
2/26/2012

1

User Interface Design
& Development

Lecture 5
GUIs Technical Background

João Pedro Sousa
SWE 632

George Mason University

GUIs family tree

70‟s: first generation
displayed text on the screen

second generation
displayed text plus vector graphics

based on geometrical primitives
points, lines, curves, and polygons

heavy use of math: scientific applications

still in use today in high-end graphics, games, virtual reality…

90‟s: dominated by raster graphics aka bitmap

direct mapping of bits in memory to pixels on the screen

much simpler to program for

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 2

2/26/2012

2

raster graphics
evolution

the X windows library late „80s

public domain source
a precursor to open source

very low level: a lot of work to develop an app

widget libraries
higher level functions built on top of low-level libraries

Motif (X), DEC Windows (X), HyperCard (Macs), MS Windows (PCs)

last three decades were dominated by
the workstation model and WIMP UIs
Windows, Icons, Menus, Pointer

WIMP interfaces go back to Xerox Alto & Star: 1970s

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 3

today
overview of WIMP Elements

widgets
menus
toolbars
dialog boxes
controls

Acknowledgment
some of the material presented throughout this course is adapted

from previous offerings of the same by Jeff Offutt

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 4

2/26/2012

3

widgets are visual elements
that facilitate communication with users

four types of widgets
imperative : used to initiate a feature

selection : used to select options or data

entry : used to enter data

display : used to visually show and manipulate data

a typical app uses only a small set of widgets
Windows and Mac use only a fraction of the invented widgets

HTML implements very few GUI widgets

additional reading on widgets:
Ray Eberts: User Interface Design, Prentice-Hall

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 5

GUI app structure
on top of widget library

initialize
include libraries

create widgets
register callback handlers for widget events

layout widgets on screen
account for

screen size & widget proportions

alignment

resizing properties

start continuous loop
wait & process widget events

detect exit event

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 6

2/26/2012

4

widget libraries
generate events

libraries run their own set of processing threads
which constantly monitor for input events

mouse move

moving onto a widget

moving off of a widget

mouse button down

mouse button up

mouse click

double-click

press a button

events at different levels of abstraction
up to the app writer to decide which events to register for

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 7

app monitors sequences of these higher level events

transition diagrams help understanding
which are valid sequences to look for

events are edges

valid states are nodes

annotate states/edges
with output/processing

the button widget monitors:
move onto widget -> mouse button down -> mouse button up
= press button

sequences of events
have meaning

init
move
onto

on selected
mouse
down

move
off

move
off

pressed

mouse
up

announce: press button

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 8

2/26/2012

5

containers
aggregate other widgets

add other widgets into a container aka parent widget

removing the container removes all children

form widget
layout helper to be included in windows

generates no events

tabbed pane

panned window
areas separated with a sash
often draggable

use areas for diff purposes
e.g., browse vs. bibliography

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 9

outline

widgets
menus
toolbars
dialog boxes
controls

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 10

2/26/2012

6

menu
guidelines aka conventional wisdom

small number of menus 7±2

list of options on each menu
tradeoff with number of menus

menu organization depends on use
more frequent items: easier to access

less frequent items: consider alternatives to menus

group related options
in different pull down menus

using separators within same menu

using hierarchical menus

menus are for actions
not for selecting items such as courses or US states

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 11

menus
proven design decisions

disable menu items that are not currently relevant
keep them visible but grayed out

text vs. icons for menu items
icons are faster for experienced user

text is easier to recognize by novices

some menus show both, especially if also available in a toolbar

support accelerators for frequent actions
Ctrl-X/C/V for cut/copy/paste

and mnemonics for easy keyboard access Alt-File-Save As...

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 12

2/26/2012

7

menus
other design decisions

allow options as menu items
see checkbox and radio box later

checkmark/icon indicates selection state of option

placement of options
under Tools? under Tools-Customize?
some applications use both, e.g. PowerPoint 2003

expanding menus e.g. MS Office 2003

show most/recently used items, then expand if user waits

may slow users down – certainly for infrequently used items

allow turning it off

cascading/hierarchical menus
often designed inside-out: look at all the cool features

may defeat the purpose of menus: easy to find frequent actions

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 13

menus
stretching design decisions

bang menus
annotate the menu label with a !, e.g. Print!

promote a command normally found inside a menu
to a menu header

break the expectation of showing a passive list of options
that the user inspects and may or may not select

using menus is supposed to be easy
designing them poorly is even easier

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 14

2/26/2012

8

many current menus
are legacy

having fairly standard organization promotes usability
users learn one organization, instead of one for each app

have been around since the early 80‟s
make interesting design choices:

File – Save/Print... is object-verb

Insert – Symbol/Picture... is verb-object

Edit – Cut/Select All/Object... anything goes

challenge: how to improve design of menus
without

breaking off from standardization

confusing users

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 15

example

defies
conventional
wisdom

or does it?

