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Abstract 

This paper introduces an architectural style for 
enabling end-users to quickly design and deploy soft-
ware systems in domains characterized by highly per-
sonalized and dynamic requirements. 

The style offers an intuitive metaphor based on box-
es, pipes, and wires, but retains enough preciseness 
that systems can be automatically assembled and dy-
namically reconfigured based on uDesign descriptions. 
uDesign was primarily motivated and validated within 
monitoring and control applications for smart spaces, 
but we envision possible extensions to other domains. 

Our contribution differs from early attempts at end-
user programming by dealing with higher level soft-
ware architectural abstractions rather than program-
ming, and by addressing run-time descriptions rather 
than code structures. 

The paper presents validation of uDesign along the 
following aspects: (a) expressiveness, by means of two 
case studies, one in health care, and one in home secu-
rity, (b) soundness, by providing uDesign’s formal 
semantics, and (c) implementability, by describing a 
mapping of uDesign to an existing software infrastruc-
ture: the Aura infrastructure. 

 

1. Introduction 

Easy assembly of software systems is increasingly 
important in domains such as assisted living and long 
term healthcare, smart homes, surveillance of public 
and private spaces, and emergency response. Such do-
mains are characterized by (i) highly personalized re-
quirements, for which generic one-size-fits-all software 
solutions are less than ideal; and by (ii) dynamic 
changes, both with respect to which devices are conve-
nient to use and the requirements for the system. 

For example, a doctor should be able to easily write 
a prescription for the healthcare features and behavior 
of an outpatient’s home, much like medicine is pre-

scribed today. The patient could tailor the prescribed 
behavior to suit personal and privacy preferences; for 
instance, by including family members as first line 
responders. Also, the components and behavior of the 
system might be adjusted over time, by healthcare pro-
fessionals or the patient, to accommodate new devices 
and/or behaviors in response to the patient’s progress. 

Existing approaches focus on easy deployment of 
solutions by means of “friendly” programming envi-
ronments (e.g., [1][3]) and by exploiting new technol-
ogies such as service-oriented computing and composi-
tion of web services. 

Nevertheless, designing and assembling such sys-
tems remains a task that requires a fair amount of effort 
and programming skill. Deploying an application that 
used to take days or weeks for constructing the code 
from scratch may now be reduced to a few hours for a 
trained programmer. However, the skill and effort re-
quired for that is still beyond the capabilities and wil-
lingness of end-users. 

This paper introduces an approach that allows end-
users to assemble and evolve highly personalized soft-
ware systems for monitoring and control in smart spac-
es. Ideally, such an approach is: 

a) simple enough for end-users to manipulate with 
little initial training; 

b) effective as far as the ratio between the recog-
nized benefit and the effort spent; and, 

c) precise enough to enable the automatic assembly 
of a running system based on a description pro-
vided by the end-user. 

We hypothesize that an approach based on code 
structures and programming primitives is too fine 
grained and removed from the experience of end-users 
for achieving such goals. Instead, our work investigates 
whether combining the component and connector view 
of a system’s architecture with activity-oriented com-
puting (more below) results in a suitable foundation to 
address this problem. 

The conceptual model that we propose uses a meta-
phor of boxes, pipes, and wires. This is similar to con-



   

sumer electronics, where end-users may buy a number 
of devices and cables and try different assembly confi-
gurations having a basic knowledge of what travels on 
each cable, but without having to understand the cor-
responding electrical specifications. 

The contribution of this paper is uDesign, an archi-
tectural style for describing systems of the class exem-
plified above, for which a formal semantics is defined, 
as well as a mapping to an existing software infrastruc-
ture. uDesign is an architectural style in the sense that 
it prescribes the kinds of components and connectors 
that can be used to assemble a system. It can be 
thought of as an extension of the pipe-and-filter style 
[10] where boxes are more general than filters of data, 
and a new kind of connector is made first class: wires 
for controlling the starting and stopping of activities in 
boxes. 

In the remainder of this paper, Section 2 presents a 
brief rationale for the organization of uDesign and 
compares with related work. Prior work by the authors 
focused on the automatic assembly of systems given a 
specification of the available resources and of its re-
quired features [12]. Such required features are derived 
from representing user activities as first class con-
structs in software systems, giving rise to activity 
oriented computing [13]. High-level mechanisms for 
specifying the interconnection and coordination of the 
parts of a system have been lacking, though, and that is 
precisely the focus of this paper.  

Section 3 leads the way for the presentation of the 
case studies by offering a description of uDesign’s 
concepts at a level that would be appropriate for end-
users. 

Sections 4 and 5 present two examples, one in long-
term healthcare, and another in home security and au-
tomation.  Being able to understand case studies such 
as these after the informal introduction in Section 3 
constitutes supporting evidence concerning the sim-
plicity and effectiveness of uDesign: goals (a) and (b) 
above.  However, fully validating these goals requires 
conducting user studies that present realistic problems 
to real users.  For that, tools for editing uDesign must 
be brought to a level of maturity where they can be 
used by non-computer scientists. This is the object of 
ongoing and future work. 

