

uDesign: End-User Design Applied to
Monitoring and Control Applications for Smart Spaces

João Pedro Sousa,† Bradley Schmerl,‡ Vahe Poladian,‡ Alex Brodsky†
†George Mason University

Fairfax VA 22030 USA
{jpsousa, brodsky}@gmu.edu

‡Carnegie Mellon University
Pittsburgh PA 15213 USA

{schmerl, poladian}@cs.cmu.edu

Abstract

This paper introduces an architectural style for
enabling end-users to quickly design and deploy soft-
ware systems in domains characterized by highly per-
sonalized and dynamic requirements.

The style offers an intuitive metaphor based on box-
es, pipes, and wires, but retains enough preciseness
that systems can be automatically assembled and dy-
namically reconfigured based on uDesign descriptions.
uDesign was primarily motivated and validated within
monitoring and control applications for smart spaces,
but we envision possible extensions to other domains.

Our contribution differs from early attempts at end-
user programming by dealing with higher level soft-
ware architectural abstractions rather than program-
ming, and by addressing run-time descriptions rather
than code structures.

The paper presents validation of uDesign along the
following aspects: (a) expressiveness, by means of two
case studies, one in health care, and one in home secu-
rity, (b) soundness, by providing uDesign’s formal
semantics, and (c) implementability, by describing a
mapping of uDesign to an existing software infrastruc-
ture: the Aura infrastructure.

1. Introduction

Easy assembly of software systems is increasingly
important in domains such as assisted living and long
term healthcare, smart homes, surveillance of public
and private spaces, and emergency response. Such do-
mains are characterized by (i) highly personalized re-
quirements, for which generic one-size-fits-all software
solutions are less than ideal; and by (ii) dynamic
changes, both with respect to which devices are conve-
nient to use and the requirements for the system.

For example, a doctor should be able to easily write
a prescription for the healthcare features and behavior
of an outpatient’s home, much like medicine is pre-

scribed today. The patient could tailor the prescribed
behavior to suit personal and privacy preferences; for
instance, by including family members as first line
responders. Also, the components and behavior of the
system might be adjusted over time, by healthcare pro-
fessionals or the patient, to accommodate new devices
and/or behaviors in response to the patient’s progress.

Existing approaches focus on easy deployment of
solutions by means of “friendly” programming envi-
ronments (e.g., [1][3]) and by exploiting new technol-
ogies such as service-oriented computing and composi-
tion of web services.

Nevertheless, designing and assembling such sys-
tems remains a task that requires a fair amount of effort
and programming skill. Deploying an application that
used to take days or weeks for constructing the code
from scratch may now be reduced to a few hours for a
trained programmer. However, the skill and effort re-
quired for that is still beyond the capabilities and wil-
lingness of end-users.

This paper introduces an approach that allows end-
users to assemble and evolve highly personalized soft-
ware systems for monitoring and control in smart spac-
es. Ideally, such an approach is:

a) simple enough for end-users to manipulate with
little initial training;

b) effective as far as the ratio between the recog-
nized benefit and the effort spent; and,

c) precise enough to enable the automatic assembly
of a running system based on a description pro-
vided by the end-user.

We hypothesize that an approach based on code
structures and programming primitives is too fine
grained and removed from the experience of end-users
for achieving such goals. Instead, our work investigates
whether combining the component and connector view
of a system’s architecture with activity-oriented com-
puting (more below) results in a suitable foundation to
address this problem.

The conceptual model that we propose uses a meta-
phor of boxes, pipes, and wires. This is similar to con-

sumer electronics, where end-users may buy a number
of devices and cables and try different assembly confi-
gurations having a basic knowledge of what travels on
each cable, but without having to understand the cor-
responding electrical specifications.

The contribution of this paper is uDesign, an archi-
tectural style for describing systems of the class exem-
plified above, for which a formal semantics is defined,
as well as a mapping to an existing software infrastruc-
ture. uDesign is an architectural style in the sense that
it prescribes the kinds of components and connectors
that can be used to assemble a system. It can be
thought of as an extension of the pipe-and-filter style
[10] where boxes are more general than filters of data,
and a new kind of connector is made first class: wires
for controlling the starting and stopping of activities in
boxes.

In the remainder of this paper, Section 2 presents a
brief rationale for the organization of uDesign and
compares with related work. Prior work by the authors
focused on the automatic assembly of systems given a
specification of the available resources and of its re-
quired features [12]. Such required features are derived
from representing user activities as first class con-
structs in software systems, giving rise to activity
oriented computing [13]. High-level mechanisms for
specifying the interconnection and coordination of the
parts of a system have been lacking, though, and that is
precisely the focus of this paper.

Section 3 leads the way for the presentation of the
case studies by offering a description of uDesign’s
concepts at a level that would be appropriate for end-
users.

Sections 4 and 5 present two examples, one in long-
term healthcare, and another in home security and au-
tomation. Being able to understand case studies such
as these after the informal introduction in Section 3
constitutes supporting evidence concerning the sim-
plicity and effectiveness of uDesign: goals (a) and (b)
above. However, fully validating these goals requires
conducting user studies that present realistic problems
to real users. For that, tools for editing uDesign must
be brought to a level of maturity where they can be
used by non-computer scientists. This is the object of
ongoing and future work.

