore state (for branches)

—Stochastic: choose one of n matching productions
randomly

—Parametric: variables can be passed between
productions




L-Systems: Further Readings

e Algorithmic Botany

—Covers many variants of L-Systems, formal
derivations, and exhaustive coverage of different
plant types.

e Poviree



http://algorithmicbotany.org/papers
http://algorithmicbotany.org/papers
http://propro.ru/go/Wshop/povtree/povtree.html
http://propro.ru/go/Wshop/povtree/povtree.html
http://arbaro.sourceforge.net/
http://arbaro.sourceforge.net/

L-Systems for Cities/Game Levels
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Start with a single street

Branch & extend w/ parametric L-System

Parameters of the string are tweaked by goals/constraints

Goals control street direction, spacing

Constraints allow for parks, bridges, road loops

Once we have streets, we can form buildings with another L-System
Building shapes are represented as CSG operations on simple shapes




The City Engine System

* Procedurally creates complex city models.

e Cities consist of:
® Street maps
e Buildings
® Facade textures




Example Zurich-London-Paris




Example Manhattan
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System Pipeline

Geographical Sociostatistical
Image Maps Image Maps

-~

Roadmap creation
Extended L-System

Roadmap
Graph

Division into lots

Subdivision Allotments

Polygons

Building generation

L-System Buildings

Strings

S,

Geometry

Parser Geometry
Polygons

S




Module 1: Streetmap Creation

Geographical Sociostatistical
Image Maps Image Maps

Roadmap creation
Extended L-System

Roadmap

—— Graph
Division into lots

Subdivision Allotments

Polygons
Building generation

L-System Buildings

Strings
Geometry

Parser Geometry

Polygons
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* Input:
Image maps,
arameters for rules
e Qutput:
A street graph for
interactive editing




Module 2: Division into Lots

Geographical Sociostatistical
Image Maps Image Maps
Roadmap creation ® | n p Ut:
Extended L-System Roadmap
Street graph, area
Division into lots
Subdivision Allotments us age m a p

Polygons

Building generation

|_L-System Buildings ¢ OUtpUtI

Strings
Seometry . — Polygon set of
allotments for

Polygons
buildings

-~




Module 3: Building Generation

Roadmap creation ® l n p Ut:

Extended L-System
Roadmap

Division into lots Graph LOt pOlygonS) age map

Subdivision Allotments and Zone plan

S

Polygons
Building generation

L-System Buildings ® OUtpUt:

Strings

o~

N

Geometry

. — Building strings with

Polygons

additional info



Module 4: Geometry and Facades

Geographical Sociostatistical
Image Maps Image Maps
Roadmap creation ® l n p Ut:
Extended L-System S . . .
Strings and building type

fotments e Output:
Building generation .
L-system Buildings City geometry and

Strings

Geometry facade texture

Geometry

(procedural shader)

Division into lots
Subdivision




L-Systems for Streets

l .
H .-n\\ N '\ \\‘“"I"IIII 1 i i
9',' '..-m'. Bvs “m S ¢ “\ ‘\\\ Il,l,”l {{I!/ 7 [Ill” .l!{[’

i gy - !-ou!I __"" .',.“u S S I " RS I ”l’ l’
iy s g ] o”; Wy Ul 'Wll
,, .l y l"u b/ e
, I l ity IclIl:llL’. h; II”"{"!'!”' ”’E " "
I l " ’Il’i .l:",, l'

Street map generation
, "lzm:
, ;il

</

(-

Raster and Basic rule
street generation
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Grouping parameters of different street patterns

Hierarchical influences: global goals and local
constraints




Extended L-Systems

- Template successor defines 3 branches
- Parameters fields are unassigned




Extended L-Systems
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Ideal Local
Predecessor .
Successor Constraints

o

- Initial parameter settings
- Design goal




Extended L-Systems

Predecessor Ideal Global
Successor Goals

- Parameter value correction
- Influenced by local environment
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- Could be a planned urban design
- Different goals in the same city

- Controlled by




Local Constraints
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- Environment-sensitivity for legal streets

- Self-sensitivity for closed loops
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Building height
- Access to street

* Lot area depends on:

- Land Use map
- Population density




Procedural Buildings

- Modeled with a common L-System

- L-System modules consist of geometric operations
like extrusion




CGA Shape

Production process:
e Rule-driven modification & replacement of shapes

e [teratively evolve a design by creating more and
more details

e Sequential application (like Chomsky grammars)




Shape Rules

e Notation:

id: predecessor : condition — successor : prob

* A shape consists of:
— Symbol (string)
— Geometry (geometric attributes)

— Oriented bounding box called
scope (numeric attributes)




Basic Shape Operations

* [nsertion: 1(obj_Id)
* Transformations: T(ty,ty,t2), S(Sx,Sy,Sz2),
RX(at)..

*Branching: [ ... ]

Simple example:
1. A [T(0,0,6)S(8,10,18) I("cube”) ]
1(6,0,0) S(7,13,18) I("cube”)
T(0,0,16) S(8,15,8) I("cylinder”)




Facade Textures

- Division into simple grid-like structures

- Structures can be layered




Layered Textures

- Two base functions form a layer
- Every layer defines a facade element







Procedural Modeling
of Buildings

59



Example-Based Approach

Continuous
Model Synthesis

Paul Merrell
Dinesh Manocha

University of North Carolina at Chapel Hill