Concerning the preciseness of uDesign, goal (c), 
above, Section 6 enumerates its syntactic primitives 
and specifies their semantics using Zed [14], while 
Section 7 maps those primitives to an existing software 
infrastructure.  

Section 8 concludes the paper and summarizes the 
main contributions and future work. 

2. Approach 

uDesign differs from other languages targeted at 

end-users in two fundamental aspects: it represents 
run-time structures rather than code structures, and it 
differs in the level of abstraction of such structures. 
Additionally, as frequently done in design disciplines, 
uDesign supports separable views of structure and be-
havior (e.g. [2]). 

First, the boxes in uDesign correspond to running 
entities that are available to be incorporated in a sys-
tem, rather than to classes or instance factories. Choos-
ing the latter option would mean that end-users would 
have to create logical abstractions, i.e., programs or 
scripts, to control the creation, interconnection, and 
destruction of instances in the system. 

In contrast, uDesign relies on discovery mechan-
isms to identify service instances that are available, and 
offers interactive primitives for end-users to integrate 
and interconnect those services into a system. 

Second, there is a clear tradeoff between the detail 
that the user is asked to manipulate and the usability 
for a broad user base. The more detail, the more power 
the user has to construct complex behaviors, but more 
effort and training are required to use that detail. To 
help manage this tradeoff, a recent trend set by service-
oriented computing is to have a separation of the roles 
of service supplier and service consumer. uDesign 
takes that trend one step further by supporting two 
groups of service consumers: domain specialists, such 
as doctors; and end users with a general education. 

Services are required to work out of the box, with a 
default behavior, or possibly with a set of typical beha-
vior templates. A general user should be able to make 
use of such services using the default behaviors or pos-
sibly recognizing abstract parameters or modes of op-
eration, such as normal operation and emergency oper-
ation. Domain specialists, or technically bent users, 
would be able to understand and tailor those generic 
templates; for example, a doctor defining that the 
emergency mode corresponds to the heart rate exceed-
ing 140 beats per minute (bmp) for a given patient, but 
only 120bpm for another patient. 

2.1 Related work 

A number of research projects, such as eHome 
[6][7], AMIGO [1], ETRI Open Home Framework [4], 
have addressed challenges in home task automation. 
The technical problems addressed by these projects 
include: device and software interoperability, deploy-
ment management, and installation-time configuration. 

The eHome Systems project [6][7] addresses device 
interoperability, installation time configuration and 
deployment automation, with the focus of reducing the 
costs due to home automation product and service ven-
dors. eHome’s three-phase software process model: 
Specification, Configuration, and Deployment (SCD), 
logically parallels the task description and task confi-



   

guration steps in the Aura Software Architecture, 
which forms the infrastructural basis for our current 
work. The eHome Configurator tool leverages the con-
figurable features of the eHome platform and allows 
vendor technicians to easily tailor the installation to the 
needs of the client. Unlike the eHome project, that tar-
gets installation time configuration by vendors of soft-
ware, uDesign targets everyday users and allows con-
figuration after installation. 

The Open Home Framework (OHF) developed by 
the ETRI institute [4] focuses on hardware, software, 
and protocol interoperability and integration issues. 
Having collaborated with the ETRI institute, we have 
discovered that the features offered by Aura, and uDe-
sign specifically, are complementary to those provided 
by the OHF Home Server. Specifically, uDesign al-
lows end users to define tasks for communication and 
notification tailored to a user’s unique needs, prefe-
rences, and context. 

The Amigo project has proposed a reference archi-
tecture [1] for networked home service automation. 
The key issue handled by the architecture is interope-
rability among different vendors of device and service 
providers. According to the project web site, the archi-
tecture will provide the following features: context 
awareness and notification, quality of service, user 
security and privacy. These features are not yet fully 
designed or documented. While the Amigo architecture 
provides some functionality similar to that of uDesign, 
the latter is targeted to the end-user for flexible runtime 
configuration, while Amigo does not offer such fea-
tures. 

Another domain where a service-oriented, dia-
grammatic approach to constructing activities is being 
investigated is in the domain of robotics. Microsoft 
Robotics Studio [5] uses a Visual Programming Lan-
guage (VPL) as its main programming description. 
Users can drag and drop services into a diagram and 
connect them together. The graph then forms a dataf-
low-based program that is used to control a robot. The 
dataflow connections are strongly typed, and the reali-
zation of services can be chosen to be simulations or 
robot code. The approach is similar to uDesign. It does 
not allow resumption or suspension of activities as in 
uDesign, and mixes the structural and behavioral as-
pects of the dataflow. Furthermore, the target audience 
is robotics programmers, rather than end users. 

