User Interface Design & Development

Lecture 4
Evaluation of Usability

João Pedro Sousa

SWE 632

George Mason University

previously: not enough to evaluate quality quality is built in

- in the 70's Japan's auto industry had trouble exporting because of low quality
- in the 80's the industry overhauls the production processes applying the notion of total quality from Armand Feigenbaum's 1951 book
- by the late 80's Japan builds the most reliable cars in the world
- in the 90's the world industry catches up to total quality
- software industry: big push in defense contracts SEI's CMM Software Engineering Institute, Capability Maturity Model

SWE 632 - UI Design

© Sousa 2012

costs of quality invest where it matters most

- many total quality attempts subside
 in the software industry
 because of costs of trying to get everything right
- fact:
 a small portion of the functionality
 gets used most of the time
 - in engineering this is called the 80-20 or Pareto rule
- given a limited budget for quality where do you place your chips?

SWF 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 3

under limited budgets know practices with the most impact found to have most impact most used practices 1. visit customer site 1. iterative design 2. iterative design 2. user & task modeling 3. participatory design 3. empirical studies mockups participatory design 4. prototyping visit customer site 5. analysis of competition post-release follow-up practitioners survey SWE 632 - UI Design © Sousa 2012 Lecture 4 - Evaluation - 4

usability # user friendly UI

total quality for usability cast by Frank Stajano

usability is

- not a feature that can be added after the system is designed
- not about building a friendly user interface
- about understanding how the user interacts with the system
- about designing and refining the system
 so that the user's intention can easily be translated into action
- about understanding where the system is counterintuitive
- about viewing the system with someone else's eyes and realizing that what is obvious for the designer may not be so for the user

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 5

these views led to the usability lifecycle aka process

- pre-design
 - model the user, context & tasks
- design
 - participatory design: paratypes, prototypes, Wizard of Oz
 - analysis of current practice and competition
 - coordinated design & guidelines
- post-implementation
 - functional testing
 - empirical studies: lab, in situ, in the wild
- revise design for future releases

SWE 632 - UI Design

© Sousa 2012

the rest of today

evaluation

- pre-design
 - model the user, context & tasks
 - user assessment

evaluation

- design
 - participatory design: paratypes, prototypes, Wizard of Oz
 - analysis of current practice and competition
 - coordinated design & guidelines
- post-implementation
 - functional testing
 - empirical studies: lab, in situ, in the wild
- revise design for future releases

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 7

participatory design involve the end-user

- multidisciplinary teamwork
 - UI experts propose designs
 - users and stakeholders give feedback
- formative evaluation
 - paratypes
 - mockup device placed in real/realistic situations e.g., wooden PDA, voice recording phone
 - prototypes
 - minimally functional product: mostly UI, functional components stubbed
 - Wizard of OZ
 - fully functional product,
 but complex functions done by human "behind the curtain"
 e.g., automatic translation, <u>expert systems</u>

participatory design best-practices

- UI expert defines a product identity stylistic guidelines
- define a consistency authority with oversight over all aspects of the design
- incorporate industry standards and guidelines refer to course bibliography and community resources

SWE 632 - UI Design

© Sousa 2012

participatory design discussion

- the user is always right
 - if users are having trouble with the system, the problem is *not* with the users
- the user is not always right

very hard for users to know what may work for them:

- before they see something concrete
- before they use the system in a realistic setting

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 11

outline

usability lifecycle

- pre-design
 - model the user, context, tasks & frequencies
- design
 - participatory & coordinated design
- post-implementation evaluation
 - functional testing
 - empirical studies: lab, in situ, in the wild

remember the \$300M button

SWE 632 - UI Design

© Sousa 2012

empirical studies depend on available time and budget

- in the lab
 - typical duration: one day
 - a few representative users, typically ~5-15
 - ideally a random sample of real users: not your friends
- in situ
 - typical duration: a few days, maybe scattered
 - random sample of representative situations
- in the wild
 - typical duration: weeks or months
 - possibly entire user base
 - gather statistics of use mostly aggregated data but may drill down on cases of interest

which is the most conclusive evaluation?