Concerning the preciseness of uDesign, goal (c),
above, Section 6 enumerates its syntactic primitives
and specifies their semantics using Zed [14], while
Section 7 maps those primitives to an existing software
infrastructure.

Section 8 concludes the paper and summarizes the
main contributions and future work.

2. Approach

uDesign differs from other languages targeted at

end-users in two fundamental aspects: it represents
run-time structures rather than code structures, and it
differs in the level of abstraction of such structures.
Additionally, as frequently done in design disciplines,
uDesign supports separable views of structure and be-
havior (e.g. [2]).

First, the boxes in uDesign correspond to running
entities that are available to be incorporated in a sys-
tem, rather than to classes or instance factories. Choos-
ing the latter option would mean that end-users would
have to create logical abstractions, i.e., programs or
scripts, to control the creation, interconnection, and
destruction of instances in the system.

In contrast, uDesign relies on discovery mechan-
isms to identify service instances that are available, and
offers interactive primitives for end-users to integrate
and interconnect those services into a system.

Second, there is a clear tradeoff between the detail
that the user is asked to manipulate and the usability
for a broad user base. The more detail, the more power
the user has to construct complex behaviors, but more
effort and training are required to use that detail. To
help manage this tradeoff, a recent trend set by service-
oriented computing is to have a separation of the roles
of service supplier and service consumer. uDesign
takes that trend one step further by supporting two
groups of service consumers: domain specialists, such
as doctors; and end users with a general education.

Services are required to work out of the box, with a
default behavior, or possibly with a set of typical beha-
vior templates. A general user should be able to make
use of such services using the default behaviors or pos-
sibly recognizing abstract parameters or modes of op-
eration, such as normal operation and emergency oper-
ation. Domain specialists, or technically bent users,
would be able to understand and tailor those generic
templates; for example, a doctor defining that the
emergency mode corresponds to the heart rate exceed-
ing 140 beats per minute (bmp) for a given patient, but
only 120bpm for another patient.

2.1 Related work

A number of research projects, such as eHome
[6][7], AMIGO [1], ETRI Open Home Framework [4],
have addressed challenges in home task automation.
The technical problems addressed by these projects
include: device and software interoperability, deploy-
ment management, and installation-time configuration.

The eHome Systems project [6][7] addresses device
interoperability, installation time configuration and
deployment automation, with the focus of reducing the
costs due to home automation product and service ven-
dors. eHome’s three-phase software process model:
Specification, Configuration, and Deployment (SCD),
logically parallels the task description and task confi-

guration steps in the Aura Software Architecture,
which forms the infrastructural basis for our current
work. The eHome Configurator tool leverages the con-
figurable features of the eHome platform and allows
vendor technicians to easily tailor the installation to the
needs of the client. Unlike the eHome project, that tar-
gets installation time configuration by vendors of soft-
ware, uDesign targets everyday users and allows con-
figuration after installation.

The Open Home Framework (OHF) developed by
the ETRI institute [4] focuses on hardware, software,
and protocol interoperability and integration issues.
Having collaborated with the ETRI institute, we have
discovered that the features offered by Aura, and uDe-
sign specifically, are complementary to those provided
by the OHF Home Server. Specifically, uDesign al-
lows end users to define tasks for communication and
notification tailored to a user’s unique needs, prefe-
rences, and context.

The Amigo project has proposed a reference archi-
tecture [1] for networked home service automation.
The key issue handled by the architecture is interope-
rability among different vendors of device and service
providers. According to the project web site, the archi-
tecture will provide the following features: context
awareness and notification, quality of service, user
security and privacy. These features are not yet fully
designed or documented. While the Amigo architecture
provides some functionality similar to that of uDesign,
the latter is targeted to the end-user for flexible runtime
configuration, while Amigo does not offer such fea-
tures.

Another domain where a service-oriented, dia-
grammatic approach to constructing activities is being
investigated is in the domain of robotics. Microsoft
Robotics Studio [5] uses a Visual Programming Lan-
guage (VPL) as its main programming description.
Users can drag and drop services into a diagram and
connect them together. The graph then forms a dataf-
low-based program that is used to control a robot. The
dataflow connections are strongly typed, and the reali-
zation of services can be chosen to be simulations or
robot code. The approach is similar to uDesign. It does
not allow resumption or suspension of activities as in
uDesign, and mixes the structural and behavioral as-
pects of the dataflow. Furthermore, the target audience
is robotics programmers, rather than end users.

There has been considerable work on Business
Process Execution Language (BPEL) (e.g., see [8] for
an overview and formal semantics), and Business
Process Modeling Notation (BPMN) (e.g., see [15] for
an overview and mapping to BPEL). BPEL is an ex-
ecutable business process language, serialized in XML,
to support programming in the large. BPEL allows one
to specify a business process behavior, both of a partic-
ipant, and of a protocol with visible message inter-

change. BPEL’s scope includes the description of
process activities and their partial ordering, correlation
of messages and process instances, and recovery beha-
vior. While BPEL is a textual language (XML), BPMN
is designed around a graphical notation, and can be
used as a graphical interface for BPEL (although we
are not aware of one-to-one mappings between BPEL
and BPMN). While the motivation behind BPEL and
BPMN is to allow the specification of executable
processes by people who are not necessarily program-
mers, it still requires one to understand the level of
abstraction that is beyond the capabilities of a typical
end user, whereas, the level of abstraction for a typical
end user is exactly the focus of this paper.

