CS 310: Order Notation (aka Big-O and friends)

Chris Kauffman

Week 1-2
Logistics

At Home

- Read Weiss Ch 1-4: Java Review
- Read Weiss Ch 5: Big-O
- Get your java environment set up
- Compile/Run code for Max Subarray problem form first lecture

Goals

- Finish up Course Mechanics
- Basic understanding of Big O and friends
How Fast/Big?

Algorithmic time/space complexity depend on problem size

- Often have some input parameter like n or N or (M, N) which indicates problem size
- Talk about time and space complexity as functions of those parameters
- **Example:** Two algorithms to find the maximum element for an input array of size N,
 - One algorithm finds the maximum element using $5 \times N + 3$ operations
 - Another finds the max element in $N^2 + 2N + 7$ operations.
- **Example:** Two algorithms solve the Max Sub Array problem for an input array of size N,
 - Using 7 units of memory in addition to the input array
 - Using an additional $9 + (N \times (N + 1))/2$ units of memory
- **Big-O notation:** bounding how fast functions grow based on input
Not *The* Big O

Just Big O

\(T(n) \) is \(O(F(n)) \) if there are positive constants \(c \) and \(n_0 \) such that

- When \(n \geq n_0 \)
- \(T(n) \leq cF(n) \)

Bottom line:

- If \(T(n) \) is \(O(F(n)) \)
- Then \(F(n) \) grows as fast or faster than \(T(n) \)
Show It

Show

\[f(n) = 2n^2 + 3n + 2 \text{ is } O(n^3) \]

- Pick \(c = 0.5 \) and \(n_0 = 6 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
<th>(0.5n^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
<td>108</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>171</td>
</tr>
</tbody>
</table>

How about the opposite? Show

\[g(n) = n^3 \text{ is } O(2n^2 + 3n + 2) \]
Basic Rules

- Constant additions disappear
 - \(N + 5 \) is \(O(N) \)

- Constant multiples disappear
 - \(0.5N + 2N + 7 \) is \(O(N) \)

- Non-constant multiples multiply:
 - Doing a constant operation \(2N \) times is \(O(N) \)
 - Doing a \(O(N) \) operation \(N/2 \) times is \(O(N^2) \)
 - Need space for half an array with \(N \) elements is \(O(N) \) space overhead

- Function calls are not free (including library calls)
 - Call a function which performs 10 operations is \(O(1) \)
 - Call a function which performs \(N/3 \) operations is \(O(N) \)
 - Call a function which copies object of size \(N \) takes \(O(N) \) time and uses \(O(N) \) space
Bounding Functions

- **Big O**: Upper bounded by...
 - $2n^2 + 3n + 2$ is $O(n^3)$ and $O(2^n)$ and $O(n^2)$
- **Big Omega**: Lower bounded by...
 - $2n^2 + 3n + 2$ is $\Omega(n)$ and $\Omega(\log(n))$ and $\Omega(n^2)$
- **Big Theta**: Upper and Lower bounded by
 - $2n^2 + 3n + 2$ is $\Theta(n^2)$
- **Little O**: Upper bounded by but not lower bounded by...
 - $2n^2 + 3n + 2$ is $o(n^3)$
Growth Ordering of Some Functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Lead Term</th>
<th>Big-Oh</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>$1, 5, c$</td>
<td>$O(1)$</td>
<td>$2.5, 85, 2c$</td>
</tr>
<tr>
<td>Log-Log</td>
<td>$\log(\log(n))$</td>
<td>$O(\log \log n)$</td>
<td>$10 + (\log \log n + 5)$</td>
</tr>
<tr>
<td>Log</td>
<td>$\log(n)$</td>
<td>$O(\log(n))$</td>
<td>$5 \log n + 2 \log(n^2)$</td>
</tr>
<tr>
<td>Linear</td>
<td>n</td>
<td>$O(n)$</td>
<td>$2.4n + 10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$10n + \log(n)$</td>
</tr>
<tr>
<td>N-log-N</td>
<td>$n \log n$</td>
<td>$O(n \log n)$</td>
<td>$3.5n \log n + 10n + 8$</td>
</tr>
<tr>
<td>Super-linear</td>
<td>$n^{1.x}$</td>
<td>$O(n^{1.x})$</td>
<td>$2n^{1.2} + 3n \log n - n + 2$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>n^2</td>
<td>$O(n^2)$</td>
<td>$0.5n^2 + 7n + 4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$n^2 + n \log n$</td>
</tr>
<tr>
<td>Cubic</td>
<td>n^3</td>
<td>$O(n^3)$</td>
<td>$0.1n^3 + 8n^{1.5} + \log(n)$</td>
</tr>
<tr>
<td>Exponential</td>
<td>a^n</td>
<td>$O(2^n)$</td>
<td>$8(2^n) - n + 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(10^n)$</td>
<td>$100n^{500} + 2 + 10^n$</td>
</tr>
<tr>
<td>Factorial</td>
<td>$n!$</td>
<td>$O(n!)$</td>
<td>$0.25n! + 10n^{100} + 2n^2$</td>
</tr>
</tbody>
</table>
Constant Time Operations

The following take $O(1)$ Time (Constant Time)

- Arithmetic operations (add, subtract, divide, modulo)
 - Integer ops usually practically faster than floating point
- Accessing a stack variable
- Accessing a field of an object
- Accessing a single element of an array
- Doing a primitive comparison (equals, less than, greater than)
- Calling a function/method but NOT waiting for it to finish

The following take more than $O(1)$ time (how much more)?

