Procedural Modeling

Procedural Modeling

* Goal:
—Describe 3D models algorithmically

e Best for models resulting from ...
—Repeating processes
—Self-similar processes
—Random processes

e Advantages:

—Automatic generation
—Concise representation
—Parameterized classes of models

Perlin Noises in 2-D

F.K. Musgrave

=
=
<
<
Ll
=
v
R
3
o

Example: Seashells

e Create 3D polygonal surface models of
seashells

Example: Seashells

e Create 3D polygonal surface models of
seashells

“Modeling Seashells,”

Deborah Fowler, Hans Meinhardt,

and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92),
Chicago, lllinois, July, 1992, p 379-387.

Example: Seashells

e Create 3D polygonal surface models of
seashells

“Modeling Seashells,”

Deborah Fowler, Hans Meinhardt,

and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92),
Chicago, lllinois, July, 1992, p 379-387.

Fowler et al. Figure 7

Example: Seashells

e Sweep generating curve around helico-spiral

— T,)\ T
<3 /\ >

Example: Seashells

e Sweep generating curve around helico-spiral
axis

Helico-spiral definition:

— T,)\ r
<3 /\ >

Example: Seashells

e Sweep generating curve around helico-spiral
axis

Helico-spiral definition: center of similitude

&: of the shell

— T'i/\’r
Z?Z)\z

helico-spiral

shell axis - 3> generating
v curve g
Z

Fowler et al. Figure 1

Example: Seashells

e Generate different shells by varying
parameters

Example: Seashells

e Generate different shells by varying
parameters

Different helico-spirals
Fowler et al. Figure 2

Example: Seashells

e Generate different shells by varying
parameters

Example: Seashells

e Generate different shells by varying
parameters

Different generating curves
Fowler et al. Figure 3

Example: Seashells

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Example: Seashells

Generate many interesting shells
with a simple procedural model!

Fowler et al. Figures 4,5,7

Fractals

Fractals

e Useful for describing natural 3D
phenomenon

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

—Plants

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

—Plants
—Clouds

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

—Plants

—Clouds
—Water

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

—Plants

—Clouds
—Water
— Feathers

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain
—Plants
—Clouds
—Water
—Feathers
—Fur

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain
—Plants
—Clouds
—Water
—Feathers
—Fur
—elcC.

Fractals

e Useful for describing natural 3D
phenomenon

—Terrain

—Plants
—Clouds
—Water

— Feathers
—Fur
—etc.

H&B Figure 10.80

Fractal Generation

* Deterministically self-similar fractals

—Parts are scaled copies of original

e Statistically self-similar fractals

—Parts have same statistical properties as original

Deterministic Fractal Generation

e General procedure:
—Initiator: start with a s

—Generator: replace su
original

nape

pparts with scaled copy of

Deterministic Fractal Generation

e General procedure:
—Initiator: start with a shape

—Generator: replace subparts with scaled copy of
original

Generator

Initiator

H&B Figure 10.68

Deterministic Fractal Generation

* Apply generator repeatedly

\ X

Deterministic Fractal Generation

* Apply generator repeatedly

Koch Curve
H&B Figure 10.69

Deterministic Fractal Generation

e Useful for creating interesting shapes!

Deterministic Fractal Generation

e Useful for creating interesting shapes!

5 ¥ W

Mandelbrot Figure X

Deterministic Fractal Generation

e Useful for creating interesting shapes!

Deterministic Fractal Generation

e Useful for creating interesting shapes!

Ion

!

teresting shapes
Mandelbrot Figure 46

)
(4]
S
<P
-
<P

O

e

)
@
(4]
-

bl
J

—

INg In

INIS

Determ
e Useful for creat

Deterministic Fractal Generation

e Useful for creating interesting shapes!

Deterministic Fractal Generation

e Useful for creating interesting shapes!

Deterministic Fractal Generation

e Useful for creating interesting shapes!

