
4/12/2011

1

Software Architecture

Lecture 9
Service-Oriented Architectures

João Pedro Sousa

George Mason University

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 2

previously

data flow
batch sequential
dataflow network (pipe & filter)

acyclic, fan-out, pipeline, Unix
closed loop control

call-return
main program/subroutines
information hiding - objects
stateless client-server
SOA

interacting processes
communicating peers
event systems

implicit invocation
publish-subscribe

data-oriented repository
transactional databases

stateful client-server
blackboard
modern compiler

data-sharing
compound documents
hypertext
Fortran COMMON
LW processes

hierarchical
tiers

interpreter
N-tiered client-server



4/12/2011

2

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 3

previously
call-return styles

single process flavors

main-subroutine, layers, modules, objects

distributed flavors

components, tiers

implementing distributed call-return: RPC, RMI

large-scale, open-ended distributed flavors

SOA

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 4

today
large-scale, distributed call-return

enabler: the Internet

widely-distributed client-server
example: World-Wide Web

the hinge of service-orientation:

service discovery

mainstream implementations of SOA
web services

composition

UDDI, SOAP

Acknowledgment
some of the material presented in this course is adapted from 17655, 

taught to the MSE at CMU by David Garlan and Tony Lattanze



4/12/2011

3

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 5

the Internet began as cold war project
within ARPA
later Defense Advanced Research Projects Agency

communications system that
would survive a nuclear exchange: ARPANET 

no centralized control point

impervious to EMP (electromagnetic pulse)

1967 - initial plan for connecting 4 research sites
ultimately create a public utility to transmit computer data

1971 - 15 nodes on the ARPANET
UCLA, SRI, UCSB, U. Utah, BBN, MIT, RAND, SDC, Harvard, 
Lincoln Labs, Stanford, UIUC, CWRU, CMU, NASA/Ames

Ray Tomlinson, a scientist from Massachusetts, sends 
himself an email between two computers

the initial killer app became e-mail

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 6

ARPA establishes TCP/IP in 1982
Transmission Control Protocol/Internet Protocol

network software and hardware was non-standard
and hand-crafted before TCP/IP

TCP/IP

provides layered abstraction of network services

sets the stage:

Local Area Networks (LANs)

an internet as a set of LANs connected via IP

an intranet as a private/corporate internet

Internet as the global network



4/12/2011

4

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 7

ISO’s OSI reference model in 1983
Open Systems Interconnection

extends the ideas in TCP/IP

physical

network

data link

transport

session

presentation

application

1

2

3

4

5

6

7

goal: separation of concerns
enables good implementation
at each level

each layer is independent
of the ones on top

layer n depends on the spec of n-1,
but not on its implementation/manufacturer

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 8

the OSI reference model
is roughly adhered in practice

physical

network

data link

transport

session

presentation

application

1

2

3

4

5

6

7
realm of middleware

app-specific (SMTP, http…)
or independent (RMI, CORBA…)

TCP/IP protocol stack

bits

frames

packets

segments



4/12/2011

5

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 9

the upper layers of the OSI

physical

network

data link

transport

session

presentation

application

1

2

3

4

5

6

7

specifies: application-specific protocols

(e.g., http, smtp, ftp, telnet)

does: support app-specific functionality

specifies: data formats and transformation
(e.g., MIME)

does: serialization, compression, encryption, 
encoding transformation (EBCDIC/ASCII)

specifies: establishing long lived connections

does: checkpointing, adjournment, restart

in practice: often organization above TCP/IP
does not follow this layering

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 10

Internet expanded fast

1984 - hosts on the Internet tops 1,000

DNS introduced
Domain Name System

1987 - Number of hosts tops 10,000 

1988 - worm burrows through the net
affecting 6,000 of 60,000 hosts on the Internet

