
3/1/2011

1

Software Architecture

Lecture 6
Architecture vs. QAs

João Pedro Sousa

George Mason University

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 2

today

pipe & filter
Lab1

event systems
Lab 2

event bus strategies

Acknowledgment
some of the material presented in this course is adapted from 17655,

taught to the MSE at CMU by David Garlan and Tony Lattanze

3/1/2011

2

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 3

lab 1: pipe & filter system
build avionics instrumentation systems

data comes in from airplane sensors

ID Data Descriptions and Units Type
Number

of Bytes

00 Time: number of milliseconds since the Epoch (00:00:00 GMT on January 1, 1970) long int 8

01 Velocity: airspeed of the vehicle, measured in knots per hour double 8

02 Altitude: vehicle’s distance from the average surface of oceans, measured in feet double 8

03 Pressure: atmospheric pressure external to the vehicle, measured in PSI double 8

04 Temperature: temperature of the vehicle’s hull, measured in degrees Fahrenheit double 8

05 Pitch: angle of the nose of the vehicle, if positive, the vehicle is climbing double 8

framed as

0000 Time 0001 Velocity … n data

0000 Time 0001 Velocity … n data

…

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 4

lab 1
existing system: module view

Object

Thread Plumber

FilterFramework

SourceFilter SinkFilterMiddleFilter

OutputStream InputStream

PipedOutputStream

PipedInputStream

app class
extends (is a)
uses

Java lib

3/1/2011

3

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 5

lab 1
existing system: C&C view

Filter2
<MiddleFilter>

Filter1
<SourceFilter>

Filter3
<SinkFilter>

Plumber

pipe

main

filter (thread)

creates and connects the filters

doesn’t intervene during system operation
therefore not normally represented

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 6

lab 1: pipe & filter system
build avionics instrumentation systems

system A: reads flight data and
converts Temp to Celsius
converts altitude to meters
removes other fields

system B: same plus
includes pressure data
removes pressure outliers > 80psi or <50 psi
and replaces them by interpolated values (avg of previous and next)

system C: merges streams
from two sets of sensors

output frames are sorted by time
filter pressure & pitch

:

10:23:21.912

10:23:23.014

10:23.25.256

:

:

10:23:22.002

10:23:24.714

10:23.26.681

:

Stream A

Stream B

:

10:23:21.912

10:23:22.002

10:23:23.014

10:23:24.714

10:23:25.256

10:23.26.681

:

Stream C

3/1/2011

4

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 7

sample 1: system A C&C view
conv. temperature and altitude, remove others

SourceFilterFlightData.dat MiddleFilter SinkFilter OutputA.dat

Plumber

public class MiddleFilter extends FilterFramework {

public void run() {

<...>

while(true) {

id = readID();

if (id == 2) {

data = readMeasurement();

WriteFilterOutputPort(convert.intToByteArray(id));

WriteFilterOutputPort(convert.longToByteArray(

convert.feetToMeters(Double.longBitsToDouble(data))));

} else if (id == 4) {

data = readMeasurement();

WriteFilterOutputPort(convert.intToByteArray(id));

WriteFilterOutputPort(convert.longToByteArray(

convert.fahrenheitToCelsious(Double.longBitsToDouble(data))));

} else {

readMeasurement();

}}

}}

? legend?

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 8

sample 2: system A C&C view
conv. temperature and altitude, remove others

public class temperatureFilter extends FilterFramework {

public void run() {

<...>

while(true) {

id = readID();

data = readMeasurement();

WriteFilterOutputPort(convert.intToByteArray(id));

if (id == 2) {

Double altitude = Double.longBitsToDouble(data);

Double meters = altitude * 0.3048;

data = Double.doubleToLongBits(meters);

}

WriteFilterOutputPort(convert.longToByteArray(data);

}

}}

public class altitudeFilter <...> {

public void run() {

<...>

while(true) {

id = readID();

data = readMeasurement();

WriteFilterOutputPort(<..>id));

if (id == 4) {

Double t = <…>data);

Double c=(5.0/9.0)*(t-32);

data=Double.doubleToLongBits(c);

}

WriteFilterOutputPort(<…>data);