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 19

empirical studies different roles for the researcher

- in the lab
 - researcher provides training and guidance
- in situ
 - researcher is present but stays out of the way, may tape & make notes
 - ethnographic studies are in situ observations of natural behavior
- in the wild
 - researcher releases product
 - instrumented with mechanisms to collect usage data
 - users entirely left alone to explore at will
 - · decide when and how and whether to use product

SWE 632 - UI Design

© Sousa 2012

in the lab studies making it work

 video: usability testing for web sites by Steven Krug

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 21

in the lab studies technical steps

- explain goals & train participants on the app syntax
 - example
- provide concrete scenarios
 and ask users to perform concrete tasks
- verify the success criteria for each task
 - instrument the app, as needed

use your work from the pre-design phase

- record users' action and difficulties for later analysis
 - think aloud protocol
 - screen/video capture tools

SWE 632 - UI Design

© Sousa 2012

what to measure usability metrics

remember: you are not a typical user measure these for real users

- 1. time to learn
- 2. speed of user performance
- 3. rate of errors by users
- 4. retention over time
- 5. subjective satisfaction

let's look at these in turn

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 23

measurable quantitatively

time to learn

- how long does it take to be able to use an interface to carry out a (set of) task(s)
- learning happens in chunks

speed of performance

- performance of the user
 using the system for specific tasks
 - can be estimated given a concrete UI design: number of characters to type, buttons to press, mouse-clicks, mouse movements...
- frequent tradeoff
 speed of performance vs. time to learn
 - often faster to use systems are harder to learn e.g. Unix vs. Windows
 - ideally, a UI accommodates users with different skill levels

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 25

rate of errors by users

- importance of rate of errors depends on the application
 - browsing music vs. nuclear power plant/military
 - the more the cost of recovering the more measures to prevent mistakes are needed
- so, why aren't all apps built to prevent user errors?
 - tradeoff with freedom of interactions
 - tradeoff with design & development costs

(see next slide)

SWE 632 - UI Design

© Sousa 2012

rate of errors by users

- tradeoff freedom/errors
 - the more freedom a UI provides the more likely are users to make mistakes
 - the more guidance, the more constraints, the less mistakes
 - different styles offer different tradeoff
 - e.g., command line versus GUI
- tradeoff D&D cost/errors
 rate of errors also affected by factors such as:
 - adequacy of design & instructions to user tasks & profile
 - consistency of interactions
 - organization of interactions
 e.g. how much a user has to remember/transfer
 from one interaction to another

making a good fit, high-quality UI is hard work

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 27

retention over time

- related with time to learn
 - retention is more important if learning is costly
- UIs are easier to learn & remember if operations match user intuitions

• e.g., using a cooking stove vs. controlling a backhoe

challenge: what would be an easy-to-learn UI for the hoe?

SWE 632 - UI Design

© Sousa 2012

discussion time to learn

- is it the most important metric?
 - think of UIs with widely different time to learn
 - for UI with a long time to learn are there more important metrics?

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 29

subjective satisfaction

- focuses on questions such as:
 - comfort/willingness/desire to use application
- may be hard to separate UI from functionality issues
- like previous criteria may vary widely per user profile
- assessed via interviews & questionnaires
 - Likert scale (strongly disagree ... strongly agree)
 - freeform comments

SWE 632 - UI Design

© Sousa 2012

empirical studies gather data

- subjective satisfaction: questionnaires
 - Likert scale
 - q: how easy did you find X? a: very easy / easy / ok / hard / very hard
 - open questions
 - q: what did you find the hardest? q: what would you change?
 - example

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 31

empirical studies gather data

- quantitative data
 - average and variance single variables, e.g., user speed
 - correlations and significance tests
 un/related variables, e.g., # items on menus vs. user speed
 - scatter plots/histograms
 bimodal distributions, e.g., user speed for experienced vs. novices;
 may also help with Likert scales...

