
2/16/2011

1

Software Architecture

Lecture 4
Event Systems

João Pedro Sousa

George Mason University

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 2

previously
data flow and call-return styles

data flow
batch sequential
dataflow network (pipe & filter)

acyclic, fan-out, pipeline, Unix
closed loop control

call-return
main program/subroutines
information hiding

objects, naive client-server
SOA

interacting processes
communicating peers

asynchronous messages
event systems

implicit invocation
publish-subscribe

data-oriented repository
transactional databases

true client-server
blackboard
modern compiler

data-sharing
compound documents
hypertext
Fortran COMMON
LW processes

hierarchical
tiers

interpreter
N-tiered client-server

2/16/2011

2

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 3

today
event-based styles
data flow

batch sequential
dataflow network (pipe & filter)

acyclic, fan-out, pipeline,
Unix

closed loop control

call-return
main program/subroutines
information hiding

objects, naive client-server
SOA

interacting processes
communicating peers
event systems

implicit invocation
publish-subscribe

data-oriented repository
transactional databases

true client-server
blackboard
modern compiler

data-sharing
compound documents
hypertext
Fortran COMMON
LW processes

hierarchical
tiers

interpreter
N-tiered client-server

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 4

today’s outline

interacting processes style
family tree:

communicating peers

publish-subscribe

implicit invocation

event systems
QAs

implementation

Lab 2
Acknowledgment

some of the material presented in this course is adapted from 17655,
taught to the MSE at CMU by David Garlan and Tony Lattanze

2/16/2011

3

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 5

communication is loosely coupled
in the interacting processes style

components
independent threads of control

implemented as a process or thread

may be distributed

connectors
communication is loosely coupled and often asynchronous

system
components may or may not
have knowledge of other components

functionality of one component does not depend upon others

overall system functionality depends upon all
components functioning and communicating properly

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 6

interacting processes

family tree

communicating peers
asynchronous messages aka explicit events
explicit wrt identifying the recipient

event systems aka implicit events
events delivered to all interested components in some order

publish aka broadcast

publish-subscribe
interested components subscribe to events
interested components receive asynchronous message

implicit invocation
interested components register a callback method
upon the event, the method is invoked (call-return)

2/16/2011

4

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 7

communicating peers
know recipient’s identity

component X

component Y

component A

component Z

component B

component C

event to Y

event to B

event to C

event to C

event to Z

identity of event recipients is known by event senders

order of execution can be prescribed/predicted

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 8

event systems
publish aka broadcast

component X

component Y

component A

component Z

component B

component C
event i

Don't
care

Don't
care

Don't
care

Don't
care

I
CARE!

Ethernet protocol in local area networks
uses similar idea:
event packet is tagged with recipient’s address

2/16/2011

5

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 9

publish-subscribe & implicit invocation
rely on event infrastructure

component X component Y component Z

reg i

event bus

i: X j: Y, Z

evt: i
reg i
evt: i

reg j
evt: i
evt: ievt: i

identity of event recipients is unknown to senders

order of event delivery is unknown
different event buses make different guaranties
or no guaranties about ordering

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 10

today’s outline

interacting processes style

event systems
QAs

implementation
single process

distributed

Lab 2

2/16/2011

6

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 11

many flavors
of event infrastructure

C signals: OS (software) interrupts sent by kill function
program can specify handler function for each signal

Ada: defines interrupts and interrupt handlers

C++: defines events, event sources and event receivers

Visual Basic: widgets send various events depending upon user
interaction, timers, and so forth; code attached to event is
executed when event occurs

Java Observer & Observable classes (more in a bit)

database triggers: conditions associated to data
trigger callbacks to registered methods

middleware support for events: CORBA, etc.

COTS event buses: JMS, IBM MQ Series, etc.

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 12

HLA example
high-end, large-scale simulation

simulation is big business
hundreds of simulators, vendors
one training system for the Army cost $2 Billion alone

problem: combine simulators into a joint "exercise"
may involve dozens or hundreds of simulators

usually highly distributed

produced by multiple vendors

version 1.0 of the HLA published 1996
in 2000 HLA becomes IEEE Standard 1516

HLA defines event-based standard for simulation
protocols for interaction
data modeling mechanisms
procedures to join and leave federation of simulations

2/16/2011

7

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 13

today’s outline

interacting processes style

event systems

QAs
implementation

single process

distributed

Lab 2

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 14

event systems

promote scalability
easy to add new components
however, may increase overhead and hurt performance

performance may be a challenge
hard to coordinate the order of processing

predicting and optimizing performance can be a challenge

specific performance measurements may still be good

X Y Z

event bus

2/16/2011

8

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 15

event systems

promote reuse
decoupling: events offer an interface with little assumptions

announcers don’t need to know the identity of responders

easy to reuse/register a component that communicates this way

promote conceptual integrity
components work more independently
interaction policy can be cleanly separated from internals
however, due to non-determinism it may be
hard to model and reason about run-time behavior

X Y Z

event bus

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 16

event systems

promote maintainability
changes to one component have little or no effect on others

however, changes to when a component announces/register
may impact system behavior

testing may be a challenge
hard to trace origin/path of events

may require special tools and/or system structures to do so

hard to replicate ordering of actions
during testing & after deployment

X Y Z

event bus

2/16/2011

9

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 17

take 5

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 18

today’s outline

interacting processes style

event systems
QAs

implementation
single process
distributed

Lab 2

2/16/2011

10

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 19

java.util.Observable

Observable

boolean hasChanged()

void setChanged()

void notifyObservers(Object arg)
void notifyObservers()

void addObserver(Observer o)

ConcreteObservable

<<Interface>>

Observer

void update(Observable o, Object arg)
*

obs

ConcreteObserver

void update(Observable o, Object arg)

association

extends/is a

implements

eventorigin

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 20

how to use Observable

2/16/2011

11

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 21

single process example
interactive student registration

next class

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 22

lab2: distributed event system
smart buildings

as in Lab 1, you are given a working system
control temperature and humidity in a museum
to preserve delicate paintings

sensors
monitor environment and post periodic events
temperature, smoke, motion, intrusion, humidity…

controllers
monitor events and control actuators
heaters, chillers, humidifiers, dehumidifiers, door locks…

consoles
enable users to set temperature, humidity, enable security…

2/16/2011

12

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 23

lab2: distributed event system
enhance system

A: intrusion detection
window break, door break, motion

B: fire protection
fire alarm switches, sprinklers

C: maintenance console
list active systems

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 25

in summary, many event systems
rely on event infrastructure

component X component Y component Z

event bus

identity of event recipients is unknown to senders

order of event delivery is unknown
different event buses make different guaranties
or no guaranties about ordering

2/16/2011

13

SWE 727 – Software Architecture © Sousa 2011 Lecture 4 – Event Systems – 26

in summary, event systems
easy to modify, hard to test

QAs promoted
due to decoupling and encapsulation

QAs inhibited

X Y Z

event bus

reuse

modifiability

scalability

performance: hard to guarantee response time

testability: hard to test and reason about correctness

availability: possible to miss events (no registrations)

these are general considerations:
a real analysis requires QA scenarios – next class