- Raising an arbitrary number to arbitrary power
- Allocating an array
- Checking if two Strings are equal
- Determining if an array or ArrayList contains() an object
Common Patterns

- **Adjacent Loops Additive**: $2 \times n$ is $O(n)$
  ```java
  for(int i=0; i<N; i++){
    blah blah blah;
  }
  for(int j=0; j<N; j++){
    yakkety yack;
  }
  ```

- **Nested Loops Multiplicative** usually polynomial
 - 1 loop, $O(n)$
 - 2 loops, $O(n^2)$
 - 3 loops, $O(n^3)$

- **Repeated halving** usually involves a logarithm
 - Binary search is $O(\log n)$
 - Fastest sorting algorithms are $O(n \log n)$
 - Proofs are harder, require solving recurrence relations

Lots of special cases so be careful
Practice

Two functions to reverse an array. Discuss
- Big-O estimates of runtime of both
- Big-O estimates of memory overhead of both
 - Memory overhead is the amount of memory in addition to the input required to complete the method
- Which is practically better?
- What are the exact operation counts for each method?

reverseE

```java
public static void reverseE(Integer a[]){
    int n = a.length;
    Integer b[] = new Integer[n];
    for(int i=0; i<n; i++){
        b[i] = a[n-1-i];
    }
    for(int i=0; i<n; i++){
        a[i] = b[i];
    }
}
```

reversel

```java
public static void reverseI(Integer a[]){
    int n = a.length;
    for(int i=0; i<n/2; i++){
        int tmp = a[i];
        a[i] = a[n-1-i];
        a[n-1-i] = tmp;
    }
    return;
}
```
public static String toString(String[] arr) {
 String result = "";
 for (String s : arr) {
 result = result + s + " ";
 }
 return result;
}

- Give a Big-O estimate for the runtime
- Give a Big-O estimate for the memory overhead
Multiple Input Size

What if "size" has two parameters?

- $m \times n$ matrix
- Graph with m vertices and n edges
- Network with m computers and n cables between them

Exercise: Sum of a 2D Array

Give the runtime complexity of the following method.

```java
public int sum2D(int [][] A){
    int M = A.length;
    int N = A[0].length;
    int sum = 0;
    for(int i=0; i<M; i++){
        for(int j=0; j<N; j++){
            sum += A[i][j];
        }
    }
    return sum;
}
```
What if I have no idea?

Analyzing a complex algorithm is hard. More in CS 483.

- Most analyses in here will be straight-forward
- Mostly use the common patterns

If you haven’t got a clue looking at the code, *run it and check*

- This will give you a much better sense
Observed Runtimes of Maximum Subarray

<table>
<thead>
<tr>
<th>N</th>
<th>$O(N^3)$</th>
<th>$O(N^2)$</th>
<th>$O(N \log N)$</th>
<th>$O(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000001</td>
<td>0.000000</td>
<td>0.000001</td>
<td>0.000000</td>
</tr>
<tr>
<td>100</td>
<td>0.000288</td>
<td>0.000019</td>
<td>0.000014</td>
<td>0.000005</td>
</tr>
<tr>
<td>1,000</td>
<td>0.223111</td>
<td>0.001630</td>
<td>0.000154</td>
<td>0.000053</td>
</tr>
<tr>
<td>10,000</td>
<td>218</td>
<td>0.133064</td>
<td>0.001630</td>
<td>0.000533</td>
</tr>
<tr>
<td>100,000</td>
<td>NA</td>
<td>13.17</td>
<td>0.017467</td>
<td>0.005571</td>
</tr>
<tr>
<td>1,000,000</td>
<td>NA</td>
<td>NA</td>
<td>0.185363</td>
<td>0.056338</td>
</tr>
</tbody>
</table>

Figure 5.10 Observed running times (in seconds) for various maximum contiguous subsequence sum algorithms.
Idealized Functions

Smallish Inputs

Larger Inputs
Actual Data for Max-Subarray

- Where did this data come from?
- Does this plot confirm our analysis?
- How would we check?
Playing with MaxSumTestBetter.java

Let's generate part of the data, demo in w01-1-code/MaxSumTestBetter.java

- **Edit**: Running a main, $n=100$ to $100,000$, multiply by 10
- Try in DrJava
- Demo interactive loop
Analysis

Linear

```r
> summary(linmod)

Coefficients:

|            | Estim | Pr(>|t|) |
|------------|-------|----------|
| (Intercept)| 7.26  | <2e-16 ***|
| poly(N, 1) | 16.25 | <2e-16 ***|
| poly(N, 2) | -0.34 | 0.287    |
| poly(N, 3) | -0.01 | 0.962    |
```

Quadratic

```r
> summary(quadmod)

Coefficients:

|            | Estim    | Pr(>|t|) |
|------------|----------|----------|
| (Intercept)| 83.89    | <2e-16 ***|
| poly(N, 1) | 278.16   | <2e-16 ***|
| poly(N, 2) | 54.75    | <2e-16 ***|
| poly(N, 3) | -0.24    | 0.562    |
```

Why these coefficients?
Take-Home

Today
Order Analysis gives big picture of runtime and memory complexity of algorithms
- Different functions grow at different rates
- Big O upper bounds
- Big Theta tightly bounds
- Standard tricks to roughly figure out complexity of functions

Next Time
- What are the limitations of Big-O?
- Reading: finish Ch 5, Ch 15 on ArrayList
- Suggested practice: Exercises 5.39 and 5.44 which explore string concatenation, why obvious approach is slow for lots of strings, alternatives