For monitoring and control applications that require
persistent storage, there has been extensive work on
Active Databases in the database community (e.g., see
[9] for overview). Active Databases extend relational
or object-oriented databases with Event-Condition-
Action (ECA) rules. Each such rule is triggered when a
designated event occurs, and then, if the condition in
the rule is satisfied, an action is taken. Conditions may
involve regular database queries, and actions may in-
volve triggering other rules. Using the ECA paradigm
within a database management system allows for stan-
dard database features, including atomicity, consisten-
cy, isolation and durability of transactions, which may
be critical in many application domains. However, the
level of abstraction in Active Databases, is that of SQL
(or SQL-like) language, extended with triggers, which
is not the level of abstraction that can be handled by
typical end users.

3. Getting started with uDesign

This section introduces the concepts in uDesign at
an intuitive level, illustrating the understanding that
end-users need to have to create and tailor systems
such as the ones presented in Sections 4 and 5. A tech-
nical overview of uDesign is presented in Section 6.

The three main constructs in uDesign are boxes,
pipes, and wires. Boxes are the locus of computation,
while pipes stream data among boxes. Wires control
starting and stopping activities on boxes, as well as the
flow of data on pipes, based on observed conditions.

To help manage visual clutter, uDesign defines
three overlays: structural, box behavior, and pipe be-
havior. The structural overlay identifies the boxes,
their properties and internal structure, and the piping of
data among boxes. Boxes may be wrapped inside larg-
er boxes, to allow scaling to more complex systems, or
simply to hide details from other users.

Boxes correspond to entities of interest or their ac-
tivities. For example, boxes may be associated with the
TV set in the user’s living room, with the living room
as a whole, or with the user’s activity of following a

TV show. Boxes may also be associated with software
components, which like devices are viewed in the
perspective of a concrete operating component that
contributes to the system’s function.

When a box is associated with a physical space or
an object, such as a couch, what really happens in the
system is that the box is realized as a combination of
software and hardware that monitors and maybe con-
trols the corresponding physical entity. Typically, such
realization is provided as part of the entity: construc-
tors will sell smart homes, and furniture stores will sell
smart couches (or the means to make old couches
smart.) It will be up to end-users to determine how
smart objects can be assembled and reconfigured, via
their corresponding boxes, to serve the users’ needs.

Users and their activities may have associated box-
es. Such boxes identify the properties of interest and
clarify the user’s role in achieving the system’s in-
tended function. Whether to represent a holistic view
of a user or a specific view of the activities of concern
is a decision for the end-user to take. In either case,
smart spaces will be equipped with generic software
components for modeling activities, and which may be
associated with humans and their activities.

Boxes have inputs, which are entry points for data,
and properties. Properties are any observable aspect of
a box, such as the video output of a DVD player,
whether it is powered up, or its location.

Data may be piped between any property of a box, a
producer of data, and an input in a box, a consumer of
data. Whenever a piece of data is available on the pro-
ducer side, the pipe will transmit it towards the con-
sumer side. uDesign tools check for type compatibility
and disallow invalid piping, such as trying to pipe a

video output to a textual input.
The box behavior and pipe behavior overlays

identify the conditions that give rise to starting and
stopping activities in boxes, and that enable or disable
the flow of data on pipes, respectively.

Conditions are expressions over the inputs and
properties of the box they are associated with, or over
the properties of the smaller boxes contained in the
latter. In addition to operators such as equals (=), and
(&), and or (|), conditions may include temporal opera-
tors such as count(c, t) that counts how many times
condition c became true in the latest time interval t; or
sust(c, t) which is true if condition c sustained a true
value during the latest time interval t.

Wires transmit the result of evaluating a condition
and may trigger one of three operations on boxes: start,
pause, and stop, denoted by ►, , and ■, respectively.
Start operations may indicate the values of one or more
inputs, which then should not be connected to pipes.
The pause operation preserves the values of the proper-
ties and inputs to the box until a start is triggered again,
possibly overriding some of those input values. A stop
operation resets all the values in a box, being used, for
instance, for privacy purposes.

Valves can be placed on pipes, preventing the flow
of data unless the enabling conditions are met. For ex-
ample, the video output of a medical camera will not
be released unless a potential emergency is declared.

4. Susan’s heart condition

This section presents a case where an elderly lady,
Susan, has developed a heart condition. Susan’s doctor
allowed her to return home, but wants her condition to

Susan’sHealth

HeartMonitor
rate

StreamLog

inStream

VideoCapture
videoOut

John’sWatch

John’sTracker
location

available
SendAlert
severity
cell

PlayVideo
videoIn
location

Susan’sHealth

HeartMonitor
rate>120 | rate <50
sust(rate>90, 0:20)

(a) Structure overlay

John’sWatch

SendAlert.alertSent & !John’sTracker.available
John’sTracker

available SendAlert

alertSent
►severity=high; cell=3456…
►severity=low; cell=3456…

911

►

(b) Box behavior overlay
Figure 1. Monitoring Susan’s heart

911

be constantly monitored.
For that, the doctor has created a box in uDesign for

monitoring Susan’s health, which wraps three services
(see Figure 1(a), left hand side): heart rate monitoring,
stream logging, for offline reference, and video cap-
ture. The latter is meant for checking on Susan remote-
ly should a problem arise. The doctor also asked Susan
if she would be interested in obtaining the devices to
gather more sophisticated biometrics, such as skin gal-
vanic response, but given Susan’s current condition
they agreed to leave those out for the moment.