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 16

2/26/2012

9

example

combine
graphical
representation
www.alamo.com

use visual
highlight
www.flickr.com

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 17

menus
for small devices

often take full screen

limited input device
touch

not always available/practical

coarser grain than mouse

no mouse
creative use of 2D pointer

SWE 632 – UI Design © Sousa 2012

Design is not just what it looks like and feels like.
Design is how it works
Steve Jobs

Lecture 5 – GUI Background – 18

2/26/2012

10

outline

widgets
menus

toolbars
dialog boxes
controls

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 19

toolbars
are visual, always-on menus

fast access to frequent functions
similar to shortcuts

visual
icons are easier to remember than to learn

makes it harder for new users

icons may be complemented with a label and/or tooltips

…exploratory role of undo: more in later classes

consequence
once users learn the toolbars
they may resist accessing features on conventional menus
why MS Office 2007 practically got rid of conventional menu layout

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 20

2/26/2012

11

note
tooltips

an idea in the research literature in the ‟70s

Apple tried balloon help
too big and intrusive for frequent users

Windows improved by making them
smaller
less intrusive

delayed activation
monitor the event hover instead of mouseover aka move onto

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 21

toolbars
types of buttons on tool bars

action aka momentary
push it to start a feature

option aka latching
selects an option and indicates the selection

better fit for options than conv. menus

why?

pop-up
similar to hierarchical menus
see combutcons later

always visible

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 22

2/26/2012

12

toolbars
guidelines

inactive buttons
should not disappear

should not depress: confusion with option selection

should be grayed out

toolbars should be customizable
move, dock & resize

add/remove buttons

change size of buttons: visual acuity of users

maybe even detach some buttons: magnetic buttons

MS Office ribbon does not allow any of that – why?

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 23

outline

widgets
menus
toolbars

dialog boxes
controls

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 24

2/26/2012

13

dialogue boxes
are also legacy

library designers wanted to facilitate app
programming by offering pre-packaged dialogues
for frequent cases

built-in dialog boxes are tempting but
maybe not exactly what is needed

maybe confusing to users
what is the difference between no and cancel?

Are you sure?

Yes Cancel No

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 25

dialogue boxes
come in two flavors

modal
no other interaction with the app until the dialog is closed

easy to program

easy for users to understand but intrusive
e.g. error messages should disappear with next action on app

modeless
interactions with the app continue independently e.g. find

some interactions may be restricted
e.g. modeless dialogue in MS Word disables text drag-n-drop

less intrusive than modal, but may be confusing
when do they disappear? why can‟t I do X?

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 26

2/26/2012

14

dialogue boxes
the programmers‟ point of view

dialog boxes serve a number of useful purposes

properties/options
e.g. formatting & printing

function
e.g. spell checking, finding

progress
e.g. download, installation

feedback
e.g. error messages, confirmation/hesitation

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 27

dialogue boxes
the users‟ point of view

anything that appears on the middle of the screen
and requires interaction, even if only for closing

is an interruption
unjustified interruptions are intrusive

example of justified interruptions
the application cannot proceed without resolving the question

unrecoverable…

the operation is physically dangerous

what seems justified to a programmer

may be unimportant to a user

know thy users

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 28

2/26/2012

15

dialogue boxes
the UI designer‟s point of view

most of that a dialog box can do,

can be done in another way
MS office apps use a dialog box for find

web browsers and Acrobat Reader include find in a toolbar

when you do decide to use one

make modeless boxes visually different from modal ones

be consistent about modeless box termination

minimize impact of available functionality on main window

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 29

dialogue boxes
guidelines

make dialogues movable
remember the position the next time it opens

reduce intrusion
if possible include checkbox: always do this from now on

make it clear for the user
what will happen when a choice is made

yes/no may be not as clear as yes/cancel

what does closing the dialog do? consider disabling it

include a help button pref. not adjacent to cancel

formulate questions positively
negative example: Do you want to abort the installation?