}

}}

3/1/2011

5

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 9

sample 3: system A C&C view
conv. temperature and altitude, remove others

public class dropFilter extends FilterFramework {

public void run() {

<...>

while(true) {

id = readID();

data = readMeasurement();

if (id==0 || id==2 || id==4) {

WriteFilterOutputPort(<..>id));

WriteFilterOutputPort(<…>data);

}

}}

public class ConvertFilter <...> {

public void run() {

<...>

while(true) {

id = readID();

data = readMeasurement();

if (id == 2) {

Double a = <…>data);

Double m= a*0.3048;

data=Double.doubleToLongBits(m);

} else if (id == 4) {

Double t = <…>data);

Double c=(5.0/9.0)*(t-32);

data=Double.doubleToLongBits(c);

}

WriteFilterOutputPort(<..>id));

WriteFilterOutputPort(<…>data);

}}}

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 10

which system is better for QA scenario
cost of change aka modifiability

environment
off line,
design time

stimuli
generate 2 new products
for diff customers:
1. keep only temp & altitude,

convert only temp
2. keep all fields,

convert temp & altitude

source
developer

artifact
system A
code

response measures
10 minutes
no new bugs/
side effects

responses
make all changes
store in version control

3/1/2011

6

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 11

convAlt
<MiddleFilter>

convTemp
<MiddleFilter>

keepTempAlt
<MiddleFilter>

writeFile
<SinkFilter>

readFile
<SourceFilter>

revised system for
cost of change scenario

2. keep all fields,
convert temp & altitude

trivial changes to Plumber

convAlt
<MiddleFilter>

convTemp
<MiddleFilter>

writeFile
<SinkFilter>

readFile
<SourceFilter>

1. keep only temp & altitude,
convert only temp

3. system A:
keep only temp & altitude,
convert temp & altitude

convTemp
<MiddleFilter>

keepTempAlt
<MiddleFilter>

writeFile
<SinkFilter>

readFile
<SourceFilter>

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 12

samples 1, 2: system B C&C view
same as A plus remove pressure wild points

public class MiddleFilter extends FilterFramework {

public void run() {

<...>

while(true) { <...>

processDataframe(frame);

}

}

public void processDataframe(Dataframe f) { <...>

f.setTemperature((f.getTemperature() - 32) * 5/9);

f.setAltitude((f.getAltitude() * .3048);

double pressure = f.getPressure();

if (pressure > 80 || pressure < 50) { /* wild datapoint */

wildPoints.println(time + pressure);

}

WriteFilterOutputPort(frame.toByteArray(),0,frame.size());

}}

SourceFilter

FlightData.dat

MiddleFilter SinkFilter

OutputB.datWildpoints.dat

all the action is...

in the PressureSinkFilter

3/1/2011

7

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 13

sample 3: system B C&C view
same as A plus remove pressure wild points

public class InterpolateFilter extends FilterFramework {

public void run() {

<...>

while(true) {

frame = readDataframe();

if (frame.pressureOk()) {

badPressureQ.procAll((frame.getPressure()+lastPressure)/2);

lastPressure = frame.getPressure();

WriteFilterOutputPort(frame.toByteArray(),0,frame.size());

} else { /* wild datapoint */

WriteFilterOutputAlternatePort(frame.toByteArray(),0,frame.size());

badPressureQ.add(frame);

}

}

}}

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 14

does sample 3 satisfy
response time scenario

environment
normal operation
input rate ~ 20 fps

stimuli
send data frames
up to 20 consecutive
frames may be faulty

source
sensor
instrumentation

artifact
running
system

response measures
jitter < 0.1s

responses
process frames

3/1/2011

8

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 15

revise sample 3 for QA scenario
change architecture or code?

public class InterpolateFilter extends FilterFramework {

public void run() {

<...>

while(true) {

frame = readDataframe();

if (frame.pressureOk()) {

badPressureQ.procAll((frame.getPressure()+lastPressure)/2);

lastPressure = frame.getPressure();

WriteFilterOutputPort(frame.toByteArray(),0,frame.size());

} else { /* wild datapoint */

WriteFilterOutputAlternatePort(frame.toByteArray(),0,frame.size());

badPressureQ.add(frame);

}

}

}}

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 16

sample 1: system C C&C view
merge streams, remove wild points on pressure and pitch

what is the real architectural style at play here?
does it respond to modifiability architectural drivers?

