
4/26/2011

1

Software Architecture

Lecture 12
Course Summary

João Pedro Sousa

George Mason University

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 2

outline

SA in context
connectors

C&C styles
data flow

call-return

events

peers

service-oriented

Quality Attributes
scenarios

examples

analysis & adaptation



4/26/2011

2

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 3

2000

1980

1950

1970

1990

1960

Programming-
any-which-way

Programming-
in-the-small

Programming-
in-the-large

Programming-
in-the-WWW

Software architecture

NATO SE conference

Programming-in-the-large

Software development environments

Subroutines

Separate compilation

Heavily distributed systems
Integrated product lines

Component-based systems

Information hiding

Inheritance
Abstract data types objects

Packages -> Product Lines

2010

Programming-
in-the-

physical-world

Self-aware and adaptive systems
Service-oriented systems

software engineering

adapted from Mary Shaw

computing embedded on everyday objects
computation in mobile phones

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 4

research questions
areas addressed by SA

To-find - is there an X, and what is it?

To-show - is X always true of Y ?

Feasibility - is it possible to accomplish X at all?

Method - how do I accomplish X?

Means - what mechanism will do X? how can I automate X?

Characterization - what are important characteristics of X?
what’s X like? what, exactly, do we mean by X ?

Classification - what are the varieties of X?
and how are they related?

Prediction - given X, what will Y be?

Discrimination - how do I decide whether X or Y?



4/26/2011

3

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 5SWE 727 – Software Architecture © Sousa 2011 Lecture 1 – Intro – 5

one system, many views

a view is a representation 
of a set of system 
elements and the 
relations among them

not all system elements

a view selects
element types and
relation types
of interest,
and shows only those

all information

some information

why?

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 6

viewtypes
determine the kinds of things a view talks about

three primary viewtypes: module, C&C, allocation

each viewtype has many styles
module: decomposition, generalization, layered, …

C&C: pipe & filter, client-server, pub-sub…

allocation: deployment, work assignment…

views help manage the complexity
of describing an architecture



4/26/2011

4

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 7

C&C
contributes notion of connector

http C&C
view

componentcomponent

app

module
view

libWWW

app

module
view

libWWW
TCP/IP

app

module
view

libWWW

physical

network
data link

transport

app

module
view

libWWW

physical

network
data link

transportrouting

DNS

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 8

C&C
many styles occur in practice

data flow
batch sequential
dataflow network (pipe & filter)

acyclic, fan-out, pipeline, Unix
closed loop control

call-return
main program/subroutines
information hiding - objects
stateless client-server
SOA

interacting processes
communicating peers
event systems

implicit invocation
publish-subscribe

data-oriented repository
transactional databases

stateful client-server
blackboard
modern compiler

data-sharing
compound documents
hypertext
Fortran COMMON
LW processes

hierarchical
tiers

interpreter
N-tiered client-server



4/26/2011

5

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 9

styles are rarely usable in simple pure form 

one technique is to specialize styles
styles become more constrained, domain-specific

trade generality (expressiveness)
for power (analytic capability)

we saw this in the examples of data flow styles

data flow

pipe &
filter

batch
sequential

process
control

Unix
pipes

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 10

select a data flow style when:

task is dominated by the availability of data

data can be moved predictably
from process to process

pipe-and-filter architectures are good choices
for many data flow applications because 
they permit reuse and reconfiguration of filters

generally easy to reason about

reduce system testing

may allow incremental AND parallel processing

there may be a performance penalty when 
implementing data flow styles over a single process



4/26/2011

6

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 11

select a call-return style when:

task is dominated by
single thread of control

caller knows and cares
about the identity of server

low volume of data is transferred 

in distributed systems:

it is fine to block the caller waiting for a reply

the server is ready to process each request

components and network are mostly reliable

RPC/RMI

C S
call

return

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 12

interacting processes

family tree

communicating peers
asynchronous messages aka explicit events
explicit wrt identifying the recipient

event systems aka implicit events
events delivered to all interested components in some order

publish aka broadcast

publish-subscribe
interested components subscribe to events
interested components receive asynchronous message

implicit invocation
interested components register a callback method
upon the event, the method is invoked (call-return)



4/26/2011

7

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 13

publish-subscribe & implicit invocation

rely on event infrastructure

component X component Y component Z

event bus

identity of event recipients is unknown to senders

order of event delivery is unknown
different event buses make different guaranties
or no guaranties about ordering

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 14

many strategies for the

event bus connector

component X component Y component Z

event bus

push / pull

component / bus event filtering

call-return / asynchronous messages

local / remote comms



4/26/2011

8

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 15

event systems
easy to modify, hard to test

QAs promoted
due to decoupling and encapsulation

QAs inhibited

X Y Z

event bus

reuse

modifiability

scalability

performance: hard to guarantee response time

testability: hard to test and reason about correctness

availability: possible to miss events (no recipients)