cancel becomes a double negative

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 30

2/26/2012

16

take 5

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 31

outline

widgets
menus
toolbars
dialog boxes

controls

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 32

2/26/2012

17

control widgets
come in many flavors

Imperative

1. Push Button

2. Butcons / toolbar

Selection

3. Checkbox

4. Latching buttons

5. Radio box

6. Combutcons

7. List

8. Combo box

9. Tree

Display

13. Label

14. Scroll bar

15. Sliders

16. Thumbwheels

17. Splitters

18. Drawers

Entry

10. Bound Value

11. Spinner

12. Text

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 33

imperative controls
1. push button

used to activate a particular action

often offers no feedback

the action may be undoable
do not use in dangerous situations
without a confirmation aka hesitation

properties:
label, icon
parent
callback

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 34

2/26/2012

18

imperative controls
2. butcons button + icon aka toolbar button

toolbars used to group butcons
can be thought of as a “menu of buttons”

butcons frequently
are square

show an icon but no text

include a tooltip to help explain the purpose

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 35

selection controls
3. checkbox

support binary choices yes/no

may also indicate a state

4. latching butcons
combine butcons with checkboxes

e.g. selecting bold, italics, underline
each a binary choice
in MS Office products

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 36

2/26/2012

19

selection controls
5. radio box

offers a set of mutually exclusive options
collection of checkboxes with single selection

guideline: less than 8 options

uses :
set some state in system

set options for customization

originally diamonds, MS changed to circles

very fast, low errors, but uses a lot of screen space

variant: radio butcon

Printer A Printer B Printer C

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 37

quiz
pull-down menus vs. radio box

are they semantically the same?

use of space?

other differences?

menu options perform actions

radio buttons set options/formatting and indicate state

menus show on demand / may fluctuate

radio boxes are fixed within a window/dialog

menu options may be disabled based on app state

if the radio box is shown, all buttons are available

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 38

2/26/2012

20

selection controls
6. combutcons

a button that opens a menu of latching butcons

a variant on drop-down menus

examples:

Connector Tool

Connection Point Tool

Stamp Tool

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 39

selection controls
7. list aka list box, picklist

use to
choose items

reorder items

drag & drop to/from lists

may show text, icons or both

may support multiple selection aka earmarking
by adding checkboxes

by shift/ctrl click

guideline
limit number on entries -> vertical scrolling

avoid horizontal scrolling

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 40

2/26/2012

21

selection controls
8. combobox

combines a text edit field, a button and a list

users can
press the button and select from the list

type, in two flavors
only choices from the list

freely

good usability
fast

flexibility

low errors

easy to learn/remember

2003

2003

2004

2005

2006

2007

2008

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 41

selection controls
9. tree

shows hierarchical data

usually shown sideways and often with icons
example: mail folders

fred@gmu.edu

 Inbox

 Junk

 swe632

 swe642

 Research

Local Folders

 Unsent

 Family

-

-
+

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 42

2/26/2012

22

entry controls
10. bound value – scale

use to select a value from a large range
allows only valid inputs

may combined with text fields for flexibility
apply data immunity

0 5000

scale

0 100

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 43

entry controls
11. spinner

use to select a precise value from a large range
e.g.

age
day of month
RGB value

can be combined with text fields for flexibility
text field may or may not allow values out of range

41 Age 42

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 44

2/26/2012

23

entry controls
12. text box

use to allow flexible data entry
must be validated for errors

active: ignore invalid keystrokes

passive: check at the end, e.g. when user presses OK

if contents are interpreted
may present security vulnerabilities

slower to use than select from list, combobox...

often supports operations: select, copy, cut, paste

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 45

display controls
13. text label

use for simple disambiguation

usually combined with other widgets

no events

14. scroll bar
use when contents are too long to fit in widget

hard to use
requires coordinating

fine motor control: holding a button on a small icon

large motor control: moving your arm

consider expanding the container widget

2003 Year

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 46

2/26/2012

24

choosing widgets
for a GUI

don‟t just use the usual suspects
text field

combobox

menu

choose the best widgets for each job

think outside-in

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 47

designing UIs
keep it simple

anyone can make something confusing

it takes hard work, knowledge,
and skills to make things simple

“It takes three weeks to prepare a
good ad lib speech.”

Mark Twain

SWE 632 – UI Design © Sousa 2012 Lecture 5 – GUI Background – 48