There has been considerable work on Business 
Process Execution Language (BPEL) (e.g., see [8] for 
an overview and formal semantics), and Business 
Process Modeling Notation (BPMN) (e.g., see [15] for 
an overview and mapping to BPEL). BPEL is an ex-
ecutable business process language, serialized in XML, 
to support programming in the large. BPEL allows one 
to specify a business process behavior, both of a partic-
ipant, and of a protocol with visible message inter-

change. BPEL’s scope includes the description of 
process activities and their partial ordering, correlation 
of messages and process instances, and recovery beha-
vior. While BPEL is a textual language (XML), BPMN 
is designed around a graphical notation, and can be 
used as a graphical interface for BPEL (although we 
are not aware of one-to-one mappings between BPEL 
and BPMN). While the motivation behind BPEL and 
BPMN is to allow the specification of executable 
processes by people who are not necessarily program-
mers, it still requires one to understand the level of 
abstraction that is beyond the capabilities of a typical 
end user, whereas, the level of abstraction for a typical 
end user is exactly the focus of this paper.  

For monitoring and control applications that require 
persistent storage, there has been extensive work on 
Active Databases in the database community (e.g., see 
[9] for overview). Active Databases extend relational 
or object-oriented databases with Event-Condition-
Action (ECA) rules. Each such rule is triggered when a 
designated event occurs, and then, if the condition in 
the rule is satisfied, an action is taken. Conditions may 
involve regular database queries, and actions may in-
volve triggering other rules. Using the ECA paradigm 
within a database management system allows for stan-
dard database features, including atomicity, consisten-
cy, isolation and durability of transactions, which may 
be critical in many application domains. However, the 
level of abstraction in Active Databases, is that of SQL 
(or SQL-like) language, extended with triggers, which 
is not the level of abstraction that can be handled by 
typical end users.  

3. Getting started with uDesign 

This section introduces the concepts in uDesign at 
an intuitive level, illustrating the understanding that 
end-users need to have to create and tailor systems 
such as the ones presented in Sections 4 and 5. A tech-
nical overview of uDesign is presented in Section 6. 

The three main constructs in uDesign are boxes, 
pipes, and wires. Boxes are the locus of computation, 
while pipes stream data among boxes. Wires control 
starting and stopping activities on boxes, as well as the 
flow of data on pipes, based on observed conditions. 

To help manage visual clutter, uDesign defines 
three overlays: structural, box behavior, and pipe be-
havior. The structural overlay identifies the boxes, 
their properties and internal structure, and the piping of 
data among boxes. Boxes may be wrapped inside larg-
er boxes, to allow scaling to more complex systems, or 
simply to hide details from other users. 

Boxes correspond to entities of interest or their ac-
tivities. For example, boxes may be associated with the 
TV set in the user’s living room, with the living room 
as a whole, or with the user’s activity of following a 



   

TV show. Boxes may also be associated with software 
components, which like devices are viewed in the 
perspective of a concrete operating component that 
contributes to the system’s function. 

When a box is associated with a physical space or 
an object, such as a couch, what really happens in the 
system is that the box is realized as a combination of 
software and hardware that monitors and maybe con-
trols the corresponding physical entity. Typically, such 
realization is provided as part of the entity: construc-
tors will sell smart homes, and furniture stores will sell 
smart couches (or the means to make old couches 
smart.) It will be up to end-users to determine how 
smart objects can be assembled and reconfigured, via 
their corresponding boxes, to serve the users’ needs. 

Users and their activities may have associated box-
es. Such boxes identify the properties of interest and 
clarify the user’s role in achieving the system’s in-
tended function. Whether to represent a holistic view 
of a user or a specific view of the activities of concern 
is a decision for the end-user to take. In either case, 
smart spaces will be equipped with generic software 
components for modeling activities, and which may be 
associated with humans and their activities. 

Boxes have inputs, which are entry points for data, 
and properties. Properties are any observable aspect of 
a box, such as the video output of a DVD player, 
whether it is powered up, or its location. 

Data may be piped between any property of a box, a 
producer of data, and an input in a box, a consumer of 
data. Whenever a piece of data is available on the pro-
ducer side, the pipe will transmit it towards the con-
sumer side. uDesign tools check for type compatibility 
and disallow invalid piping, such as trying to pipe a 

video output to a textual input. 
The box behavior and pipe behavior overlays 

identify the conditions that give rise to starting and 
stopping activities in boxes, and that enable or disable 
the flow of data on pipes, respectively. 

Conditions are expressions over the inputs and 
properties of the box they are associated with, or over 
the properties of the smaller boxes contained in the 
latter. In addition to operators such as equals (=), and 
(&), and or (|), conditions may include temporal opera-
tors such as count(c, t) that counts how many times 
condition c became true in the latest time interval t; or 
sust(c, t) which is true if condition c sustained a true 
value during the latest time interval t. 

Wires transmit the result of evaluating a condition 
and may trigger one of three operations on boxes: start, 
pause, and stop, denoted by ►, , and ■, respectively. 
Start operations may indicate the values of one or more 
inputs, which then should not be connected to pipes. 
The pause operation preserves the values of the proper-
ties and inputs to the box until a start is triggered again, 
possibly overriding some of those input values. A stop 
operation resets all the values in a box, being used, for 
instance, for privacy purposes. 