CERT formed by DARPA
Computer Emergency Readiness Team

1989 - number of hosts tops 100,000

more in a bit



4/12/2011

6

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 11

to manage scale: human readable URLs
Universal Resource Locators

resources 
are 

servers 
and files

example ftp://ftp.cs.vu.nl/pub/globe/index.txt

Zone is a portion

of name space

managed by the

same name server

Zone

Zone

Local

Layer

O
rg

a
n

iz
a

ti
o

n
 

L
a

y
e

r
Global 

Layer

Zone

ROOT

local nameaccess
protocol

host name

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 12

DNS servers resolve
URLs to IP addresses

Client

app

example: resolve ftp://ftp.cs.vu.nl/pub/globe/index.txt

#<...> stands for 32-bit IP address of server <...>

DNS

resolver

in practice:
a resolver 
on your PC, 
another on 
your ISP...

each with 
cashing



4/12/2011

7

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 13

the development of the internet
led to the client-server style 

replaces mainframe/dumb-terminal model

different viewpoints:

physical (allocation viewtype)
clients are user computers (many)

servers are central computers (few)

the connectors are the physical telecom infrastructure
(cables, routers, etc.)

run-time (C&C viewtype) 
clients are user processes

server are central resources/processes

the connectors are software working over TCP/IP

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 14

architecturally,
the client-server style:

elements
clients, servers, call-return connectors

connector implementations: RPC1976 , RMI1995, SOAP1998...
over TCP/IP1982 or http90’s

topology
star, tiered (hierarchical star)

servers don’t know the identities/number of clients
that will request services

clients know the identity of a server<1998

or can discover it>1998
more in a bit



4/12/2011

8

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 15

relation among views
client-server

Client

Client

Server

C-App

T
C
P
/
I
P

Client
Process

T
C
P
/
I
P

S-App

Server
Process

TCP/IP

module view module viewC&C view

physical

network
data link

transport

physical

network
data link

transport

usual
picture:

allocation viewallocation view

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 16

client-server example
World-Wide Web

hypertext idea first published in 1965
by Ted Nelson as part of the Xanadu project

Tim Berners-Lee, a software engineer at CERN,
saw the potential of this idea for the Internet in 1989

initially rejected, Tim re-circulated his proposal
and writes first WYSIWYG browser in 1990

libWWW supports new protocol http, on top of TCP/IP
hypertext transfer protocol

new format for documents: HTML
HyperText Markup Language

the next killer app became web browsing (aka surfing)



4/12/2011

9

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 17

client-server example
World-Wide Web

browser

T
C
P
/
I
P

Client
Process

T
C
P
/
I
P

WWW server

Server
Process

http

module view module viewC&C view

physical

network
data link

transport

physical

network
data link

transport

libWWWhttp libWWW http

thin clients, called browsers
invoke DNS to resolve URLs
request documents to WWW servers over http
interpret HTML documents

servers
host data in many formats (in addition to HTML)
serve http requests

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 18

role of Internet continued to expand
to business applications

client-server applications have been around
since the early days of the internet

early 80’s: proprietary app protocols over TCP/IP

late 80’s: candidate standards emerge, e.g. CORBA, DCOM... 
with some success, sometimes in specialized domains

in the late 90’s push for business over the Internet 
requirements considerably different from 

original vision of ARPANET => led to TCP/IP

vision at CERN/Berners-Lee => led to http

vision SOA: Internet-wide protocol for e-business

the next killer app is e-services
will web services fill the role of supporting technology?



4/12/2011

10

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 19

Service Oriented Architectures
are evolution of tiered style

complex apps already existed
normally all components hosted/maintained 
by the same organization

SOA adds level of indirection

service 
is a unit of work

several candidate providers
maybe hosted by diff organizations

a provider may be discovered
before deployment, or

dynamically at run time data
store 1

s-app 3

s-
ap

p 
1

client app
(browser)

client app

s-
ap

p 
2

s-
ap

p 
4

s-
ap

p 
5

data
store 2

data
store 3

indirection

indirection

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 20

take 5



4/12/2011

11

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 21

outline

enabler: the Internet

widely-distributed client-server
example: World-Wide Web

the hinge of service-orientation:
service discovery

current implementation of SOA
web services

composition

UDDI, SOAP

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 22

concept of service discovery
develops in ubiquitous computing circa 1998

an application may need to find
some component with certain capabilities

discovery is guided by the capabilities,
not the identity of servers, aka service providers
examples:

