
Procedural Modeling



Procedural Modeling

•Goal: 
–Describe 3D models algorithmically

•Best for models resulting from ...
–Repeating processes
–Self-similar processes
–Random processes

•Advantages:
–Automatic generation
–Concise representation
–Parameterized classes of models



Perlin Noises in 2-D



Terrain Example

F.K. Musgrave



Example: Seashells

•Create 3D polygonal surface models of 
seashells
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Example: Seashells

•Create 3D polygonal surface models of 
seashells

Fowler et al. Figure 7

“Modeling Seashells,” 
Deborah Fowler, Hans Meinhardt, 
and Przemyslaw Prusinkiewicz,
Computer Graphics (SIGGRAPH 92), 
Chicago, Illinois, July, 1992, p 379-387.
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Example: Seashells

•Sweep generating curve around helico-spiral 
axis

Fowler et al. Figure 1

Helico-spiral definition:
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parameters



Example: Seashells

•Generate different shells by varying 
parameters

Fowler et al. Figure 2
Different helico-spirals
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Example: Seashells

•Generate different shells by varying 
parameters

Fowler et al. Figure 3
Different generating curves
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Generate many interesting shells
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Example: Seashells

Fowler et al. Figures 4,5,7

Generate many interesting shells
with a simple procedural model!
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Fractals

•Useful for describing natural 3D 
phenomenon
–Terrain

–Plants
–Clouds
–Water
–Feathers
–Fur
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Fractals

•Useful for describing natural 3D 
phenomenon
–Terrain

–Plants
–Clouds
–Water
–Feathers
–Fur
–etc.

H&B Figure 10.80



Fractal Generation

•Deterministically self-similar fractals
–Parts are scaled copies of original

•Statistically self-similar fractals
–Parts have same statistical properties as original



Deterministic Fractal Generation
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– Initiator: start with a shape
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Deterministic Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with scaled copy of 
original

H&B Figure 10.68



Deterministic Fractal Generation

•Apply generator repeatedly



Deterministic Fractal Generation

•Apply generator repeatedly

H&B Figure 10.69

Koch Curve



Deterministic Fractal Generation

•Useful for creating interesting shapes!



Deterministic Fractal Generation

Mandelbrot Figure X

•Useful for creating interesting shapes!
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Deterministic Fractal Generation

Mandelbrot Figure 46

•Useful for creating interesting shapes!



Deterministic Fractal Generation
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Deterministic Fractal Generation

•Useful for creating interesting shapes!



Deterministic Fractal Generation

H&B Figures 75 & 109

•Useful for creating interesting shapes!



Fractal Generation

•Deterministically self-similar fractals
–Parts are scaled copies of original

•Statistically self-similar fractals
–Parts have same statistical properties as original



Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar 
random pattern



Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar 
random pattern



Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar 
random pattern



Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar 
random pattern



Statistical Fractal Generation

•General procedure:
– Initiator: start with a shape

–Generator: replace subparts with a self-similar 
random pattern

Random Midpoint Displacement
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Statistical Fractal Generation

•Example: terrain

H&B Figure 10.83b



Statistical Fractal Generation

•Useful for creating mountains



Statistical Fractal Generation

H&B Figure 10.83a

•Useful for creating mountains



Statistical Fractal Generation

•Useful for creating 3D plants



Statistical Fractal Generation

H&B Figure 10.82

•Useful for creating 3D plants



Statistical Fractal Generation

•Useful for creating 3D plants



Statistical Fractal Generation

H&B Figure 10.79

•Useful for creating 3D plants



L-Systems

•Developed by Aristid Lindenmayer to model 
the development of plants

•Based on parallel string-rewriting rules
•Excellent for modeling organic objects and 

fractals



L-Systems Grammar

• Begin with a set of “productions” (replacement rules) 
and a “seed” axiom

• In parallel, all matching productions are replaced 
with their right-hand sides

• Ex:
– Rules:

•B -> ACA
•A -> B

– Axiom: AA
– Sequence: AA, BB, ACAACA, BCBBCB, etc.