SWE 632 - UI Design

© Sousa 2012

discussion gathering data

- suppose your team is debating two design alternatives
 - you evaluate one with user A and the other with user B
 - A performed much better than B, what do you conclude?
 - difference may be due to user variability as much as 10x
 - have users (prefb. more users) test both designs and compare performance diff for each user
- suppose you evaluate some x of interest and the average x for a group of users is much worse than you expected, what do you conclude?

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 33

example survey on context-aware reminders

- question: would you like to have the app remind you to take your laptop if you'll need it during the day, before leaving home?
 - answers: 3 4 2 4 2 5 1 2 2 4 4 3 2 3 2 3 1 1 1 4 2 4 5 2 2 (1 no, 2 not really, 3 maybe, 4 yes, 5 absolutely)
 - 25 respondents, average 2.72, mode 2
 - how do you interpret the results?
 - do an histogram:
 - subgroups of users with diff reactions personae
- also: why did you get those reactions? use disambiguation questions
 - do you normally take your laptop to work/school?
 - are you ok with always taking the laptop, even if you don't need it?
 - would you like to get a reminder...?

SWE 632 - UI Design

© Sousa 2012

empirical studies analyze data and act on it

verify task success criteria

learning, retention, user speed, and error rate

- instrument app to gather usage data timings, etc.
- take measurements from screen/video recordings
- if you designed with the criteria in mind there shouldn't be big surprises, but if you designed a 10-form sequence with a task completion criterion of 2s...
- review the design based on what you learned
 - confirmed task frequencies in situ and in the wild studies only
 - success criteria measurements
 - results of questionnaires

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 35

summary

total quality ideas applied to usability

- design is an iterative and participatory process
- model users, context, tasks, task frequencies
- optimize the design for
 - the most frequent tasks
 - safety/business critical tasks
- design different UIs for different personae
 - each persona has different task frequencies, goals & roles
- functional testing is a necessary but not sufficient step: empirical studies with real users
 - analyze results and act on it

SWE 632 - UI Design

© Sousa 2012

evaluation assignments guidelines

- before looking at the UI, design your evaluation
 - model a few representative tasks
 - thinks of measurements and success criteria instantiate the usability metrics for each task
- plan your evaluation
 - consider techniques such as lab, in situ observation, surveys... remember: not enough to evaluate the interface yourself
 - for any of these, focus on the tasks you defined
- write about what you did
 - your evaluation design and how you carried it out
 - · what you learned, what surprised you

eval 1 due next week

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 38

UI assessment

e.g. homework assignments

keep in mind: usability metrics

- 1. time to learn
- 2. speed of user performance
- 3. rate of errors by users
- 4. retention over time
- 5. subjective satisfaction

SWE 632 - UI Design

© Sousa 2012

UI assessment

e.g. homework assignments

- assess the metrics for each task
 - quantitative: time to learn, speed of performance...
- assess best practices
 - qualitative scale: is the UI style & terminology consistent
- given these assessments how do decide if a UI is good?
 - define assertions on these assessments which in turn support the higher-level assessment, e.g.
 - the time to learn task 2 is between 2~4 minutes
 - the user error rate is <1 per 5 interactions on task 2

the UI is good

you set the standards

SWE 632 - UI Design

© Sousa 2012

Lecture 4 - Evaluation - 40

evaluation assignments grading policy

- evaluation plan 3 points
 - what user tasks
 - what will you measure for each task
 - who will carry out the tasks
 - and where, how, how long?...
- success criteria and metrics for each task 4 points
 - · provide and justify concrete success criteria
 - rank the criteria and justify
 - $\bullet~$ you may have an initial idea, but confirm criteria/ranking with users
 - measure and report measurements
- summarize important points, identify concrete problems, and make concrete suggestions 3 points

SWE 632 - UI Design

© Sousa 2012