A Middleware Supporting Adaptive and Location-aware
Mobile Collaboration

Marcelo Malcher, Juliana Aquino, Hubert Fonseca,

Lincoln David, Allan Valeriano, Markus Endler

Laboratory for Advanced Collaboration (LAC)
Pontificia Universidade Catdlica of Rio de Janeiro, Brazil
{marcelom, jaquino, hfonseca, Insilva, avaleriano, endler}@inf.puc-rio.br

ABSTRACT

Mobile Applications with location awareness allow mobile
users to communicate and share different sorts of location-
based information among themselves, such as the current
position of other users or geo-referenced data. Although
many of such mobile collaboration applications potentially
share a good amount of functionality, most of them are
developed from scratch, are monolithic and are tailored to
specific mobile platforms,, which limit their applicability.
This paper presents a client middleware architecture which
supports dynamic deployment and composition of
components for context- and location awareness, and
common collaboration services. We also present some
prototype map-based and location-aware applications
which we have implemented on the top of our middieware
services.

Keywords
Mobile Computing, Context-awareness, Location-beSedices,
Middleware, Dynamic Adaptation, Collaboration, Aoiit.

1. INTRODUCTION
Mobile and location-aware collaboration allows
geographically distributed and mobile users to

communicate and share different sorts of locatiasedl

During the last two yeatswe have been working on a
client middleware architecture that supports the
development of mobile and location-aware collabeeat
applications which features: (i) capability of dyma
deployment of new components and switching between
executing components, both at the middleware #med t
application-layer (ii) extensible context-awarene¢s)
uniform interface for sharing of data and asyncbren
communication (among local and remote componeats),

(iv) support for the combination of basic collaktoya
services. As a concrete result of this projectdeeigned
and implemented basic middleware services that give
support for the above mentioned capabilities anfibva
prototypes of mobile collaboration application ote for

the Android platform [1].

This paper is organized as follows. Section 2 surizes
related work on middleware for mobile collaboration
Section 3 shows the proposed client architecamd
summarizes its main elements. Then, Section 4 ibescin
more detail the main middleware elements that weeha
implemented. In Section 5 we summarize some of the
location-based collaboration prototypes that weettgped

so far, and in section 6 we present our concludéngarks.

information among themselves, such as geo-refedence 2 RELATED WORK

annotations or other user's current positions. Algh
many of such applications potentially share a gaaunt

of functionality related to context-/location-awaess,
communication and sharing mechanisms, most of them
developed from scratch, are monolithic and include
platform dependent-code , which limits their appliiity.
The use of middleware platforms is a means for
applications to become less dependent of the sgige of
mobile platforms and device resources/sensorshbanodme
less complex due to the adoption of high-level vgafe
structuring and management mechanisms, as webuser
of common modules. Hence, major considerationsirdyiv
the development of middleware platforms for mobile
collaboration are built-in support for flexible depment
and composition of services, context-awarenessjbfie
and asynchronous service interaction model, digioh
transparency for data sharing and event distributand
provisioning of map-based and location-aware sesvic

Some work have also built middleware for mobile
computing with location-awareness, but none of them
simultaneously features the capability of dynamic
deployment and replacement of components, context-
awareness, uniform local and remote asynchronous
interactions, and support for composition of common
collaboration services. Nevertheless, following systems
share some similarities with our work.

The ContextPhone [2] supports the development of
context-aware applications for smart phones. It is
composed of interconnected modules which provideta
of open-source libraries and components to be égdan
mobile phones. The main modules are the sensor leodu
which acquires raw context data from different sesr

1 Work done in the scope of the Mobilis projectzaperation
with TU Dresden, Germany, and the Federal Universit
Minas Gerais, Brazil; BMBF/CNPq Grant nr. 49081 0@

like positioning information from a GPS sensor, dhd
communication module, which implements connectivity
and communication with remote services throughedsffit

protocols, such as GPRS, Bluetooth, SMS and MMS.

However, this platform only provides very simplerfs of
context-awareness and lacks support for
adaptation of the middleware and applications.