H&B Figures 75 & 109

Fractal Generation

e Statistically self-similar fractals

—Parts have same statistical properties as original

Statistical Fractal Generation

e General procedure:
—Initiator: start with a s

—Generator: replace su
random pattern

nape

pparts with a self-similar

Statistical Fractal Generation

e General procedure:
—Initiator: start with a s

—Generator: replace su
random pattern

nape

pparts with a self-similar

Statistical Fractal Generation

e General procedure:
—Initiator: start with a s

—Generator: replace su
random pattern

nape

pparts with a self-similar

Statistical Fractal Generation

e General procedure:
—Initiator: start with a shape

—Generator: replace subparts with a self-similar
random pattern

»
*
*
o
*
*
*
o
*
*
*
*
*
*
o
*
*
*
o
*
*
*
*
*
*
*
o
*
o

Statistical Fractal Generation

e General procedure:
—Initiator: start with a shape

—Generator: replace subparts with a self-similar
random pattern

»
*
*
o
*
*
*
o
*
*
*
*
*
*
o
*
*
*
o
*
*
*
*
*
*
*
o
*
o

Random Midpoint Displacement

Statistical Fractal Generation

e Example: terrain

Statistical Fractal Generation

e Example: terrain

Statistical Fractal Generation

e Example: terrain

Statistical Fractal Generation

e Example: terrain

Statistical Fractal Generation

e Example: terrain

H&B Figure 10.83b

Statistical Fractal Generation

e Useful for creating mountains

Statistical Fractal Generation

e Useful for creating mountains

H&B Figure 10.83a

Statistical Fractal Generation

e Useful for creating 3D plants

Statistical Fractal Generation

e Useful for creating 3D plants

NI

\“ ~/'
NS

DO

H&B Figure 10.82

Statistical Fractal Generation

e Useful for creating 3D plants

Statistical Fractal Generation

e Useful for creating 3D plants

H&B Figure 10.79

L-Systems

* Developed by Aristid Lindenmayer to model
the development of plants

e Based on parallel string-rewriting rules

e Excellent for modeling organic objects and
fractals

L-Systems Grammar

e Begin with a set of “productions” (replacement rules)
and a “seed” axiom

e In parallel, all matching productions are replaced
with their right-hand sides

o Fx:
— Rules:
B -> ACA
oA ->B
— Axiom: AA
— Sequence: AA, BB, ACAACA, BCBBCB, etc.

e Strings are converted to graﬁhic representations via
interpretation as turtle graphics commands

Turtle Commands

e F.: move forward one step, drawing a line

e f.. move forward one step, without drawing a
line
e+ : turn left by angle ¢

e - . turn right by angle o

FFF-FF-F-F+F+FF-F-FFF

L-Systems Example:
Koch Snowflake

e Axiom: F-F-F-F 0 :90 degrees
oF -> F-F+F+FF-F-F+F

L-Systems Example:
Dragon Curve

e Axiom:F, 0 :90 degrees n:10 iterations
® F| -> F|+Fr+
oF -> F-F -

L-Systems for Plants

P. Prusinicwicz
e |-Systems can capture a large array of plant species
e Designing rules for a specific species can be challenging

L-system

e alphabet: {a,b]

—a->b R o

— b ->ba R
* generations: *“N

d ¢

D X

bbabbababbabab

* initiator: a
e production rules: TN

’
~\ I/’

H,)’/

‘\\ (’I/ "'0', &
’)ﬂ;

n=7,0=20° n=7,§=25.7°

hbabba X —F [+X]JF[-X]+X X —F [+X] [-X]FX
F —FF F—FF

L-system

flowers
T o v

/
\
= 5 X
NN

0 young fruit W old fruit

-

a)

Eucalyptus

L-Systems

* Generation of plants
Prusinkiewicz, Lindenmayer; 1990

* Environment-sensitive
Prusinkiewicz, James, Mech; 1994

* Interaction (Open L-System)
Mech, Prusinkiewicz; 1996

* Ecosystems
Deussen, et al.; 1998

L-Systems Grammar:
Extensions

e Basic L-Systems have inspired a large number
of variations

—Context sensitive: productions look at neighboring
symbols

—Bracketed: save/restore state (for branches)

—Stochastic: choose one of n matching productions
randomly

—Parametric: variables can be passed between
productions

L-Systems: Further Readings

e Algorithmic Botany

—Covers many variants of L-Systems, formal
derivations, and exhaustive coverage of different
plant types.

e Poviree

http://algorithmicbotany.org/papers
http://algorithmicbotany.org/papers
http://propro.ru/go/Wshop/povtree/povtree.html
http://propro.ru/go/Wshop/povtree/povtree.html
http://arbaro.sourceforge.net/
http://arbaro.sourceforge.net/

L-Systems for Cities/Game Levels

x
o
| ~4
2
o
3

w
44

=\

Start with a single street

Branch & extend w/ parametric L-System

Parameters of the string are tweaked by goals/constraints

Goals control street direction, spacing

Constraints allow for parks, bridges, road loops

Once we have streets, we can form buildings with another L-System
Building shapes are represented as CSG operations on simple shapes

The City Engine System

* Procedurally creates complex city models.

