Software Architecture

Lecture 8
Communicating Peers

Jodo Pedro Sousa
George Mason University

previously, event systems
within the interacting processes family

data flow
batch sequential
dataflow network (pipe & filter)
acyclic, fan-out, pipeline,
Unix
closed loop control

call-return
main program/subroutines
information hiding
objects, naive client-server
SOA

Interacting processes
communicating peers
event systems

implicit invocation
publish-subscribe

data-oriented repository
transactional databases
true client-server
blackboard
modern compiler

data-sharing
compound documents
hypertext
Fortran COMMON
LW processes

hierarchical
tiers
interpreter
N-tiered client-server

SWE 727 - Software Architecture © Sousa 2011

Lecture 8 - Communicating Peers - 2

3/28/2011

today
communicating peers

o flavors

o homogeneous systems, aka peer-to-peer (P2P)
o heterogeneous systems

o QAs

o understanding concurrency & distribution
e pool vs. factory

o case study asynchronous messaging
o QAs

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 3

example homogeneous systems
peer-to-peer (P2P)

all peers play similar roles / use same protocols:
o peer-to-peer networks
o digital telephony (VOIP)
o internet traffic (DNS)
o mail transfer among servers (SMTP)
o discussion forums
o Usenet news (1979)...
o file sharing protocols

o Napster, Gnutella, BitTorrent, and dozens of others
often implemented over HTTP request-reply

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 4

3/28/2011

example heterogeneous system
student billing system

o students register
mvowe using personal devices

w registrar sends summary
paymen‘r

g of enrollment to billing
goo ofMo o .
enrollment sTandmg billing sends invoices
register

o eventually students pay

'“69'5*"0*'0" billing informs registrar of
students in good standing

-sTudenT «—
architecturally:

<— reg. protocol f

(=>enrpl|. protocol \

4 billing protocol

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 5

communicating peers
middle ground between call-return & events

msg to \/
msg to Y msg to Z
msg to Z
componen‘r Z

call-return peers events
identity of receiver is known yes yes no
can prescribe/predict order yes yes no
communication synchronous asynch asynch
restrictions on topology hierarchical none none

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 6

3/28/2011

freedom of message exchange
raises many questions

what if:
ErT nvoice - o aregistration is received
m = mem after sending the
4 summary of enrollment
additional enrollment entries
are received after invoicing

o an invoiced payment

is never received

o apayment is received
after sending the
list in good standing

o the list in good standing
is never received

good

enrollment standing

register

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 7

freedom of message exchange
raises many questions

invoice - what if:
w o lost messages
Pﬂymeﬂ’r o duplicate messages

good e unexpected messages

standing

o protocols of interaction
o formally specified and verified

o ideally, designed to be robust to
lost and unexpected messages

@ components
o know and follow their role in the protocols

enrollment,
register

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 8

3/28/2011

models of concurrent processes
play a key role in getting concurrent systems right

N\

model of
or: concurrent processes
(CSP, Petri nets, state m...)

automatic checking

requirements

c2 \1 well-known techniques

. 7
hard way: cl N
very hard to get right =3 concurrent system

for any but very simple protocols

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 9

today
communicating peers

o flavors
¢ homogeneous systems, aka peer-to-peer (P2P)
¢ heterogeneous systems

o QAs

o understanding concurrency & distribution
o pool vs. factory

o case study asynchronous messaging
o QAs

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 10

3/28/2011

communicating peers

o promote conceptual integrity
e components work more independently than in call-return
e interaction policy can be cleanly separated from internals
e amenable to model and reason about concurrent behavior

e promote scalability
o easy to add new components in homogeneous (P2P) systems

e promote responsiveness
e asynchronous (unblocking) communication
e concurrency (via threading) and parallelism

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 11

communicating peers

e promote robustness
o large-scale redundancy in P2P systems
o components and protocols are built for robustness

e promote security (relative o event systems)
o subsets of peers can agree on encryption fo keep secrets from others

o development costs may be a challenge

¢ asynchronous communication and
complexity of protocols
adds to design, development & maintenance costs

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 12

3/28/2011

today
communicating peers

o flavors
o homogeneous systems, aka peer-to-peer (P2P)
o heterogeneous systems

o QAs

o understanding

concurrency & distribution
o pool vs. factory

o case study asynchronous messaging
o QAs

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 13

remember:
communication is loosely coupled
in the interacting processes family

e components
o independent threads of control
o implemented as a process or thread
o may be distributed

e connectors
o communication is asynchronous and loosely coupled

e system

e components may or may not
have knowledge of other components

o functionality of one component does not depend upon others

o overall system functionality depends upon all
components functioning and communicating properly