Preuveneers and Barbers [3] describe a resourcesamna
context-driven middleware for mobile devices, whiish
component based and self-adaptive. It follows arey
approach where a run-time layer is responsiblerfodule,
component and connectivity management and adaptatio
control, whereas the context layer is responsitedntext
retrieval, storage and manipulation of context datksing
their middleware they have implemented a conferanci
client comprised of a multimedia, a Jabber and a&bWe
server components and evaluated the energy consumpt
with and without dynamic adaptation. Despite sharin
similar goals and architectural elements as olis,work

is less focused on collaboration components arallatks

a unified interface for local/remote asynchronous
communication.

3. PROPOSED CLIENT ARCHITECTURE

Our client architecture is composed of an applicatayer
and a middleware layer, as shown in Figure 1. Im ou
approach, a mobile client application (for locatmmtext-
aware collaboration) is built out of generic, shéeaand

dynamically composable components (represented as

Comp_X in Figurel), each of which implementing an
elementary communication or data sharing functional
(e.g. instant messaging, a map annotation sergicg, The
composition, execution, dynamic adaptation and-atson

of these components is supported by the followivg f
basic middleware services.

Component Manager: is responsible for discovery,
dynamic deployment and binding of components used b
applications. It also supports queries about@thgonents
currently deployed at the device, and their currsiates
(e.g. loaded, deployed, active/inactive).

Adaptation Manager: is responsible for triggering
dynamic adaptations regarding components of the
applications, whenever required. For this purpddestens

to notifications of context changes, monitors therent
configuration of components and requests basicabipes
on components through the Component Manager.

Context Manager: supports the discovery, deployment
and execution of any number of Context Provideasheof
which collects, processes or distributes contexa da.g.
resource states or events, and location or serga) ffom
the device’s mobile platform.

Shared Data Manager: provides a uniform API for

dynamic

the publication operation determines if matchmakivith
subscriptions and notifications will happen onbylbcal
subscribers, or also remote ones. For the |ati2k) Eelies
on MD-ECI.

MD-ECI: is a SIP-based Publish-Subscribe system [4] that
supports remote distribution of notifications otbfications

— which may be data objects or events - among mobil
devices. The main difference between an event adata
object is that the latter is kept in persistentage at the
MD-ECI broker for access by late-joiners, i.e. sulpgions
made after the object’s publication.

Application_2

np_D \
1 ' Comp B

Comp_IC

Application_1

=] Cor
Comp A —

Adaptation
Manager

Component
Manager

b
«_| Shared Data |.—01p
Manager i
Android ‘
Mobile Client

Context
Manager

Network
Infrastructure

«== context notifications
«=== context publications & notifications

«— application data publications & notifications
—— service invocation

Figure 1: Client Architecture and M D-ECI

We chose Android as the primary mobile platforngear
for our middleware, because it supports Java progiag
(execution is on the Dalvik VM), defines a Service
Oriented Architecture and provides many powerfullAP
and libraries for location-awareness, GUI developinasad
access to Google Maps. The Android programming tnode
[1] defines four essential types of elements thakenup a
mobile application: services, activities, broadoasteivers
and content providers. Although most of our current
middleware implementation depends on Android fesstur
all its constituent services can, in principle pgogted to any
other service oriented platform, such as OSGi..

4. IMPLEMENTED MIDDLEWARE
SERVICES

In this section we will discuss in more detail thasic
services of our middleware. In addition, we alswaleped
some application-level, generic components for heobi
communication and location-aware collaboration: a
component for (parameterized) proximity detectioh o
mobile devices; a component for sharing geo-refazdn
data objects, and a component for connectivityrawa
instant communication which is capable of buffering

asynchronous communication among any componentibase gythound messages when it detects a disconneetiah,

on a Publish-Subscribe mechanism. A single paranatte

automatically switching from the SDM to SMS properties of the published object/event. In otdedeliver
communication mode. data/events to subscribers on other devices, SDM
41 Kaluana implements also a MD-ECI client.