find a duplex printer < 100 ft away and with < 2 minute wait

find a weather forecast website with wind details for x ZIP code

find a speech recognizer with > 95% accuracy



4/12/2011

12

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 23

the service becomes more important
than the identity of the server (URI/URL)

business benefits from competition among providers 
that offer similar functions/services

fundamental tenet is shared vocabulary
to describe services
some combination of:

name, aka service type
e.g. printing, weather forecasting, ticket reservation…

semantic description, e.g. ontology

API signature specification: methods, parameters, results

WSDL, etc. with IDL ancestors all the way back to in the 80’s
Interface Description Languages

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 24

discovery mechanisms
use different patterns

directed discovery
clients are configured with a list of address
to go ask for services

client-initiated broadcast (aka aggressive)

clients broadcast service requests on demand

supplier-initiated broadcast (aka lazy)

suppliers broadcast their capabilities periodically

directory-based discovery
suppliers post their capabilities on a directory

clients query the directory



4/12/2011

13

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 25

example: client needs A at t1, and B at t2

directed discovery

discuss:
up-to-date information
scalability/scope
security/trust
applicability/practicality

LAN

s1: A

s2: B
s3: A

s4: C

s5: B

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 26

example: client needs A at t1, and B at t2

client-init broadcast
s1: A

s2: B
s3: A

s4: C

LAN

s5: B

discuss:
up-to-date information
scalability/scope
security/trust
applicability/practicality



4/12/2011

14

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 27

example: client needs A at t1, and B at t2

server-init broadcast
s1: A

s2: B
s3: A

s4: C

LAN

s5: B

discuss:
up-to-date information
scalability/scope
security/trust
applicability/practicality

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 28

example: client needs A at t1, and B at t2

directory-based
s1: A

s2: B
s3: A

s4: C

LAN

s5: B

discuss:
up-to-date information
scalability/scope
security/trust
applicability/practicality
discover directory?



4/12/2011

15

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 29

discovery example
Jini(*)

“discovery” 
service consumers & providers broadcast their existence
in the hope of finding a “lookup service” (directory)

“join”
service provider registers with lookup service(s)

“lookup”
service consumer queries lookup service for service name
service stub is shipped to consumer site
handles remote communication with service via RMI

robustness
service registration is “leased” (expires)

(*) initially by Sun in 1995, now at Apache: River project

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 30

other discovery examples

SLP: Service Location Protocol
language independent

open source

many commercial applications

Salutation
open source

IBM leadership

UPnP: Universal Plug and Play
Microsoft leadership

multicast announcement

many research prototypes



4/12/2011

16

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 31

service discovery
vs. event publish-subscribe

discovery

service providers
register capabilities

service consumers
lookup providers

service requests
directed
(call-return)
from one consumer
to one provider

pub-sub

event consumers
register interest in events

event producers
announce events

events
delivered to all
(maybe zero)
registered consumers

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 32

easy with dynamic discovery

service-orientation

promote scalability
easy to add service consumers/clients

feasible to add replicas of a supplier/server (usual technique)

possible to add new service suppliers

promote robustness
upon failure, consumer may find another service supplier

promote maintainability
assemble new features from available services

deploy and announce enhanced services

S

C1

C2



4/12/2011

17

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 33

service-orientation

promote security
(relative to event systems)

each server may set up encryption and
access control to authorized clients

conceptual integrity
reliability
& performance may be challenges

service consumers depend 
entirely on service providers

S

C1

C2

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 34

outline

enabler: the Internet

widely-distributed client-server
example: World-Wide Web

the hinge of service-orientation:

service discovery

current implementation of SOA

web services
composition

UDDI, SOAP



4/12/2011

18

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 35

web services
come in as an integration technology

focus on bridging existing technologies
it’s about how to access a service

unlike previous middleware,
it is not an implementation infrastructure

raises level of abstraction
avoid proprietary APIs

SOAP originally Simple Object Access Protocol @ MS1998

based on sending XML messages over http

no SOAP API or ORB

wider industrial support than previous middleware
CORBA, Microsoft’s .net, IBM’s Webshpere, Sun’s J2EE