Valves can be placed on pipes, preventing the flow 
of data unless the enabling conditions are met. For ex-
ample, the video output of a medical camera will not 
be released unless a potential emergency is declared. 

4. Susan’s heart condition 

This section presents a case where an elderly lady, 
Susan, has developed a heart condition. Susan’s doctor 
allowed her to return home, but wants her condition to 

Susan’sHealth 

HeartMonitor 
rate 

StreamLog 

inStream 

VideoCapture 
videoOut

John’sWatch

John’sTracker
location

available 
SendAlert 
severity 
cell 

PlayVideo 
videoIn 
location 

Susan’sHealth 

HeartMonitor 
rate>120 | rate <50 
sust(rate>90, 0:20) 

(a) Structure overlay

John’sWatch

SendAlert.alertSent & !John’sTracker.available 
John’sTracker

 
available SendAlert 

alertSent
►severity=high; cell=3456… 
►severity=low; cell=3456… 

911 

► 

(b) Box behavior overlay
Figure 1. Monitoring Susan’s heart

911



   

be constantly monitored. 
For that, the doctor has created a box in uDesign for 

monitoring Susan’s health, which wraps three services 
(see Figure 1(a), left hand side): heart rate monitoring, 
stream logging, for offline reference, and video cap-
ture. The latter is meant for checking on Susan remote-
ly should a problem arise. The doctor also asked Susan 
if she would be interested in obtaining the devices to 
gather more sophisticated biometrics, such as skin gal-
vanic response, but given Susan’s current condition 
they agreed to leave those out for the moment. 

The doctor used pipes to connect the monitored rate 
to the log input, and also to make the video output vis-
ible at the top level. After discussing Susan’s lifestyle 
and physiological characteristics, the doctor identified 
two conditions to be monitored: when Susan’s heart 
rate sustains a level above 90bpm (beats per minute) 
over 20 minutes, and when it either exceeds 120bpm or 
is short of 50bmp (Figure 1(b), left hand side).  

To make it easy for Susan’s family to recognize the 
prescribed conditions, the doctor names them emer-
gency and concern. uDesign can show either these 
names or the expressions (as in the figure). The doctor 
also discusses the possibility of involving Susan’s fam-
ily as first-line responders to the conditions above, 
notwithstanding alerting emergency services. 

Later at home, Susan discusses the doctor’s pre-
scription with her son John and they agree on alerting 
John if either condition is observed, and on alerting the 
emergency services in the event of an emergency, or if 
a concern condition arises but John is not available. 

To coordinate the activities on his side, John defines 
the John’sWatch box where he includes services to 
follow his location and determine if he is available, and 
for alerting him over the cell phone network. The loca-
tion service also helps determine the best device to 
map the PlayVideo service. John leaves the video pipe 
unhooked, to preserve Susan’s privacy, planning to 
establish the connection only if the need arises. Alter-
natively, John could have used valves to control the 
flow of video on the pipe (see the next example). 

5. Surveillance in John’s home 

John moved recently to a new house and made ar-
rangements for a dog-sitter to come in during the day 
and walk his dog. However, John would like to be sure 
that the sitter does not venture into the private areas of 
the house. After work, John buys a couple of uDesign-
enabled cameras and motion detectors. Upon powering 
up these devices at the home, uDesign’s wireless dis-
covery mechanisms pick them up, and John is able to 
assign them unique names within his house. 

John deploys one camera and motion detector by 
the kitchen door, where the sitter will be coming in, 
and another camera and detector in the hallway leading 

up to the main part of the house (Figure 2). Instead of 
installing a uDesign-enabled electric opener for the 
kitchen door, John just provided the sitter with a key. 

To be aware of the sitter’s movements, John uses 
uDesign to pipe the output of the door camera to his 
cell phone, places a valve on that pipe so that video 
only flows when someone is detected in the door area. 
John’s cell phone will alert him of incoming video. 

For the hallway camera, John chooses to record its 
output when a presence is detected, which John may 
review upon returning home. This is accomplished by 
placing a valve on the output of the hallway’s camera, 
saving the home’s wireless network from continuously 
piping video when no-one is in the hall.  

6. uDesign Architectural Style 
This section elaborates the uDesign architectural 

style using Zed [14], which defines both the architec-
tural element types and the behavior and construction 
rules that comprise uDesign.  

Figure 3 shows generic depictions of the elements, 
To reduce visual clutter, uDesign diagrams are orga-
nized in three overlays: structure, Figure 3(a), box be-
havior, Figure 3(b) top part, and pipe behavior, Figure 
3(b) bottom part. To manage complexity, box decom-
position is supported (Figure 3(c)). 

Overlays are projections, or views, of the formal 
model of a system.  When users edit a specification 
using overlays, consistency is guaranteed by an inter-
nal representation, the model of the system, which con-
forms to the semantics presented in this section. 

The component types of uDesign are boxes, which 
have a name, inputs and properties; data stores, typical-
ly representing files. The connector type Pipe comes in 
two flavors: first, a producer-consumer kind, which 
connects box properties to inputs, and is represented as 
a single headed arrow in the direction of data flow. The 
second flavor supports read/write random access to 
data stores and is represented by double headed arrows 
(not further discussed here, for the sake of space). 