SourceFilterSubSetA.dat

MiddleFilter SinkFilter
OutputA.

dat

SourceFilterSubSetB.dat

Wildpoints
.dat

all the action is...

in the MiddleFilter

Input AllProcessing Output

Errors

3/1/2011

9

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 17

sample 3: system C C&C view
merge streams, remove wild points on pressure and pitch

identify reuse of parts from system B
could it be made more obvious/effective?

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 18

system C

system B

system A

revised systems
maximize filter reuse & sys modifiability

convAlt
<MiddleFilter>

convTemp
<MiddleFilter>

keepTempAlt
<MiddleFilter>

fixPressure
<SplitFilter>

readFile
<SourceFilter>

writeBadFile
<SinkFilter>

writeGoodFile
<SinkFilter>

readFileA
<SourceFilter>

readFileB
<SourceFilter>

sortTime
<MergeFilter>

fixPressure
<SplitFilter>

fixPitch
<SplitFilter>

merge
<MergeFilter>

writeBadFile
<SinkFilter>

writeGoodFile
<SinkFilter>

identify all instances of reuse

3/1/2011

10

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 19

architects
learn by doing

≠

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 20

take 5

3/1/2011

11

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 21

today

pipe & filter
Lab1

event systems
Lab 2
event bus strategies

Acknowledgment
some of the material presented in this course is adapted from 17655,

taught to the MSE at CMU by David Garlan and Tony Lattanze

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 22

lab2
C&C view

ECSConsole Temperature
Sensor

Humidity
Controller

Event Manager

A B

A B

A publishes events on B

B receives events from A

Process

Event Bus (Process)

Temperature
Controller

Humidity
Sensor

Le
ge

n
d

publish/receive simulation events

3/1/2011

12

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 23

lab2
C&C view highlights

ECSConsole

Temperature
Sensor

Humidity
Controller

Event Manager

A B

A B

A publishes events on B

B receives events from A

Process

Event Bus (Process)

Temperature
Controller

Humidity
Sensor

Le
ge

n
d

publish/receive simulation events

Monitor
temp&hum

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 24

lab2 system A
add intrusion alarm

“a key requirement for this organization is to have a highly
extensible system where sensors, equipment controllers, and
consoles can be easily added to the system at runtime.”

ECSConsole

Temperature
Sensor

Humidity
Controller

Event Manager

Temperature
Controller

Humidity
SensorMonitor

temp&hum

new features
sensors: windows, doors…

intrusion alerts

where to add the new features?

3/1/2011

13

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 25

more precisely: QA scenario
cost of change aka modifiability

environment
off line,
design time

stimuli
generate diff products
for diff customers:
1. control temp & humidity
2. monitor security
3. both features

source
developer

artifact
system A
code

response measures
15 minutes
no new bugs/
side effects

responses
make all changes
store in version control

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 26

today

pipe & filter
Lab1

event systems
Lab 2

event bus strategies

Acknowledgment
some of the material presented in this course is adapted from 17655,

taught to the MSE at CMU by David Garlan and Tony Lattanze

3/1/2011

14

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 27

different bus strategies
we saw two

interactive student registration

single process
Java Observer/Observable

method call/callback

Ev
en

t
M

an
ag

er

Sensor

Controller

Monitor

lab 2

distributed processes
Java RMI

SWE 727 – Software Architecture © Sousa 2011 Lecture 6 – Architecture vs. QAs – 28

discuss effects on QA scenarios
scalability, availability, latency…

one Q per type of event (Observable)

Observers register for specific type
Java manages Q

sendEvent(e)
triggers notifyObservers()

Observers receive update(e) callback

Ev
en

t
M

an
ag

er

Sensor

Controller

Monitor

one Q per reg component

sendEvent(e)
appends e to all Qs

getEventQ(id)
each component pulls
and processes its Q

ignores irrelevant events

Q1

Q2

Q3

E1

E2

E3

