Convex Hulls in Two Dimensions
Definitions

FIGURE 3.1 Any dent implies nonconvexity.
Nonextreme points

1. Let \(S = \{p_0, p_1, \ldots, p_{n-1}\} \), with all points distinct.
2. The in-triangle test can be implemented with three LeftOns.

Algorithm: INTERIOR POINTS

for each \(i \) do
 for each \(j \neq i \) do
 for each \(k \neq i \neq j \) do
 for each \(l \neq i \neq j \neq k \) do
 if \(p_l \in \triangle(p_i, p_j, p_k) \) then \(p_l \) is nonextreme

Algorithm 3.1 Interior points.
Algorithm: Extreme Edges
for each i do
 for each $j \neq i$ do
 for each $k \neq i \neq j$ do
 if p_k is not left or on (p_i, p_j)
 then (p_i, p_j) is not extreme

Algorithm 3.2 Extreme edges.
FIGURE 3.2 The next edge e makes the smallest angle θ with respect to the previous edge.
Algorithm: GIFT WRAPPING

Find the lowest point (smallest y coordinate).
Let i_0 be its index, and set $i \leftarrow i_0$.

repeat
 for each $j \neq i$ do
 Compute counterclockwise angle θ from previous hull edge.
 Let k be the index of the point with the smallest θ.
 Output (p_i, p_k) as a hull edge.
 $i \leftarrow k$
 until $i = i_0$

Algorithm 3.3 Gift wrapping.
FIGURE 3.3 QuickHull discards the points in $\triangle abc$ (shaded) and recurses on A and B. Here $A = \emptyset$ and $|B| = 2$.
Algorithm: QUICKHULL

function QuickHull(a, b, S)
 if S = ∅ then return ()
 else
 c ← index of point with max distance from ab.
 A ← points strictly right of (a, c).
 B ← points strictly right of (c, b).
 return QuickHull(a, c, A) + (c) + QuickHull(c, b, B)

Algorithm 3.4 QuickHull.
Details: Boundary Conditions

§ A number of details have been ignored in our presentation so far.

1. “boundary” conditions
 – if a & b are not on the hull?

2. Implementation issues
 – if points are collinear or coincident?
FIGURE 3.6 Sorting points with collinearities. Indices indicate sorting rank. Points to be deleted are shown as open circles.
Algorithm: Graham Scan, Version B
Find rightmost lowest point; label it p_0.
Sort all other points angularly about p_0.
 In case of tie, delete the point closer to p_0
 (or all but one copy for multiple points).
Stack $S = (p_1, p_0) = (p_t, p_{t-1})$; t indexes top.
i = 2
while $i < n$ do
 if p_i is strictly left of $p_{t-1} p_t$
 then Push(p_i, S) and set $i \leftarrow i + 1$
 else Pop(S).

Algorithm 3.6 Graham Scan, Version B.
Implementation of Graham’s Algorithm

Sorting

1. Atan2

- The obvious choice is to define \(p_i < p_j \) if \(\text{angle}(r_i) < \text{angle}(r_j) \), where \(\text{angle}(r) \) is the counterclockwise angle of \(r \) from the positive \(x \) axis (see Figure 3.7)
- C provides the desired function:
 \[
 \text{angle}(r) = \text{atan2}(r[Y], r[X])
 \]
- Two reasons not to use this
 - No guarantee that the arctangent computation is itself accurate
 - Expensive function. Slopes are simpler
Implementation of Graham’s Algorithm

FIGURE 3.7 Notation for sorting angle.
Implementation of Graham’s Algorithm

10 Sorting

1. Slopes
 - In the first quadrant, the slope $r[Y]/r[X]$ can substitute for the arctangent
 - In the second quadrant, $-r[X]/r[Y]$,
 - Several weaknesses
 - If $r_j = cr_j$, where c is some positive number, no guarantee that $\text{angle}(r_i) = \text{angle}(r_j)$
 - Problem of Floating-point division in C
 - Machine-dependent
 - We opt for integer computation
Implementation of Graham’s Algorithm

Sorting

1. **Left**
 - Integer computations to compare r_i and r_j
 - Recall that Left was itself a simple test on the value of Area2, which computes the signed area of the triangle determined by three points
 - Use this area function to distinguish ties
Implementation of Graham’s Algorithm

```c
int Compare( const void *tpi, const void *tpj )
{
    int a;            /* area */
    int x, y;         /* projs. of ri & rj in 1st quadrant */
    tPoint pi, pj;
    pi = (tPoint)tpi;
    pj = (tPoint)tpj;

    a = Area2( P[0].v, pi->v, pj->v );
    if (a > 0)
        return -1;
    else if (a < 0)
        return 1;
    else { /* Collinear with P[0] */
        x = abs( pi->v[X] - P[0].v[X] ) - abs( pj->v[X] - P[0].v[X] );
        y = abs( pi->v[Y] - P[0].v[Y] ) - abs( pj->v[Y] - P[0].v[Y] );
    }
}
```
if ((x < 0) || (y < 0)) {
 pi->delete = TRUE;
 return -1;
}
else if ((x > 0) || (y > 0)) {
 pj->delete = TRUE;
 return 1;
}
else { /* points are coincident */
 if (pi->vnum > pj->vnum)
 pj->delete = TRUE;
 else
 pi->delete = TRUE;
 return 0;
}
ndelete++;
main()
{
 tStack top;

 n = ReadPoints();
 FindLowest();
 qsort(
 &P[1], /* pointer to 1st elem */
 n-1, /* number of elems */
 sizeof(tsPoint), /* size of each elem */
 Compare /* -1,0,+1 compare function */
);
 Squash();

 top = Graham();
 PrintStack(top);
}

Code 3.6 main.
Implementation of Graham’s Algorithm

FIGURE 3.8 Graham Scan for Figure 3.6. Indices correspond to the coordinates in Table 3.1.
Incremental Algorithm

§ Issue: adding a single point to an existing hull
§ Let our set of points be \(P = \{p_0, p_1, \ldots, p_{n-1}\} \)
§ Assume the points are in general position
§ See Algorithm 3.7

\[
\begin{align*}
\text{Algorithm: Incremental Algorithm} \\
&\text{Let } H_2 \leftarrow \text{conv} \{p_0, p_1, p_2\}. \\
&\text{for } k = 3 \text{ to } n - 1 \text{ do} \\
&\quad H_k \leftarrow \text{conv} \{H_{k-1} \cup p_k\}
\end{align*}
\]
Incremental Algorithm

FIGURE 3.10 Tangent lines from p to Q; “left” means that p is left of the indicated directed line, and “!left” means “not left.”
FIGURE 3.11 Finding the lower tangent: from (4, 7) to (0, 12).
Algorithm: LOWER TANGENT

\[a \leftarrow \text{rightmost point of } A. \]
\[b \leftarrow \text{leftmost point of } B. \]

while \(T = ab \) not lower tangent to both \(A \) and \(B \) do
 while \(T \) not lower tangent to \(A \) do
 \[a \leftarrow a - 1 \]
 \[a \leftarrow a - 1 \]
 while \(T \) not lower tangent to \(B \) do
 \[b \leftarrow b + 1 \]

Algorithm 3.9 Lower tangent.
Lower Bound

FIGURE 3.9 Parabola construction for sorting (2, 3, 5, 8, 9, 10).
Assignments

§ Ex: 3.2.3-4, 3.4.1-2, 3.5.7-1, 3.7.1-3 due 10/01 in the beginning of the class