Formally, the structure of a box is: 

HomeSurveillance 

DoorDetect

presence

Figure 2.  Surveillance in John’s home

DoorCam

out 

HallWCam

out VideoRec 
in 

► 
HallWDetect

presence 
!presence 

John’sPhone

videoIn 



   

»_BoxStructure___________ 
Æi, p: F NAME;  type: NAME ß TYPE 
«__________________ 
Æi I p = 0;  dom type = i U p 
–__________________ 
where names in all caps are given sets (same through-
out this section) and the constraints assert that inputs 
and properties must have distinct names, and also that 
all inputs and properties have a known type. 

The behavior of a box is: 
Operation ::= start | pause | stop 
Valuation == NAME ß VALUE 
Condition == F NAME x EXPR 
»_BoxBehavior____________ 
Æop: ID ß Operation 
Æinit: ID ß Valuation 
Æcond: ID ß Condition 
ÆstartName, condName: ID ß NAME 
«___________________ 
Ædom init z dom (op t {start}) 
Ædom startName z dom (op t {start}) 
Ædom cond I dom op = 0 
Ædom condName z dom cond 
–___________________ 
where operations are represented on the left hand side 
of a box (top of Figure 3(b)), and conditions to be mo-
nitored on the right. Start operations have an associated 
valuation, more below, which are enforced each time 

the corresponding start operation is activated. 
Although operations (op) and conditions (cond) 

have an internal identifier (of type ID), start operations 
and conditions may also be associated with a name. 
This is to make them easier to recognize by non-expert 
users, who don’t necessarily have deep domain know-
ledge. If a name is given, it will appear on the dia-
grams, although users may edit the corresponding ex-
pression on demand. 

The Box schema coordinates structure and behavior: 
»_Box_________________________ 
Æname: GNAME 
ÆBoxStructure; BoxBehavior 
«___________________________ 
ÆAv: ran init • dom v z i 
ÆAc: ran cond; n: F NAME; e: EXPR • c = (n, e) fi n z i U p 
–___________________________ 

Specifically, the domain of every valuation v is a 
subset of inputs, that is, a valuation maps some number 
of inputs to values; and every condition c is expressed 
as an expression written in terms of some number of 
inputs and properties of that same box. 

There are two alternatives for naming boxes, which 
in the Zed model are both abstracted in the given set 
GNAME. First, a name may identify a specific entity or 
activity, such as Susan’sHealth or John’sKitchen. The 
structure of such names is entity@environment, where 
environments are uniquely identified and follow the 
usual conventions for URL “domains.” Typically, en-
vironment names are assigned to independently admi-
nistered geographic areas, such as homes and company 
buildings or campuses. For simplicity, the environment 
part of a name is omitted in diagrams for entities that 
reside in that environment. Data stores are also named 
in this fashion. 

Second, a name may identify a generic entity of a 
given type, name:type, such as s:Screen. This indicates 
that the user is not concerned about identifying a spe-
cific screen to incorporate the system, but rather is 
willing to use one that is convenient. This corresponds 
to the notion of generic service. Resolving for a con-
crete service supplier is done dynamically, using opti-
mized service discovery mechanisms such as the ones 
described in [12]. The naming of types follows the 
usual convention for defining ontology and name spac-
es in the internet, for which domain experts may pro-
vide local aliases to make names more recognizable to 
end-users. 
ÆallOpenInputs: F Box f F NAME 
ÆallProperties: F Box f F NAME 
«_______________ 
ÆAs: F Box • allOpenInputs s 
Æ  = { n: NAME | Eb: s • Av: ran b . init • n e b . i ¶ n ‰ dom v } 
ÆAs: F Box • allProperties s = { n: NAME | Eb: s • n e b . p } 

The definition of a system’s structure uses generic 

(a) Structure 
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i p 

f 

y 
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i p 
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Figure 3. Syntactic primitives in uDesign



   

operations allOpenInputs and allProperties, which extract 
the corresponding sets of names from a set of boxes. 
Open inputs are the ones that are not part of some val-
uation associated to a start operation. 

A system’s structure is characterized by a set of 
boxes, Figure 3(a), where no two distinct boxes have 
the same name, and by the pipes that interconnect box 
properties to open inputs of those boxes. The fact that 
pipes are formally defined as a (partial) function from 
inputs to properties means that a property may be piped 
to any number of inputs, but an input may receive data 
from at most one property. 
»_SystemStructure___________________ 
Æboxes: F Box 
Æpipes: NAME ß NAME 
«____________________________ 
ÆAb1, b2: boxes • b1 . name = b2 . name fi b1 = b2 
Ædom pipes z allOpenInputs boxes 
Æran pipes z allProperties boxes 
–____________________________ 

Similarly, the definition of a system’s behavior uses 
generic operations allOps and allConds, which extract 
the corresponding sets of ids from a set of boxes. 
ÆallOps: F Box f F ID 
ÆallConds: F Box f F ID 
«____________________________ 
ÆAs: F Box • allOps s = { opId: ID | Eb: s • opId e dom b . op } 
ÆAs: F Box • allConds s = { cId: ID | Eb: s • cId e dom b . cond } 