e Cities consist of:
® Street maps
e Buildings
® Facade textures

Example Zurich-London-Paris

Example Manhattan

@p)
LM
N
N
-
(]
)
)
!
-t
-
s
&
=l
&
4]
b
Ll

System Pipeline

Geographical Sociostatistical
Image Maps Image Maps

-~

Roadmap creation
Extended L-System

Roadmap
Graph

Division into lots

Subdivision Allotments

Polygons

Building generation

L-System Buildings

Strings

S,

Geometry

Parser Geometry
Polygons

S

Module 1: Streetmap Creation

Geographical Sociostatistical
Image Maps Image Maps

Roadmap creation
Extended L-System

Roadmap

—— Graph
Division into lots

Subdivision Allotments

Polygons
Building generation

L-System Buildings

Strings
Geometry

Parser Geometry

Polygons

Wi

I, A7
GRITONIRRS
NN
IO NN
P,

il \
IS

I
fiio
u

i
i
A
Nt L 1

* Input:
Image maps,
arameters for rules
e Qutput:
A street graph for
interactive editing

Module 2: Division into Lots

Geographical Sociostatistical
Image Maps Image Maps
Roadmap creation ® | n p Ut:
Extended L-System Roadmap
Street graph, area
Division into lots
Subdivision Allotments us age m a p

Polygons

Building generation

|_L-System Buildings ¢ OUtpUtI

Strings
Seometry . — Polygon set of
allotments for

Polygons
buildings

-~

Module 3: Building Generation

Roadmap creation ® l n p Ut:

Extended L-System
Roadmap

Division into lots Graph LOt pOlygonS) age map

Subdivision Allotments and Zone plan

S

Polygons
Building generation

L-System Buildings ® OUtpUt:

Strings

o~

N

Geometry

. — Building strings with

Polygons

additional info

Module 4: Geometry and Facades

Geographical Sociostatistical
Image Maps Image Maps
Roadmap creation ® l n p Ut:
Extended L-System S . . .
Strings and building type

fotments e Output:
Building generation .
L-system Buildings City geometry and

Strings

Geometry facade texture

Geometry

(procedural shader)

Division into lots
Subdivision

L-Systems for Streets

l .
H .-n\\ N '\ \\‘“"I"IIII 1 i i
9',' '..-m'. Bvs “m S ¢ “\ ‘\\\ Il,l,”l {{I!/ 7 [Ill” .l!{[’

i gy - !-ou!I __"" .',.“u S S I " RS I ”l’ l’
iy s g] o”; Wy Ul 'Wll
,, .l y l"u b/ e
, I l ity IclIl:llL’. h; II”"{"!'!”' ”’E " "
I l " ’Il’i .l:",, l'

Street map generation
, "lzm:
, ;il

</

(-

Raster and Basic rule
street generation

o
U UMDy Suaal

1S uosnoy '

Grouping parameters of different street patterns

Hierarchical influences: global goals and local
constraints

Extended L-Systems

- Template successor defines 3 branches
- Parameters fields are unassigned

Extended L-Systems

r
s

Ideal Local
Predecessor .
Successor Constraints

o

- Initial parameter settings
- Design goal

Extended L-Systems

Predecessor Ideal Global
Successor Goals

- Parameter value correction
- Influenced by local environment

t)

inpu

ge map (user

-

=

S
O
k=
2
i
O

1ma

- Could be a planned urban design
- Different goals in the same city

- Controlled by

Local Constraints

\

Y1 r
- N AN =2
IS N9) SR]
N A

., N\,
BARAIM AT O RS
DElElnEErs

'f‘\

S —
4
ey
7 &
A
s
L,
s,
.
.
.
A
L
.

I
Modified I
I

PN AG AR SR A a2 =
Dalliidinne: ﬁ\’%’fﬂ”@

- Environment-sensitivity for legal streets

- Self-sensitivity for closed loops

N
i)
-
—
-
!
8=
-
2
L
2
-

Building height
- Access to street

* Lot area depends on:

- Land Use map
- Population density

Procedural Buildings

- Modeled with a common L-System

- L-System modules consist of geometric operations
like extrusion

CGA Shape

Production process:
e Rule-driven modification & replacement of shapes

e [teratively evolve a design by creating more and
more details

e Sequential application (like Chomsky grammars)

Shape Rules

e Notation:

id: predecessor : condition — successor : prob

* A shape consists of:
— Symbol (string)
— Geometry (geometric attributes)

— Oriented bounding box called
scope (numeric attributes)

Basic Shape Operations

* [nsertion: 1(obj_Id)
* Transformations: T(ty,ty,t2), S(Sx,Sy,Sz2),
RX(at)..

*Branching: [...]

Simple example:
1. A [T(0,0,6)S(8,10,18) I("cube”)]
1(6,0,0) S(7,13,18) I("cube”)
T(0,0,16) S(8,15,8) I("cylinder”)

Facade Textures

- Division into simple grid-like structures

- Structures can be layered

Layered Textures

- Two base functions form a layer
- Every layer defines a facade element

Procedural Modeling
of Buildings

59

Example-Based Approach

Continuous
Model Synthesis

Paul Merrell
Dinesh Manocha

University of North Carolina at Chapel Hill