The doctor used pipes to connect the monitored rate
to the log input, and also to make the video output vis-
ible at the top level. After discussing Susan’s lifestyle
and physiological characteristics, the doctor identified
two conditions to be monitored: when Susan’s heart
rate sustains a level above 90bpm (beats per minute)
over 20 minutes, and when it either exceeds 120bpm or
is short of 50bmp (Figure 1(b), left hand side).

To make it easy for Susan’s family to recognize the
prescribed conditions, the doctor names them emer-
gency and concern. uDesign can show either these
names or the expressions (as in the figure). The doctor
also discusses the possibility of involving Susan’s fam-
ily as first-line responders to the conditions above,
notwithstanding alerting emergency services.

Later at home, Susan discusses the doctor’s pre-
scription with her son John and they agree on alerting
John if either condition is observed, and on alerting the
emergency services in the event of an emergency, or if
a concern condition arises but John is not available.

To coordinate the activities on his side, John defines
the John’sWatch box where he includes services to
follow his location and determine if he is available, and
for alerting him over the cell phone network. The loca-
tion service also helps determine the best device to
map the PlayVideo service. John leaves the video pipe
unhooked, to preserve Susan’s privacy, planning to
establish the connection only if the need arises. Alter-
natively, John could have used valves to control the
flow of video on the pipe (see the next example).

5. Surveillance in John’s home

John moved recently to a new house and made ar-
rangements for a dog-sitter to come in during the day
and walk his dog. However, John would like to be sure
that the sitter does not venture into the private areas of
the house. After work, John buys a couple of uDesign-
enabled cameras and motion detectors. Upon powering
up these devices at the home, uDesign’s wireless dis-
covery mechanisms pick them up, and John is able to
assign them unique names within his house.

John deploys one camera and motion detector by
the kitchen door, where the sitter will be coming in,
and another camera and detector in the hallway leading

up to the main part of the house (Figure 2). Instead of
installing a uDesign-enabled electric opener for the
kitchen door, John just provided the sitter with a key.

To be aware of the sitter’s movements, John uses
uDesign to pipe the output of the door camera to his
cell phone, places a valve on that pipe so that video
only flows when someone is detected in the door area.
John’s cell phone will alert him of incoming video.

For the hallway camera, John chooses to record its
output when a presence is detected, which John may
review upon returning home. This is accomplished by
placing a valve on the output of the hallway’s camera,
saving the home’s wireless network from continuously
piping video when no-one is in the hall.

6. uDesign Architectural Style
This section elaborates the uDesign architectural

style using Zed [14], which defines both the architec-
tural element types and the behavior and construction
rules that comprise uDesign.

Figure 3 shows generic depictions of the elements,
To reduce visual clutter, uDesign diagrams are orga-
nized in three overlays: structure, Figure 3(a), box be-
havior, Figure 3(b) top part, and pipe behavior, Figure
3(b) bottom part. To manage complexity, box decom-
position is supported (Figure 3(c)).

Overlays are projections, or views, of the formal
model of a system. When users edit a specification
using overlays, consistency is guaranteed by an inter-
nal representation, the model of the system, which con-
forms to the semantics presented in this section.

The component types of uDesign are boxes, which
have a name, inputs and properties; data stores, typical-
ly representing files. The connector type Pipe comes in
two flavors: first, a producer-consumer kind, which
connects box properties to inputs, and is represented as
a single headed arrow in the direction of data flow. The
second flavor supports read/write random access to
data stores and is represented by double headed arrows
(not further discussed here, for the sake of space).

Formally, the structure of a box is:

HomeSurveillance

DoorDetect

presence

Figure 2. Surveillance in John’s home

DoorCam

out

HallWCam

out VideoRec
in

►
HallWDetect

presence
!presence

John’sPhone

videoIn

»_BoxStructure___________
Æi, p: F NAME; type: NAME ß TYPE
«__________________
Æi I p = 0; dom type = i U p
–__________________
where names in all caps are given sets (same through-
out this section) and the constraints assert that inputs
and properties must have distinct names, and also that
all inputs and properties have a known type.

The behavior of a box is:
Operation ::= start | pause | stop
Valuation == NAME ß VALUE
Condition == F NAME x EXPR
»_BoxBehavior____________
Æop: ID ß Operation
Æinit: ID ß Valuation
Æcond: ID ß Condition
ÆstartName, condName: ID ß NAME
«___________________
Ædom init z dom (op t {start})
Ædom startName z dom (op t {start})
Ædom cond I dom op = 0
Ædom condName z dom cond
–___________________
where operations are represented on the left hand side
of a box (top of Figure 3(b)), and conditions to be mo-
nitored on the right. Start operations have an associated
valuation, more below, which are enforced each time

the corresponding start operation is activated.
Although operations (op) and conditions (cond)

have an internal identifier (of type ID), start operations
and conditions may also be associated with a name.
This is to make them easier to recognize by non-expert
users, who don’t necessarily have deep domain know-
ledge. If a name is given, it will appear on the dia-
grams, although users may edit the corresponding ex-
pression on demand.