A system’s behavior is characterized by the wires 
that connect conditions to operations, and by the valves 
placed on pipes. There are no restrictions to the wiring 
of conditions and operations: an operation is activated 
if any of the attached wires goes live, that is, if any of 
the related conditions hold.  
»_SystemBehavior ___________________ 
Æboxes: F Box;    pipes: NAME ß NAME 
Æwires: ID j ID 
Ævalves: ID j NAME x NAME 
«____________________________ 
Ædom wires z allConds boxes; ran wires z allOps boxes 
Ædom valves z allConds boxes; Ap: ran valves • p e pipes 
–____________________________ 

Valves relate conditions with pipes. For data to flow 
in a pipe, it is necessary that all the valves are open, 
that is, that all the related conditions hold. The bottom 
of Figure 3(b) shows the diagrammatic representation 
of two special cases and the general case of valve re-
presentation. In the general case, illustrated by c5 in the 
figure, a wire is shown connecting the condition and 
the commanded valve, . To reduce clutter, in case the 
pipe is attached to either an input or property of a box 
b, and the controlling condition also belongs to b, than 
the valve is shown next to the input (c2 and c4) or prop-
erty (c1 and c3) and the wire is not shown. 

A system coordinates structure and behavior: 
System Í SystemStructure ¶ SystemBehavior 
where boxes and pipes are shared among the two. 

Operations such as adding a pipe or a valve to a sys-
tem can also be modeled: 
»_addPipe_______________________ 
Æ∆SystemStructure 
ÆpipeSource?: NAME;   pipeSink?: NAME 
«____________________________ 
ÆpipeSink? e allOpenInputs boxes 
ÆpipeSource? e allProperties boxes 
Æboxes' = boxes 
Æpipes' = pipes ± {(pipeSink? å pipeSource?)} 
–____________________________ 
where the pipeSource? parameter must be an open input, 
and the pipeSink? a property in the system’s set of box-
es. As a result of adding a pipe, the pipes function in 
the system’s structure includes the new mapping. 
»_addValve ______________________ 
Æ∆SystemBehavior;   ΞSystemStructure 
Æcond?: ID;      pipe?: NAME x NAME 
«____________________________ 
Æcond? e allConds boxes;   pipe? e pipes 
Æwires' = wires;     valves' = valves ± {(cond? å pipe?)} 
–____________________________ 

Adding a valve changes the system’s behavior, but 
not its structure. As a result of the operation, the valves 
relation incorporates the mapping between the condi-
tion cond? and the pipe?, which must both be already 
defined in the system. 

To manage complexity, a user may decide to wrap a 
system or part of a system as a box. Structurally, any 
property or input of the wrapped boxes may be pro-
moted to the top level either using the dot notation, or 
by driving a pipe to the edge of the wrapping box, as 
illustrated at the top of Figure 3(c). Formally, the struc-
ture of a composite box combines the features of a Box 
with those of a SystemStructure:  
»_CompositeStructure _________________ 
ÆBox;   SystemStructure 
ÆiMap: NAME © NAME;   pMap: NAME © NAME 
«_______________ 
Ædom iMap z allOpenInputs boxes;   ran iMap = i 
ÆAb: boxes; i0, i1: NAME • 
Æ       i0 e b . i ¶ iMap i0 = i1 fi b . type i0 = type i1 
Ædom pMap z allProperties boxes;    ran pMap = p 
ÆAb: boxes; p0, p1: NAME • 
Æ       p0 e b . p ¶ pMap p0 = p1 fi b . type p0 = type p1 
–____________________________ 

The partial surjections (one-to-one) iMap and pMap 
map some number of open inputs and properties of the 
wrapped boxes to the top-level box, such that the cor-
responding types are preserved. All the top-level inputs 



   

and properties are images in these mappings, that is, no 
inputs or properties can be defined at the top level that 
have no correspondence in the wrapped boxes. 

The behavior of a composite box combines the fea-
tures of a Box with those of a SystemBehavior: 
»_CompositeBehavior _________________ 
ÆBox;   SystemBehavior 
ÆopMap: ID j ID;   cMap: ID © ID 
«_______________ 
Ædom opMap z allOps boxes;   ran opMap = dom op 
Ædom cMap z allConds boxes;   ran cMap z dom cond 
–____________________________ 

Operations at both levels can be freely related. In 
general, one can imagine composites with dormant 
states, where a stop at the top level deactivates most 
wrapped components, while activating a few others. To 
cover common cases, the editing tools take as a default 
that an operation at the top level is mapped as the cor-
responding operation in all the wrapped boxes (lighter 
color wires in Figure 3(c)). That default can be over-
written by explicitly establishing the desired relation. 
Also, if a user has access privileges to see the internals 
of a composite, the editing tools support wiring direct-
ly to the wrapped boxes (bottom of Figure 3(c)) al-
though semantically that corresponds to defining a 
condition/operation at top level which is then related to 
the wrapped box. 