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 36

service description

messages

directory

web services
introduces a set of specifications

data

data types

…and: 

UDDI
universal description, discovery and integration

WSDL
web services description language

SOAP
simple object access protocol /

service-oriented architecture protocol

XML Schema

XML
eXtensible markup language

which are defined on top of:



4/12/2011

19

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 37

multiple proposals for
service composition and coordination

Business Process Execution Language BPEL

Web Services Conversation Language WSCL

Web Services Coordination WS-C

Web Services Transaction WS-Tx

credits:
Frank Leymann,

Kai Guentzel

RPC

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 38

WS descriptions may be posted on UBRs
UDDI Business Registry

UDDI Business Registry

3. UBR assigns a programmatically unique 
identifier to each service provider

Marketplaces, search engines, 
and business apps query the 

registry to discover services at 
other companies

4.

Service Type
Registrations

SW companies, standards 
bodies, and programmers 
populate the registry with

descriptions of different types 
of services

1.

Business
RegistrationsBusinesses 

populate 
the registry with
descriptions of 
the services 
they support

2.

Business uses this 
data to facilitate 
easier integration 

with each other over 
the Web

5.

cr
ed

it
s:

 T
e
vf

ik
 B

ul
ta

n



4/12/2011

20

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 39

foundation of SOAP
XML-RPC in Microsoft 1998 -> W3C 2003-7

works on top of HTTP/HTTPS
or SMTP (less popular)

critics of this decision point out that HTTP
was not designed for calling services back and forth

e.g. a SOAP operation implemented on top of HTTP get
may not be idempotent as the semantics of get implies

supporters point out that it’s normal to tunnel 
protocols on top of each other
and that it saves a lot of work
(e.g. dealing with firewalls – a challenge for DCOM)

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 40

SOAP is…

stateless, one-way message exchange
applications can create more complex interaction 
patterns (request/response, request/multiple responses, etc.) 

combining one-way exchanges with
features provided by the underlying protocol 

application-specific logic 

silent on the semantics of any data it conveys

but

describes the actions required of
a SOAP node upon receiving a SOAP message



4/12/2011

21

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 41

structure of a SOAP message

optional
extension mechanism
e.g., directives on how to 
process the message

application payload

example: travel reservation

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 42

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>

<t:transaction xmlns:t="http://thirdparty.example.org/transaction"
env:encodingStyle="http://example.com/encoding"
env:mustUnderstand="true" >5</t:transaction>

</env:Header>
<env:Body>

<m:chargeReservation
env:encodingStyle="http://www.w3.org/2003/05/soap-encoding" 
xmlns:m="http://travelcompany.example.org/"> 

<m:reservation xmlns:m="http://travelcompany.example.org/reservation"> 
<m:code>FT35ZBQ</m:code> 

</m:reservation> 
<o:creditCard xmlns:o="http://mycompany.example.com/financial"> 

<n:name xmlns:n="http://mycompany.example.com/employees"> 
Åke Jógvan Øyvind </n:name> 

<o:number>123456789099999</o:number> 
<o:expiration>2005-02</o:expiration> 

</o:creditCard> 
</m:chargeReservation>

</env:Body>
</env:Envelope> example

call-return communication in SOAP



4/12/2011

22

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 43

many implementations of

SOAP today

Apache SOAP/Axis – Java/C++

PocketSOAP – COM/C++

SOAP::Lite - Perl

PHP SOAP - PHP

gSOAP – C++

SOAP4R - Ruby

Python web services project – Python
and these are only the open source ones…

rely on a common understanding of the
structure and meaning of the exchanged messages

SWE 727 – Software Architecture © Sousa 2011 Lecture 9 – SOA – 44

in summary

SOA combines
distributed call-return connectors

service discovery mechanisms

web services propose a set of
technologies/protocols to implement SOA

currently does not support dynamic discovery

dynamic service discovery
plays a key role in achieving QAs

scalability

robustness

maintainability these are general considerations:
remember that a real analysis requires QA scenarios 