The Box schema coordinates structure and behavior:
»_Box_________________________
Æname: GNAME
ÆBoxStructure; BoxBehavior
«___________________________
ÆAv: ran init • dom v z i
ÆAc: ran cond; n: F NAME; e: EXPR • c = (n, e) fi n z i U p
–___________________________

Specifically, the domain of every valuation v is a
subset of inputs, that is, a valuation maps some number
of inputs to values; and every condition c is expressed
as an expression written in terms of some number of
inputs and properties of that same box.

There are two alternatives for naming boxes, which
in the Zed model are both abstracted in the given set
GNAME. First, a name may identify a specific entity or
activity, such as Susan’sHealth or John’sKitchen. The
structure of such names is entity@environment, where
environments are uniquely identified and follow the
usual conventions for URL “domains.” Typically, en-
vironment names are assigned to independently admi-
nistered geographic areas, such as homes and company
buildings or campuses. For simplicity, the environment
part of a name is omitted in diagrams for entities that
reside in that environment. Data stores are also named
in this fashion.

Second, a name may identify a generic entity of a
given type, name:type, such as s:Screen. This indicates
that the user is not concerned about identifying a spe-
cific screen to incorporate the system, but rather is
willing to use one that is convenient. This corresponds
to the notion of generic service. Resolving for a con-
crete service supplier is done dynamically, using opti-
mized service discovery mechanisms such as the ones
described in [12]. The naming of types follows the
usual convention for defining ontology and name spac-
es in the internet, for which domain experts may pro-
vide local aliases to make names more recognizable to
end-users.
ÆallOpenInputs: F Box f F NAME
ÆallProperties: F Box f F NAME
«_______________
ÆAs: F Box • allOpenInputs s
Æ = { n: NAME | Eb: s • Av: ran b . init • n e b . i ¶ n ‰ dom v }
ÆAs: F Box • allProperties s = { n: NAME | Eb: s • n e b . p }

The definition of a system’s structure uses generic

(a) Structure

x
i p

f

y
i p

z
i p

(b) Behavior

x
► ifval

 cond

x
c1
c2

y
►

x
p1
p2
p3

y
i1
i2
i3

z

c5

c

c

c

c

x

► y

►
z

►

x

► y

►
z

►

x

 y

►
z

►

(c) Decomposition

x

y.i y.p1
y
i p1

 p2

Figure 3. Syntactic primitives in uDesign

operations allOpenInputs and allProperties, which extract
the corresponding sets of names from a set of boxes.
Open inputs are the ones that are not part of some val-
uation associated to a start operation.

A system’s structure is characterized by a set of
boxes, Figure 3(a), where no two distinct boxes have
the same name, and by the pipes that interconnect box
properties to open inputs of those boxes. The fact that
pipes are formally defined as a (partial) function from
inputs to properties means that a property may be piped
to any number of inputs, but an input may receive data
from at most one property.
»_SystemStructure___________________
Æboxes: F Box
Æpipes: NAME ß NAME
«____________________________
ÆAb1, b2: boxes • b1 . name = b2 . name fi b1 = b2
Ædom pipes z allOpenInputs boxes
Æran pipes z allProperties boxes
–____________________________

Similarly, the definition of a system’s behavior uses
generic operations allOps and allConds, which extract
the corresponding sets of ids from a set of boxes.
ÆallOps: F Box f F ID
ÆallConds: F Box f F ID
«____________________________
ÆAs: F Box • allOps s = { opId: ID | Eb: s • opId e dom b . op }
ÆAs: F Box • allConds s = { cId: ID | Eb: s • cId e dom b . cond }

A system’s behavior is characterized by the wires
that connect conditions to operations, and by the valves
placed on pipes. There are no restrictions to the wiring
of conditions and operations: an operation is activated
if any of the attached wires goes live, that is, if any of
the related conditions hold.
»_SystemBehavior ___________________
Æboxes: F Box; pipes: NAME ß NAME
Æwires: ID j ID
Ævalves: ID j NAME x NAME
«____________________________
Ædom wires z allConds boxes; ran wires z allOps boxes
Ædom valves z allConds boxes; Ap: ran valves • p e pipes
–____________________________

Valves relate conditions with pipes. For data to flow
in a pipe, it is necessary that all the valves are open,
that is, that all the related conditions hold. The bottom
of Figure 3(b) shows the diagrammatic representation
of two special cases and the general case of valve re-
presentation. In the general case, illustrated by c5 in the
figure, a wire is shown connecting the condition and
the commanded valve, . To reduce clutter, in case the
pipe is attached to either an input or property of a box
b, and the controlling condition also belongs to b, than
the valve is shown next to the input (c2 and c4) or prop-
erty (c1 and c3) and the wire is not shown.

A system coordinates structure and behavior:
System Í SystemStructure ¶ SystemBehavior
where boxes and pipes are shared among the two.