Additional conditions can be defined at the top lev-
el, using both the names of the conditions in the 
wrapped boxes as well as properties and inputs, using 
the dot notation as before. 

Finally, the generic notion of BOX is either an ele-
mentary Box, or a composite: 
BOX Í Box v CompositeStructure ¶ CompositeBehavior 

Recursive decomposition of systems would be 
modeled by changing the SystemStructure and SystemBe-
havior schemas above to refer of a set of BOX, rather 
than Box. 

7. uDesign implementation 

This section describes how uDesign maps to activi-
ty-oriented systems (e.g. [13]), and to a specific im-
plementation thereof: the Aura infrastructure. We start 
by summarizing Aura (details can be found in [11].) 

Activities, or tasks, are a first class concept in Aura 
and correspond to everyday activities of users or auto-
mated agents; for example, write paper X, or monitor 
Susan’s health. Activity models describe the services 
and materials required to support the activity, as well 
as user preferences concerning the selection and confi-
guration of those services. 

Services correspond to features such as edit text, or 
monitor heart rate, or to capabilities of humans, such 
as answer the door. Materials correspond to data stores 
manipulated by services. Services may define ports 

[10], and activity models may then include service 
interconnections via typed connectors.  

The Aura infrastructure takes activity models, 
represented in XML, finds appropriate service suppli-
ers in the environment and, upon request, assembles 
and activates those services. 

Figure 4 shows the architecture of the Aura infra-
structure, with two component types, Aura and the 
Environment Manager (EM), and the three interaction 
protocols (connectors) between them. The double box 
for the Aura type indicates that typically there will be 
many Aura component instances in each environment, 
while the EM (single box) will have only one instance. 

The EM provides the mechanisms to optimally mar-
shal the supply of services required by activities [12]. 
It also monitors these services to ensure that they are 
satisfying user goals, recommending reconfigurations 
where appropriate. Environments typically correspond 
to a physical space (e.g., a floor or a building), but they 
are defined administratively and so can also encompass 
logical spaces (e.g., including a printer at the office in 
the home environment). 

While an EM contains generic mechanisms for ser-
vice discovery and configuration, Auras contain do-
main-specific knowledge about activities and services. 

Auras are abstract models of entities in the real 
world, such as users, spaces, devices, and software 
components. Auras provide mechanisms to monitor 
and control the entities they represent. In the case of 
software, Auras may wrap existing applications to con-
form to the infrastructure’s protocols. Rather than re-
quiring writing a new portfolio of applications, this 
approach makes it easy to integrate legacy applications 
into the Aura infrastructure. For instance Emacs, 
MSWord and Notepad have been wrapped to become 
Auras that offer edit text services. Such Auras act as 
translators between the generic configuration directives 
issued by the EM and other Auras, and the specific 
APIs offered by the component they encapsulate. 

Earlier versions of the architecture separated the 
roles of service supplier and consumer into two com-
ponent types: Supplier and Prism [11]. However, the 
work leading up to [13] made us realize that the same 
component, an Aura, can play either the role of a task 
manager (Prism) or of a Supplier of services, or both. 
For example, John’s Aura manages John’s activities, 
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Figure 4. The Aura Architecture
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such as looking after Susan, but also offers services 
that John can provide, such as answering the door. 

An Aura that plays the role of a service supplier, 
denoted AuraSUP, announces its services with the EM 
via the Service Announcement and Activation Protocol 
(SAAP) connector, and finds itself on the supplying 
end of the Service Use Protocol (SUP) connector (see 
Figure 4). An Aura that plays the role of a task manag-
er, denoted AuraTM, requests the services required for 
each task from the EM via the Service Request Proto-
col (SRP) connector, and finds itself on the consuming 
end of the SUP connector. 

When a user enters an environment, an AuraTM is 
associated with him or her to manage the user’s tasks. 
A task model contains information about the desired 
services that should be brought to bear to help the user 
carry out the task. To resume a task in a particular en-
vironment, AuraTM communicates with EM to request 
service suppliers using a combination of the protocols. 
These protocols, shown in Figure 5, starts with AuraTM 
opening a session for a particular task with newTask; 
after getting a reply from EM, a unique session id is 
used for subsequent communication about this task. 
AuraTM then obtains estimates for the how well the 
environment can support a particular task by sending a 
budget message and getting taskLayout messages in re-
sponse. It is possible that more than one way of instan-
tiating a task depending on the degree of richness of 
service suppliers in the environment (e.g., requesting 
an editText service might be provided by a NotePad 
ssupplier or a Word supplier). AuraTM learns user pre-
ferences which guide the choice of service suppliers. 

The EM will then activate those AurasSUP. 
Once an AuraSUP has been activated by the EM, Au-

raTM interacts with it to set its state so that the user can 
start using them. A state might include the materials 
(files) to use, the size of windows, cursor positions, 
etc. When the user is finished with the task in that en-
vironment, AuraTM will issue a getState on each of the 
service suppliers to get the updated information about 
their state, and then will request that EM disband the 
task. This deactivates each of the AurasSUP and closes 
the session between the EM and AuraTM for that task. 