Kaluana [5] is the tier of our middleware that ieplents 4.3 Context Management Service

the Component and Adaptation Managers. It defines aThe Context Management Service, or CMS, is an Aiddro
component model on the top of Android’s service- service that manages the gathering, processing and
orientation framework. In this model, each companen distribution of any type of context data. WithiliS, each
defines a set of provided services, a set of usedces, type of context data/event ke facto obtained or produced
and the names of other components it depends @, Al by a specificContext Provider. Each of such Context
any Android service or activity is component-basetl,has Provider (CP) is a component that the CMS can gepial

a descriptor which defines the set of servicesduires for activate/deactivate independently, depending ontivene
execution. When an activity or service is startée there is some application component interested hin t
Component Manager uses the Android Framework to corresponding context type. CMS also supports the
search for the required services. If it finds aalbcloaded discovery and dynamic download of new Context Rters
component that implements this service, it simgitivates from a remote Repository of CPs.

the component. Otherwise, it may download and deplo ~pms uses SDM to deliver the requested context olaject
suitable component from a remote component repgsito 4 the subscribers, regardless if they are locateanote.
The Adaptation Manager is responsible for Context subscribers may be application specific
determining if a component should be added toyatsd, components or other Context Providers, such asethos
deactivated of replaced from the device, and féectiag responsible for transforming or aggregating lovesrel
the candidate components for such adaptation. Thiscontext data and producing high-level context infation.
selection is based on the current system contexuger CMS also provides clas€ontextConsumer, aimed at
location) and according to amexecution pre-requisite hiding from the application the code necessarynteract
associated with each component. For example, when t with SDM and CMS, and thus offering a much simpler
device switches from a GRPS to a WiFi connectidna(o interface, referring only to the specific contextormation
specific and trusted SSID), a component for WiFISRS needed.
based (indoor) and site-specific location servicayrbe

deployed and activated at the device. In orderctoadly (Q/Application (2] SDM

perform such a dynamic adaptation, the Adaptation =

Manager issues basic activation and binding requesthe {
Component Manager, which does the activationsrand "L ContextConsumer ‘ <~

bindings and then updates its registry. /\
4.2 Shared Data M anager (7] (5]

The Shared Data Manager, or SDM, is an Androidiserv v = .
which implements a publish-subscribe mechanism kwisic ' CMS | Context Provider
used by application and middleware services alige t (3] Repository
exchange data and events locally, i.e. for asymdus ‘_,.,—--—-QH-. / <= ;
interaction with components deployed on the samcde n—‘-/@ m
or remotely, with components and applications etiagu G / . aul
on remote devices.

SDM can be used for sharing almost any type of Figure 2: CM Sinteractions upon new context subscription.

data. For publishing a data or event, an applinatio
middleware service only needs to inform the datxiés
subject. Optionally, it may inform other properties
(attributes), which are used in subscription exgies for
filtering. In case of a data publication, it showdd a
serialized object representing the data itself, a.cgeo-
referenced text, video-clip or audio recording. rEceive
updates on a specific subject, an application aidieivare
component must subscribe with the SDM, registerng
listener and optionally informing also an expressio
referring to the data/event properties. Whenevenea
publication on this subject happens, the SDM wallify all
subscribers of this subject whose expressions mtiteh

Figure 2 illustrates the basic interactions between
an application, the CMS and SDM: @ontextConsumer of
an application issues a subscription at SDM for esom
specific type of context information, e.g. Battégyel, and
notifies CMS (steps 1+2); Alternatively, the
ContextConsumer may also make a synchronous request to
obtain the current state of a specific contexet{gtep 2).
In either case, CMS searches for any locally degoy
Context Provider that can produce the requestedexbn
information. If none can be found locally, CMS s#ws,
downloads the corresponding CP from the remote
repository and activates it (step 3). Once actiatiee CP
polls or invokes methods at the Android APl of the

corresponding Resource Manager, and delivers tliedpo
data to CMS as a ContextinformationObject (stepgCMS
adds some data to this object (e.g. the devicelD
timestamp), and publishes it through SDM (step Tjis
object is then delivered to alfontextConsumers with
matching subscriptions (step 6), which in turn pass the
applications for specific handling (step 7). Cuthgnwe
are setting up a library of Context Providers fo& that
includes following types of context: Geographicdtion
(GPS), Time, Battery level, Type of wireless cortiver
WiFi RF signal strength, Accelerometer, etc.