Operations such as adding a pipe or a valve to a sys-
tem can also be modeled:
»_addPipe_______________________
Æ∆SystemStructure
ÆpipeSource?: NAME; pipeSink?: NAME
«____________________________
ÆpipeSink? e allOpenInputs boxes
ÆpipeSource? e allProperties boxes
Æboxes' = boxes
Æpipes' = pipes ± {(pipeSink? å pipeSource?)}
–____________________________
where the pipeSource? parameter must be an open input,
and the pipeSink? a property in the system’s set of box-
es. As a result of adding a pipe, the pipes function in
the system’s structure includes the new mapping.
»_addValve ______________________
Æ∆SystemBehavior; ΞSystemStructure
Æcond?: ID; pipe?: NAME x NAME
«____________________________
Æcond? e allConds boxes; pipe? e pipes
Æwires' = wires; valves' = valves ± {(cond? å pipe?)}
–____________________________

Adding a valve changes the system’s behavior, but
not its structure. As a result of the operation, the valves
relation incorporates the mapping between the condi-
tion cond? and the pipe?, which must both be already
defined in the system.

To manage complexity, a user may decide to wrap a
system or part of a system as a box. Structurally, any
property or input of the wrapped boxes may be pro-
moted to the top level either using the dot notation, or
by driving a pipe to the edge of the wrapping box, as
illustrated at the top of Figure 3(c). Formally, the struc-
ture of a composite box combines the features of a Box
with those of a SystemStructure:
»_CompositeStructure _________________
ÆBox; SystemStructure
ÆiMap: NAME © NAME; pMap: NAME © NAME
«_______________
Ædom iMap z allOpenInputs boxes; ran iMap = i
ÆAb: boxes; i0, i1: NAME •
Æ i0 e b . i ¶ iMap i0 = i1 fi b . type i0 = type i1
Ædom pMap z allProperties boxes; ran pMap = p
ÆAb: boxes; p0, p1: NAME •
Æ p0 e b . p ¶ pMap p0 = p1 fi b . type p0 = type p1
–____________________________

The partial surjections (one-to-one) iMap and pMap
map some number of open inputs and properties of the
wrapped boxes to the top-level box, such that the cor-
responding types are preserved. All the top-level inputs

and properties are images in these mappings, that is, no
inputs or properties can be defined at the top level that
have no correspondence in the wrapped boxes.

The behavior of a composite box combines the fea-
tures of a Box with those of a SystemBehavior:
»_CompositeBehavior _________________
ÆBox; SystemBehavior
ÆopMap: ID j ID; cMap: ID © ID
«_______________
Ædom opMap z allOps boxes; ran opMap = dom op
Ædom cMap z allConds boxes; ran cMap z dom cond
–____________________________

Operations at both levels can be freely related. In
general, one can imagine composites with dormant
states, where a stop at the top level deactivates most
wrapped components, while activating a few others. To
cover common cases, the editing tools take as a default
that an operation at the top level is mapped as the cor-
responding operation in all the wrapped boxes (lighter
color wires in Figure 3(c)). That default can be over-
written by explicitly establishing the desired relation.
Also, if a user has access privileges to see the internals
of a composite, the editing tools support wiring direct-
ly to the wrapped boxes (bottom of Figure 3(c)) al-
though semantically that corresponds to defining a
condition/operation at top level which is then related to
the wrapped box.

Additional conditions can be defined at the top lev-
el, using both the names of the conditions in the
wrapped boxes as well as properties and inputs, using
the dot notation as before.

Finally, the generic notion of BOX is either an ele-
mentary Box, or a composite:
BOX Í Box v CompositeStructure ¶ CompositeBehavior

Recursive decomposition of systems would be
modeled by changing the SystemStructure and SystemBe-
havior schemas above to refer of a set of BOX, rather
than Box.

7. uDesign implementation

This section describes how uDesign maps to activi-
ty-oriented systems (e.g. [13]), and to a specific im-
plementation thereof: the Aura infrastructure. We start
by summarizing Aura (details can be found in [11].)

Activities, or tasks, are a first class concept in Aura
and correspond to everyday activities of users or auto-
mated agents; for example, write paper X, or monitor
Susan’s health. Activity models describe the services
and materials required to support the activity, as well
as user preferences concerning the selection and confi-
guration of those services.

Services correspond to features such as edit text, or
monitor heart rate, or to capabilities of humans, such
as answer the door. Materials correspond to data stores
manipulated by services. Services may define ports

[10], and activity models may then include service
interconnections via typed connectors.

The Aura infrastructure takes activity models,
represented in XML, finds appropriate service suppli-
ers in the environment and, upon request, assembles
and activates those services.

Figure 4 shows the architecture of the Aura infra-
structure, with two component types, Aura and the
Environment Manager (EM), and the three interaction
protocols (connectors) between them. The double box
for the Aura type indicates that typically there will be
many Aura component instances in each environment,
while the EM (single box) will have only one instance.

The EM provides the mechanisms to optimally mar-
shal the supply of services required by activities [12].
It also monitors these services to ensure that they are
satisfying user goals, recommending reconfigurations
where appropriate. Environments typically correspond
to a physical space (e.g., a floor or a building), but they
are defined administratively and so can also encompass
logical spaces (e.g., including a printer at the office in
the home environment).

While an EM contains generic mechanisms for ser-
vice discovery and configuration, Auras contain do-
main-specific knowledge about activities and services.