• Strings are converted to graphic representations via 
interpretation as turtle graphics commands



Turtle Commands

lFx: move forward one step, drawing a line
l fx: move forward one step, without drawing a 

line
l+x: turn left by angle ∂
l -x: turn right by angle ∂



L-Systems Example: 
Koch Snowflake

•Axiom: F-F-F-F  ∂ :90 degrees
•F -> F-F+F+FF-F-F+F



L-Systems Example:
Dragon Curve

•Axiom:Fl  ∂ :90 degrees  n:10 iterations

•Fl -> Fl+Fr+

•Fr -> Fl-Fr-



L-Systems for Plants

• L-Systems can capture a large array of plant species

• Designing rules for a specific species can be challenging



L-system

• alphabet: {a,b} 

• initiator: a 

• production rules:
– a -> b 

– b -> ba

• generations: 
– a

– b 

– ba 

– bab 

– babba 

– babbabab 

– babbababbabba 

– babbababbabbababbabab
29



L-system
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flowers

branch

cell



PovTree



L-Systems



L-Systems

•Generation of plants
Prusinkiewicz, Lindenmayer; 1990

•Environment-sensitive 
Prusinkiewicz, James, Mech; 1994 

•Interaction (Open L-System)
Mech, Prusinkiewicz; 1996

•Ecosystems 
Deussen, et al.; 1998



L-Systems Grammar: 
Extensions

•Basic L-Systems have inspired a large number 
of variations
–Context sensitive: productions look at neighboring 

symbols
–Bracketed: save/restore state (for branches)
–Stochastic: choose one of n matching productions 

randomly
–Parametric: variables can be passed between 

productions



L-Systems: Further Readings

•Algorithmic Botany
–Covers many variants of L-Systems, formal 

derivations, and exhaustive coverage of different 
plant types.

–http://algorithmicbotany.org/papers

•PovTree
–http://propro.ru/go/Wshop/povtree/povtree.html
–http://arbaro.sourceforge.net/

http://algorithmicbotany.org/papers
http://algorithmicbotany.org/papers
http://propro.ru/go/Wshop/povtree/povtree.html
http://propro.ru/go/Wshop/povtree/povtree.html
http://arbaro.sourceforge.net/
http://arbaro.sourceforge.net/


L-Systems for Cities/Game Levels

• Start with a single street
• Branch & extend w/ parametric L-System
• Parameters of the string are tweaked by goals/constraints
• Goals control street direction, spacing
• Constraints allow for parks, bridges, road loops
• Once we have streets, we can form buildings with another L-System
• Building shapes are represented as CSG operations on simple shapes



The City Engine System

•Procedurally creates complex city models.

•Cities consist of:

•Street maps

•Buildings

•Facade textures



Example Zurich-London-Paris



Example Manhattan



Example Manhattan 2259



System Pipeline



Module 1: Streetmap Creation

•Input:
Image maps, 
parameters for rules

•Output:
A street graph for 
interactive editing



Module 2: Division into Lots

•Input:
Street graph, area 
usage map

•Output:
Polygon set of 
allotments for 
buildings



Module 3: Building Generation

•Input:
Lot polygons, age map 
and zone plan

•Output:
Building strings with 
additional info



Module 4: Geometry and Facades

•Input:
Strings and building type

•Output: 
City geometry and 
facade texture 
(procedural shader)



L-Systems for Streets

- Grouping parameters of different street patterns
- Hierarchical influences: global goals and local 

constraints



Extended L-Systems

- Template successor defines 3 branches

- Parameters fields are unassigned



Extended L-Systems

- Initial parameter settings

- Design goal



Extended L-Systems

- Parameter value correction

- Influenced by local environment



Global Goals

- Could be a planned urban design
- Different goals in the same city
- Controlled by image map (user input)



Local Constraints

- Environment-sensitivity for legal streets

- Self-sensitivity for closed loops



Division into Lots

•Lot area depends on:
- Land Use map
- Population density

- Building height
- Access to street



Procedural Buildings

- Modeled with a common L-System

- L-System modules consist of geometric operations 
like extrusion



CGA Shape

Production process:
•Rule-driven modification & replacement of shapes

•Iteratively evolve a design by creating more and 
more details

•Sequential application (like Chomsky grammars)

53



Shape Rules

•Notation:

•A shape consists of:
– Symbol (string)

– Geometry (geometric attributes) 

– Oriented bounding box called 
scope (numeric attributes)

 id:  predecessor : condition 4   successor : prob

54



Basic Shape Operations

•Insertion: I(obj_Id)
•Transformations: T(tx,ty,tz), S(sx,sy,sz), 

Rx(α)..
•Branching: [ ... ] 

Simple example:
 1:  A 4  [ T(0,0,6) S(8,10,18) I(“cube”) ]
   T(6,0,0) S(7,13,18) I(“cube”)
   T(0,0,16) S(8,15,8) I(“cylinder”)
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Facade Textures

- Division into simple grid-like structures

- Structures can be layered



Layered Textures

- Two base functions form a layer

- Every layer defines a facade element
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Example-Based Approach
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