5. LOCATION-BASED COLLABORATION
APPLICATIONS
Using our middleware and application-level compdsgen

we implemented some prototype applications for tioca
based mobile collaboration, some of which are Hevis:

an

Geo-tagging is an application similar to Google’s Latitude
[6] which allows mobile users to visualize (on ttigital
map) its own and other user’s position in realetimhile
they move, and to create - and also instantly skatie
other users - geo-referenced Points of InteresigR@r
tags, e.g. for city landmarks or attractions. Gaggtng
uses a component for sharing geo-referenced obguls
events, which in turn uses SDM and MD-ECI to reryote
distribute user and tag attributes associated VB#S
coordinates retrieved by the Context Provider
GPSLocationCP within CMS. But, whenever the user’s
device is unable to retrieve its current GPS pusjtithis
will be detected by théositioningAvailabilityCP in
CMS, and will cause the Adaptation Manager to desaie
the application component of Geo-tagging respoasiot
the creation of new tags .

TrackService is used for creating Off-road/Trekking
routes/tracks, grading track sections, and shatimg
information (i.e. the track log) with other mobilsers. The
mobile user is able to log his/her route as a secpief
GPS coordinates of his/her mobile device. Figush®ws
three possible screens of TrackService. While ther is
walking/driving along a route, he/she is able taleate the
route according to the difficulty or danger levgiying a
grade from 1 to 10 for each route section (cf. Fetu
leftmost screen). As he/she gives grades to th&éosscof
the track, a different color is used to represeathe
difficulty/danger level, ranging from green (e.@qasg) to
yellow, and then to purple (e.g. very difficult)h& user can
also choose if, he/she wants to share his tradck ethers
(cf. rightmost screen), and the options are: inl-tieze,
after saving it on the device, or no sharing..

Other prototypes developed includeGeoCast, an

application where messages can be sent to anytaegis
mobile user whenever he/she enters or leaves aimaayb
geographic region (marked as a polygon on the map),

gets closer, or farther away, from a specific poarked
on the map;

Bus4Blinds is an application that notifies a person with
serious visual impairment waiting at a bus stop wadus
of a selected line is approaching the bus stop evtier user
is waiting. The notification is symmetric, meanitige bus
driver is also notified of the presence of the bjiretson at
the stop.

3 B 544 P

Miakifis Ry cation PeGiaty pe

Alacka Expeditian

This tracklog miarks all points T've
visited on my exgedition to Alaska

BB

Mobilis Application Prototype

Here | can write a comment

Figure 3: Screenshots of TrackService
6. CONCLUSIONS

So far, our effort was mainly focused on the depeient

of basic middleware mechanisms and services, ssch a
Kaluana, SDM and CMS. However, there are still many
things to be improved, specially with regard to idien
making, selection of components and safe execubibn
dynamic adaptations by the Adaptation/Component
Managers of Kaluana. We are also aware of the lsitigfa
problems of our remote context distribution apptoaad
aim at developing a context sharing architectageld on
federated MD-ECI brokers. In parallel, we plan also
develop other generic, shareable components tsébe loy
such mobile collaboration applications.

7. REFERENCES

[1] Google Android (2009) frorhttp://www.android.com/

[2] Raento, M., Oulasvirta, A., Petit, R., & Toivem, H. (2005).
ContextPhone: A prototyping platform for contextea® mobile
applications. IEEE Pervasive Computing, 4(2), 51-59

[3] Preuveneers, D., & Berbers, Y. (200Towards context-
aware and resource-driven self-adaptation for mobile handheld
applications. Proceedings of the 2007 ACM symposium on
Applied computing.

[4] MD-ECI (2009)
rio.br/moca/mdeci/mdeci.htm
[5] Fonseca, H. (2009) A Component-based middlewar
Dynamic Adaptation on the Android Platform, M.ScheEis,
Depratment of Informatics, PUC-Rio, Brazil.

[6] Google (2009). Latitude Apps ,
http://lwww.google.com/latitude/app

from http://www.lac.inf.puc-

from