Auras are abstract models of entities in the real
world, such as users, spaces, devices, and software
components. Auras provide mechanisms to monitor
and control the entities they represent. In the case of
software, Auras may wrap existing applications to con-
form to the infrastructure’s protocols. Rather than re-
quiring writing a new portfolio of applications, this
approach makes it easy to integrate legacy applications
into the Aura infrastructure. For instance Emacs,
MSWord and Notepad have been wrapped to become
Auras that offer edit text services. Such Auras act as
translators between the generic configuration directives
issued by the EM and other Auras, and the specific
APIs offered by the component they encapsulate.

Earlier versions of the architecture separated the
roles of service supplier and consumer into two com-
ponent types: Supplier and Prism [11]. However, the
work leading up to [13] made us realize that the same
component, an Aura, can play either the role of a task
manager (Prism) or of a Supplier of services, or both.
For example, John’s Aura manages John’s activities,

Prism

Figure 4. The Aura Architecture

Environment
Manager

Aura

SAAP Service Announcement
and Activation Protocol

SRP Service Request Protocol
SUP Service Use Protocol

SUP

SAAP SRP

such as looking after Susan, but also offers services
that John can provide, such as answering the door.

An Aura that plays the role of a service supplier,
denoted AuraSUP, announces its services with the EM
via the Service Announcement and Activation Protocol
(SAAP) connector, and finds itself on the supplying
end of the Service Use Protocol (SUP) connector (see
Figure 4). An Aura that plays the role of a task manag-
er, denoted AuraTM, requests the services required for
each task from the EM via the Service Request Proto-
col (SRP) connector, and finds itself on the consuming
end of the SUP connector.

When a user enters an environment, an AuraTM is
associated with him or her to manage the user’s tasks.
A task model contains information about the desired
services that should be brought to bear to help the user
carry out the task. To resume a task in a particular en-
vironment, AuraTM communicates with EM to request
service suppliers using a combination of the protocols.
These protocols, shown in Figure 5, starts with AuraTM
opening a session for a particular task with newTask;
after getting a reply from EM, a unique session id is
used for subsequent communication about this task.
AuraTM then obtains estimates for the how well the
environment can support a particular task by sending a
budget message and getting taskLayout messages in re-
sponse. It is possible that more than one way of instan-
tiating a task depending on the degree of richness of
service suppliers in the environment (e.g., requesting
an editText service might be provided by a NotePad
ssupplier or a Word supplier). AuraTM learns user pre-
ferences which guide the choice of service suppliers.

The EM will then activate those AurasSUP.
Once an AuraSUP has been activated by the EM, Au-

raTM interacts with it to set its state so that the user can
start using them. A state might include the materials
(files) to use, the size of windows, cursor positions,
etc. When the user is finished with the task in that en-
vironment, AuraTM will issue a getState on each of the
service suppliers to get the updated information about
their state, and then will request that EM disband the
task. This deactivates each of the AurasSUP and closes
the session between the EM and AuraTM for that task.

7.1 Mapping uDesign to Aura

uDesign takes a unified view of Auras, activities,
and services. Auras that just offer services correspond
to boxes with no internal structure. Auras that manage
activities (AuraTM) correspond to composite boxes, and
the activities themselves correspond to subsystems
inside the composite box. Resuming an activity in Au-
ra corresponds to a start operation in a composite box
that activates the subsystem corresponding to the activ-
ity.

The structure overlay in uDesign corresponds to de-
fining which services and materials are required to
support an activity. For example, in Aura, Susan’s-
Health is one of the activities of user Susan, and it re-
quires services HeartMonitor, VideoCapture and so
forth. In uDesign, Susan’sHealth is a composite box
that wraps boxes HeartMonitor, VideoCapture and so
forth (see Figure 1).

Inputs and properties of boxes map to service ports
in Aura, which can then be interconnected by connec-
tors of type pipe.

The behavior overlay in uDesign corresponds to de-
fining under which conditions activities/services are to
be activated. The way current Aura protocols support
uDesign behavior is better illustrated with an example:
the AuraTM for HomeSurveillance issues a setState in-
structing the AuraSUP for HallWDetect to monitor the
presence condition, as defined in Figure 2. When the
condition holds, the AuraSUP issues a stateSnaphot de-
scribing the event. The AuraTM then uses the SRP and
SUP to start an AuraSUP for video recording.

Although this implementation strategy works to
coordinate services and activities within the same Au-
ra, it becomes cumbersome for achieving coordination
across different Auras. Since uDesign allows end-users
to extend wires across systems, we are currently de-
signing extensions to the Aura protocols to support

AuraTM EM AuraSUP

newTask
createdTask <id>

budget <id, tDesc>
taskLayout <id, cDesc>

setup <id, tDesc>
activate <id>

ackActivate <cId>
taskLayout <id, cDesc>

setState <id, state>

getState <id>
stateSnapshot<id, state>

disband <id>
deactivate <id>

ackDeactivate <cId>
taskGone <id>

Figure 5. Task lifecycle in Aura
SR

P
1

SU
P

1
SR

P
2

SU
P

2

Table 1. uDesign behavior vs. Aura protocols

operation Aura protocol activity
► SRP1 SUP1 (Resume)

SUP2 SRP2 (Suspend)
■ SRP2 (Stop)

direct coordination between Auras.
Table 1 summarizes how the three operations in

uDesign are realized using the protocols in the Aura
architecture. Start, ►, corresponds to resuming an ac-
tivity: SRP1 followed by SUP1 in Figure 5. The distinc-
tion between pause, , and stop, ■, is that the latter
does not capture the current state of the suppliers.

