
3/28/2011

1

Software Architecture

Lecture 8
Communicating Peers

João Pedro Sousa
George Mason University

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 2

previously, event systems
within the interacting processes family

data flow
batch sequential
dataflow network (pipe & filter)

acyclic, fan-out, pipeline,
Unix

closed loop control

call-return
main program/subroutines
information hiding

objects, naive client-server
SOA

interacting processes
communicating peers
event systems

implicit invocation
publish-subscribe

data-oriented repository
transactional databases

true client-server
blackboard
modern compiler

data-sharing
compound documents
hypertext
Fortran COMMON
LW processes

hierarchical
tiers

interpreter
N-tiered client-server

3/28/2011

2

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 3

today
communicating peers

flavors
homogeneous systems, aka peer-to-peer (P2P)

heterogeneous systems

QAs

understanding concurrency & distribution
pool vs. factory

case study asynchronous messaging
QAs

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 4

example homogeneous systems
peer-to-peer (P2P)

all peers play similar roles / use same protocols:

peer-to-peer networks

digital telephony (VOIP)

internet traffic (DNS)

mail transfer among servers (SMTP)

discussion forums

Usenet news (1979)...

file sharing protocols

Napster, Gnutella, BitTorrent, and dozens of others
often implemented over HTTP request-reply

3/28/2011

3

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 5

example heterogeneous system
student billing system

students register
using personal devices

registrar sends summary
of enrollment to billing

billing sends invoices

eventually students pay

billing informs registrar of
students in good standing

registration

billing
student

register

invoice

payment

enrollment
good

standing

registration

billing
student

architecturally:

reg. protocol
enroll. protocol
billing protocol

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 6

communicating peers
middle ground between call-return & events

component Z

component Y
component X

msg to Z

msg to X

msg to Y

msg to Y msg to Z

call-return peers events

identity of receiver is known yes yes no

can prescribe/predict order yes yes no

communication synchronous asynch asynch

restrictions on topology hierarchical none none

3/28/2011

4

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 7

freedom of message exchange
raises many questions

what if:

a registration is received
after sending the
summary of enrollment

additional enrollment entries
are received after invoicing

an invoiced payment
is never received

a payment is received
after sending the
list in good standing

the list in good standing
is never received

registration

billing
student

register

invoice

payment

enrollment
good

standing

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 8

freedom of message exchange
raises many questions

what if:

lost messages

duplicate messages

unexpected messages

registration

billing
student

register

invoice

payment

enrollment
good

standing

protocols of interaction
formally specified and verified

ideally, designed to be robust to
lost and unexpected messages

components
know and follow their role in the protocols

3/28/2011

5

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 9

models of concurrent processes
play a key role in getting concurrent systems right

hard way:
very hard to get right
for any but very simple protocols

requirements

c2

c1
c3 concurrent system

model of
concurrent processes
(CSP, Petri nets, state m...)

automatic checking

well-known techniques

or:

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 10

today
communicating peers

flavors
homogeneous systems, aka peer-to-peer (P2P)

heterogeneous systems

QAs

understanding concurrency & distribution
pool vs. factory

case study asynchronous messaging
QAs

3/28/2011

6

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 11

communicating peers

promote conceptual integrity
components work more independently than in call-return

interaction policy can be cleanly separated from internals

amenable to model and reason about concurrent behavior

promote scalability
easy to add new components in homogeneous (P2P) systems

promote responsiveness
asynchronous (unblocking) communication

concurrency (via threading) and parallelism

Y
X

Z

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 12

communicating peers

promote robustness
large-scale redundancy in P2P systems

components and protocols are built for robustness

promote security (relative to event systems)

subsets of peers can agree on encryption to keep secrets from others

development costs may be a challenge
asynchronous communication and
complexity of protocols
adds to design, development & maintenance costs