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 14

3/28/2011

parallelism # concurrency
but similar reasoning applies

distributed threaded component
components (OS processes) cl
data code desc
c2 z
o 7 N . sTack_._*Tss‘rack
— 3 desc desc
cl}- - —
I — . e e
ey T T3
time™ time
simultaneous processing interleaving

computations (and messages)
may occur in any order, unless explicit
steps are taken to synchronize them

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 15

threads are supported by a library,
not the OS

o why threads anyway?

o separation of concerns:
different activities in different threads

o support requests of multiple peers

o one thread remains responsive
(e.g. handle user input or incoming messages)
even if others are busy or blocked
(e.g. waiting for resources, input, or messages)

o threads are supported by a library/VM, not the OS
o making a process-blocking OS call blocks all threads
o calling exit(/) in one thread terminates the process

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 16

3/28/2011

threads are
often used to handle incoming messages

o in case there's a long processing associated
to incoming messages

e compohents can be made more responsive
by handling requests on separate threads

o two flavors (aka design patterns)
o pool: assign a thread when a request comes in
» more efficient, harder to manage

o factory: create a thread when a request comes in
o easier o manage, less efficient

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 17

factory vs. pool design patterns
for handling messages

server 1.
handler factory

message
r‘e?ving code

O

n

|

Q
T _—7",C3
88—
g O C3
\§= .
EY create
3 server 2: instance
= handler pool —>m59 7
request

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 18

3/28/2011

3/28/2011

stateful handlers keep state of conversation,
stateless don't

3 server 1 g %
0 8 handler factory 8
[s)) 35
S o o 8
R E o=
r R >
———— = i 59
ra2 8 ry rz g2
(VY]
—
cyiry, Iy creatfe
&t instance
O pyt
msg/
server 2: request
handler pool ——
access
example: EJB entity beans and session beans state

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 19

factory vs. pool design patterns
promoted QAs?

- server 1
© handler factory
98
8o e
_—>¥E o maintainability
N .
1 g,b . code complexity
o memory footprint
) C3
o_—7 C3 .
$&—— o response fime
gon »©
\XV.{\/
£ 0
§ server 2:
handler pool

QA scenarios?

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 20

10

factory vs. pool design patterns
memory footprint & response time

scenarios:
e trx avg processing is 5s

Y handlen foret L handler creation is 1s
© handler factory
93 load 1
ge T i
v 5 trx per minute
(o €9 2
1 QTL” o load 2
10 trx per minute
. o load 3
$_>% 50 trx per minute
O———>

(o]
w

o how many replicas in the pool?

ssage
i (o}

m
receivigg

suppose load varies along the day
o load 1 during the night

o load 2 during lunch

o load 3 during business hours

server 2:
handler pool

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 21

today
communicating peers

flavors
¢ homogeneous systems, aka peer-to-peer (P2P)
¢ heterogeneous systems

e QAs

understanding concurrency & distribution
e pool vs. factory

case study asynchronous messaging
o QAs

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 22

3/28/2011

11

3/28/2011

PtoP example: code view

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 23

PtoP example: run-time view

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 24

12

PtoP example: discussion

o which pattern does PtoP use to
handle incoming messages

e pool
o factory
o other?

o which QAs is PtoP promoting?

SWE 727 - Software Architecture

© Sousa 2011

Lecture 8 - Communicating Peers - 27

In summary, communicating peers
middle ground between call-return & events

97 [component Y|
[conporent X |«

peers events

msg to Y
msg to Y msg to Z
msg to Z
call-return
identity of receiver is known yes
can prescribe/predict order yes
communication synchronous
restrictions on topology hierarchical

yes no

yes no
asynch asynch

none none

SWE 727 - Software Architecture

© Sousa 2011

Lecture 8 - Communicating Peers - 28

3/28/2011

13

in summary, peer systems
responsive & robust but costly

o QAs promoted
conceptual integrity
responsiveness
robustness
scalability

» QAs inhibited

o development costs

©

©

©

©

these are general considerations:
remember that a real analysis requires QA scenarios
on a concrete implementation strategy

SWE 727 - Software Architecture © Sousa 2011 Lecture 8 - Communicating Peers - 29

3/28/2011

14