Finally, valves enable the flow of data in uDesign
pipes. Depending on the implementation of pipe con-
nectors, such enabling conditions may be communi-
cated to the pipe, or they may have to be communi-
cated to the sending port.

8. Conclusion and future work
In previous work, like many other researchers, we

have focused on building a software infrastructure over
which enhanced applications for pervasive computing
could be built and deployed. Specifically, we built the
Aura infrastructure, which promotes user activities to
first class primitives in software systems.

However, the means for end users to assemble and
configure highly personalized and flexible solutions
have been largely missing. Although infrastructures
such as Aura and others make it easier to develop solu-
tions for smart spaces, the mechanisms for intercon-
necting and coordinating components have remained at
a level of detail more appropriate to computer special-
ists. This is precisely the gap addressed by uDesign.

Our main goal is to provide a method of connecting
services that is appealing to a large user base by mak-
ing it similar to connecting consumer electronics. Simi-
lar composition approaches are beginning to dominate
domains such as business environments and robotics.

uDesign offers overlays to capture the structure and
behavior of a system. Such separation is a recognized
good practice in design methodology, and the formal
basis (described in Section 6) of uDesign guarantees
that no inconsistencies will arise from having separate
views. Checking the system structure follows the for-
mal model.

uDesign leverages concepts of software architecture
and this paper shows it can be implemented on top of
the existing Aura infrastructure with minor extensions.
This work also clarifies the APIs and architectural as-
sumptions that individual components must support to
be integrated into the proposed framework.

Part of our working hypothesis is that uDesign will
be accessible to a broad range of users, including non-
experts. This hypothesis needs further validation. Spe-
cifically, we plan to conduct user studies involving
both end users and domain specialists in domains such
as assisted living and home security. This will involve
developing a set of tools that are robust and usable by
end-users in a real setting, rather than a lab setting. In
these studies we will also assess the scalability of our

approach. We believe that the hierarchical decomposi-
tion of boxes will aid in addressing this, and we also do
not anticipate that activities will be excessively com-
plex to warrant other specialized mechanisms.

References
[1] N. Georgantas, S. Mokhtar Y.-D. Bromberg, Yerom,

V. Issarny, J. Kalaoja, J. Kantarovitch, A. Gerodolle,
R, Mevissen, "The Amigo Service Architecture for the
Open Networked Home Environment". Proceedings of
the 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA'05), pp. 295-296, 2005.

[2] J.S. Gero. Categorizing Technological Knowledge
From a Design Methodological Perspective. Confe-
rence ‘Technological Knowledge: Philosophical Ref-
lections’, Boxmeer, The Netherlands, 2002.

[3] GraphLogic Inc. PointDragon. http://pointdragon.com.
[4] I. Han; H.-S. Park; Y.-K. Jeong; K.-R. Park. An inte-

grated home server for communication, broadcast re-
ception, and home automation, Consumer Electronics,
IEEE Transactions on, Vol 52(1), 2006.

[5] Microsoft Inc. Microsoft Robotics Studio Developer
Center. http://msdn2.microsoft.com/en-
us/robotics/default.aspx, accessed September 2007.

[6] U. Norbisrath, I. Armac, D. Retkowitz, P. Salumaa:
Modeling eHome Systems. S. Terzis (ed.): 4th Intl
Workshop on Middleware for Pervasive and Ad-Hoc
Computing, Melbourne, Australia. ACM Press, 2006.

[7] U. Norbisrath, C. Mosler, I. Armac: The eHome Confi-
gurator Tool Suite. 1st Intl Workshop on Pervasive Sys-
tems (PerSys 2006), Montpellier, France, 30-31 2006,
LNCS 4278, p. 1315-1324, Springer, 2006.

[8] C. Ouyanga, E. Verbeekb, W. van der Aalsta, S. Breu-
tela, M. Dumasa, A ter Hofstedea. Formal semantics
and analysis of control flow in WS-BPEL. Science of
Computer Programming Volume 67, Issues 2-3, 1 July
2007, Pages 162-198.

[9] N.W. Paton (Ed.). Active Rules in Database Systems.
Monographs in Computer Science, Spring, 1998.

[10] M. Shaw, D. Garlan. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.

[11] J.P. Sousa, D. Garlan. The Aura Software Architecture:
an Infrastructure for Ubiquitous Computing. Carnegie
Mellon Technical Report, CMU-CS-03-183, 2003.

[12] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, M.
Shaw. Task-Based Adaptation for Ubiquitous Compu-
ting. In IEEE Trans on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, Special Issue on
Engineering Autonomic Systems, Vol. 36(3), May 2006

[13] J.P. Sousa, B. Schmerl, P. Steenkiste and D. Garlan.
Activity-oriented Computing. In S. Mostefaoui, Z.
Maamar and G. Giaglis (Eds), Advances in Ubiquitous
Computing: Future Paradigms and Directions, IGI
Publishing, Herschey, PA, 2008

[14] The Z Notation: A Reference Manual. Prentice Hall
Intl Series in Computer Science, Prentice-Hall, 1992.

[15] S. White, Using BPMN to Model a BPEL Process - all
4 versions »BPTrends, 2005.
http://businessprocesstrends.com.