Y
X

Z

3/28/2011

7

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 13

today
communicating peers

flavors
homogeneous systems, aka peer-to-peer (P2P)

heterogeneous systems

QAs

understanding
concurrency & distribution

pool vs. factory

case study asynchronous messaging
QAs

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 14

remember:
communication is loosely coupled
in the interacting processes family

components
independent threads of control

implemented as a process or thread

may be distributed

connectors
communication is asynchronous and loosely coupled

system
components may or may not
have knowledge of other components

functionality of one component does not depend upon others

overall system functionality depends upon all
components functioning and communicating properly

3/28/2011

8

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 15

parallelism ≠ concurrency
but similar reasoning applies

c2

c1
c3

distributed
components (OS processes)

threaded component

time

c1
c2
c3

time

t1
t2
t3

simultaneous processing interleaving

c1

t1

descdata code

desc

stack
t3

desc

stack…

computations (and messages)
may occur in any order, unless explicit
steps are taken to synchronize them

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 16

threads are supported by a library,
not the OS

why threads anyway?
separation of concerns:
different activities in different threads

support requests of multiple peers

one thread remains responsive
(e.g. handle user input or incoming messages)
even if others are busy or blocked
(e.g. waiting for resources, input, or messages)

threads are supported by a library/VM, not the OS
making a process-blocking OS call blocks all threads

calling exit(i) in one thread terminates the process

3/28/2011

9

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 17

threads are
often used to handle incoming messages

in case there’s a long processing associated
to incoming messages

components can be made more responsive
by handling requests on separate threads

two flavors (aka design patterns)

pool: assign a thread when a request comes in

more efficient, harder to manage

factory: create a thread when a request comes in
easier to manage, less efficient

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 18

factory vs. pool design patterns
for handling messages

create
instance

msg/
request

server 1:
handler factory

c2c1 m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

server 2:
handler pool

c3

c3

c3

m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

3/28/2011

10

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 19

stateful handlers keep state of conversation,
stateless don’t

server 1:
handler factory

c2c1

create
instance

msg/
request

access
state

server 2:
handler pool

c3

c3

c3

r1

r2 r1, r2

c1:r1, r2

c1’: r1’
c1”: r1”, r2”, r3”

r1
r2

example: EJB entity beans and session beans

e
as

ie
r

to
 s

up
po

rt
st

at
e
fu

l
h
an

d
le

rs

m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 20

factory vs. pool design patterns
promoted QAs?

maintainability
code complexity

memory footprint

response time

server 1:
handler factory

c2c1 m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

server 2:
handler pool

c3

c3

c3

m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

QA scenarios?

3/28/2011

11

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 21

factory vs. pool design patterns
memory footprint & response time

scenarios:

trx avg processing is 5s
handler creation is 1s

load 1
2 trx per minute

load 2
10 trx per minute

load 3
50 trx per minute

how many replicas in the pool?

server 1:
handler factory

c2c1 m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

server 2:
handler pool

c3

c3

c3

m
e
ss

ag
e

re
ce

iv
in

g
co

d
e

suppose load varies along the day
load 1 during the night
load 2 during lunch
load 3 during business hours

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 22

today
communicating peers

flavors
homogeneous systems, aka peer-to-peer (P2P)

heterogeneous systems

QAs

understanding concurrency & distribution
pool vs. factory

case study asynchronous messaging
QAs

3/28/2011

12

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 23

PtoP example: code view

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 24

PtoP example: run-time view

3/28/2011

13

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 27

PtoP example: discussion

which pattern does PtoP use to
handle incoming messages

pool

factory

other?

which QAs is PtoP promoting?

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 28

in summary, communicating peers
middle ground between call-return & events

component Z

component Y
component X

msg to Z

msg to X

msg to Y

msg to Y msg to Z

call-return peers events

identity of receiver is known yes yes no

can prescribe/predict order yes yes no

communication synchronous asynch asynch

restrictions on topology hierarchical none none

3/28/2011

14

SWE 727 – Software Architecture © Sousa 2011 Lecture 8 – Communicating Peers – 29

in summary, peer systems
responsive & robust but costly

QAs promoted
conceptual integrity

responsiveness

robustness

scalability

QAs inhibited
development costs

these are general considerations:
remember that a real analysis requires QA scenarios

on a concrete implementation strategy

Y
X

Z