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 16

communicating peers
middle ground between call-return & events

component Z

component Y
component X

msg to Z

msg to X

msg to Y

msg to Y msg to Z

call-return peers events

identity of receiver is known yes yes no

can prescribe/predict order yes yes no

communication synchronous asynch asynch

restrictions on topology hierarchical none none



4/26/2011

9

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 17

peer systems
responsive & robust but costly

QAs promoted
conceptual integrity

responsiveness

robustness

scalability

QAs inhibited
development costs

Y
X

Z

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 18

Service Oriented Architectures
are evolution of tiered style

complex apps already existed
normally all components hosted/maintained 
by the same organization

SOA adds level of indirection

service 
is a unit of work

several candidate providers
maybe hosted by diff organizations

a provider may be discovered
before deployment, or

dynamically at run time data
store 1

s-app 3

s-
ap

p 
1

client app
(browser)

client app

s-
ap

p 
2

s-
ap

p 
4

s-
ap

p 
5

data
store 2

data
store 3

indirection

indirection



4/26/2011

10

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 19

provider discovery
known as service discovery

different strategies for dynamic discovery
directed

client-initiated broadcast

server-initiated broadcast

directory-based

discovery plays a key role in achieving QAs
maintainability

availability (dynamic discovery)

robustness, i.e. QoS (dynamic discovery)

web services propose a set of
technologies/protocols to implement SOA

currently does not support dynamic discovery

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 20

service discovery
vs. event publish-subscribe

discovery

broadcast or directory

service providers
announce/register capabilities

service consumers
lookup providers

service requests
directed
(call-return)
from one consumer
to one provider

pub-sub

broadcast or event bus

event producers
determine types of events

event consumers
register interest in events

event producers
announce events

events
delivered to all
(maybe zero)
registered consumers



4/26/2011

11

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 21

quality is linked to function
non-functional reqs is a misnomer

architectural drivers shape the architecture
high-level functional requirements

constraints

quality attributes (QAs)

QA names are vague:
need to characterize QAs using scenarios

QAW is a method to elicit
and prioritize QA scenarios

can’t have it all:
architectural design is about balancing tradeoffs

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 22

analysis enables you to
tune the tradeoffs to stakeholders goals

early elicitation of the system’s key characteristics

multiple analysis techniques complement each other

how much analysis?
key aspect of an architect’s job

too much will expend resources unnecessarily

too few risk allowing bad decisions into the final system

wrong kinds of analyses will have both drawbacks

the benefits typically far outweigh the costs



4/26/2011

12

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 23

automated analysis
key part of self-adaptation

traditional: manual changes

emerging: automated changes
aka self-adaptation

feedback control loop
automated discovery

automated QA analyses

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 24

example: SMS Center
Short Message Service

system built by LogicaCMG (Netherlands)
in the early 90’s

when the SMS market boomed in late 90’s

LogicaCMG dominated the market of SMS backend 
(mobile operators subcontracted them)

why?

architectural decisions
based on QA analysis

Poort et al. WICSA 2005



4/26/2011

13

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 25

PF

SF

example: SMS Center
Short Message Service

1. pass messages between mobile telephones in a GSM network

2. pass messages from other systems outside of the GSM network

3. temporarily store messages that cannot be immediately delivered

1. keep record of every message for billing purposes

2. interface to monitor and operate the system

QA

1. performance of message throughput

2. availability of the messaging service

3. reliability of message storage

4. timeliness in responses to external systems

5. extensibility on message originators

6. scalability on the number of messages

requirements

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 26

PF

SF

example: SMS Center
Short Message Service

1. pass messages between mobile telephones in a GSM network

2. pass messages from other systems outside of the GSM network

3. temporarily store messages that cannot be immediately delivered

1. keep record of every message for billing purposes
2. interface to monitor and operate the system

QA

1. performance of message throughput
2. availability of the messaging service

3. reliability of message storage

4. timeliness in responses to external systems

5. extensibility on message originators

6. scalability on the number of messages

requirements

RDBMS
 state of the art technology
 standard query language
 high maintainability of code
 common best practice

proprietary OpenVMS file I/O
prototype of QA scenarios



4/26/2011

14

SWE 727 – Software Architecture © Sousa 2011 Lecture 12 – Course Summary – 27

lessons learned

beware of fashion in system design

1. enumerate all architectural alternatives

2. evaluate each alternative
relative to the architectural drivers

high-level functional requirements

constraints

quality attributes (QAs)