7.1 Mapping uDesign to Aura 

uDesign takes a unified view of Auras, activities, 
and services. Auras that just offer services correspond 
to boxes with no internal structure. Auras that manage 
activities (AuraTM) correspond to composite boxes, and 
the activities themselves correspond to subsystems 
inside the composite box. Resuming an activity in Au-
ra corresponds to a start operation in a composite box 
that activates the subsystem corresponding to the activ-
ity. 

The structure overlay in uDesign corresponds to de-
fining which services and materials are required to 
support an activity. For example, in Aura, Susan’s-
Health is one of the activities of user Susan, and it re-
quires services HeartMonitor, VideoCapture and so 
forth. In uDesign, Susan’sHealth is a composite box 
that wraps boxes HeartMonitor, VideoCapture and so 
forth (see Figure 1). 

Inputs and properties of boxes map to service ports 
in Aura, which can then be interconnected by connec-
tors of type pipe. 

The behavior overlay in uDesign corresponds to de-
fining under which conditions activities/services are to 
be activated. The way current Aura protocols support 
uDesign behavior is better illustrated with an example: 
the AuraTM for HomeSurveillance issues a setState in-
structing the AuraSUP for HallWDetect to monitor the 
presence condition, as defined in Figure 2. When the 
condition holds, the AuraSUP issues a stateSnaphot de-
scribing the event. The AuraTM then uses the SRP and 
SUP to start an AuraSUP for video recording. 

Although this implementation strategy works to 
coordinate services and activities within the same Au-
ra, it becomes cumbersome for achieving coordination 
across different Auras. Since uDesign allows end-users 
to extend wires across systems, we are currently de-
signing extensions to the Aura protocols to support 

AuraTM EM AuraSUP 

newTask 
createdTask <id> 

budget <id, tDesc> 
taskLayout <id, cDesc> 

setup <id, tDesc> 
activate <id> 

ackActivate <cId> 
taskLayout <id, cDesc> 

setState <id, state> 

getState <id> 
stateSnapshot<id, state> 

disband <id> 
deactivate <id> 

ackDeactivate <cId> 
taskGone <id> 

Figure 5.  Task lifecycle in Aura 
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Table 1. uDesign behavior vs. Aura protocols 

operation Aura protocol activity
► SRP1  SUP1 (Resume)

SUP2  SRP2 (Suspend)
■ SRP2 (Stop) 



   

direct coordination between Auras. 
Table 1 summarizes how the three operations in 

uDesign are realized using the protocols in the Aura 
architecture. Start, ►, corresponds to resuming an ac-
tivity: SRP1 followed by SUP1 in Figure 5. The distinc-
tion between pause, , and stop, ■, is that the latter 
does not capture the current state of the suppliers. 

Finally, valves enable the flow of data in uDesign 
pipes. Depending on the implementation of pipe con-
nectors, such enabling conditions may be communi-
cated to the pipe, or they may have to be communi-
cated to the sending port. 

8. Conclusion and future work 
In previous work, like many other researchers, we 

have focused on building a software infrastructure over 
which enhanced applications for pervasive computing 
could be built and deployed. Specifically, we built the 
Aura infrastructure, which promotes user activities to 
first class primitives in software systems. 

However, the means for end users to assemble and 
configure highly personalized and flexible solutions 
have been largely missing. Although infrastructures 
such as Aura and others make it easier to develop solu-
tions for smart spaces, the mechanisms for intercon-
necting and coordinating components have remained at 
a level of detail more appropriate to computer special-
ists. This is precisely the gap addressed by uDesign. 

Our main goal is to provide a method of connecting 
services that is appealing to a large user base by mak-
ing it similar to connecting consumer electronics. Simi-
lar composition approaches are beginning to dominate 
domains such as business environments and robotics. 

uDesign offers overlays to capture the structure and 
behavior of a system. Such separation is a recognized 
good practice in design methodology, and the formal 
basis (described in Section 6) of uDesign guarantees 
that no inconsistencies will arise from having separate 
views. Checking the system structure follows the for-
mal model. 

uDesign leverages concepts of software architecture 
and this paper shows it can be implemented on top of 
the existing Aura infrastructure with minor extensions. 
This work also clarifies the APIs and architectural as-
sumptions that individual components must support to 
be integrated into the proposed framework.  

Part of our working hypothesis is that uDesign will 
be accessible to a broad range of users, including non-
experts. This hypothesis needs further validation. Spe-
cifically, we plan to conduct user studies involving 
both end users and domain specialists in domains such 
as assisted living and home security.  This will involve 
developing a set of tools that are robust and usable by 
end-users in a real setting, rather than a lab setting. In 
these studies we will also assess the scalability of our 

approach. We believe that the hierarchical decomposi-
tion of boxes will aid in addressing this, and we also do 
not anticipate that activities will be excessively com-
plex to warrant other specialized mechanisms. 
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