Recall Tree Basics

- What distinguishes a tree from a linked list? What gets stored at each tree Node?
- What technique becomes useful for implementing operations on trees? Why?
- What is our motivations for looking at trees again? e.g. Why not just stick to ArrayList/LinkedList/HashTable?
- **New**: How might one implement an iterator for a tree?
Binary Search Tree Property

A binary tree where every node N in the BST

- Any data in the tree rooted at N.left sort **before** N.data
- Any data in the tree rooted at N.right sort **after** N.data
Comparisons

How does java guarantee comparability?

Comparable

Data can implement `Comparable`

```java
int c = x.compareTo(y);
// neg for x < y, right order
// 0 for x = y, don't care
// pos for x > y, wrong order
```

Comparator

Use a `Comparator` object to do comparisons

```java
Comparator<Thing> cmp = new ...;
int c = cmp.compare(x,y);
// neg for x < y, right order
// 0 for x = y, don't care
// pos for x > y, wrong order
```

Presence of both hints at a fundamental problem
Quick Note on Generics

From Weiss

public class BinarySearchTree<T extends Comparable<? super T>>

The type

T extends Comparable<? super T>

means *descends from something Comparable to T vs.*

T extends Comparable<T>

comparable to self only
Define `bst.find()`

- `find(T x)` is publicly accessible

 `tree.find("Mario");`

- **Define**

 `find(T x, Node<T> t)` which works on a given start node

- **Compare via Comparable:**

 `if(x.compareTo(t.data) < 0)`

Give 2 versions

- **Recursive**

- **Iterative**

```java
class BinarySearchTree
<T extends Comparable<T>>
{
    protected Node<T> root;
    // Return x if in tree, null otherwise
    public T find(T x)
    {
        Node<T> result = find(x, this.root);
        if(result == null){ return null;}
        else{ return result.data; }
    }

    // Find node containing x
    // starting at node t
    // Return null if not found
    private static Node<T> find(T x, Node<T> t)
    {
        // DEFINE ME
    }
}
```
Recursive \texttt{find(x,node)}

Use key of data to search through tree

- Left for less than
- Right for greater than

// pseudocode
Node<T> find(x,t){
 if(t == null){
 return null;
 }
 int diff = x.compareTo(t.data);
 if(diff < 0){ // x < t
 return find(x,t.left);
 } else if(diff > 0){ // x > t
 return find(x,t.right);
 } else { // x==t.data
 return t.data; // found
 }
}
Iterative `find(x,node)`

See weiss/nonstandard/BinarySearchTree.java

```java
private static BinaryNode<T> find(T x, BinaryNode<T> t){
    while( t != null ) {
        if( x.compareTo( t.data ) < 0 )
            t = t.left;
        else if( x.compareTo( t.data ) > 0 )
            t = t.right;
        else
            return t;  // Match
    }
    return null;  // Not found
}
```
What is the worst-case complexity of \texttt{find(x)} in terms of tree properties?

Construct a tree with this worst-case complexity.
Examples of Insert

Play with MyBST.java in JGrasp and look at the pretty pictures after multiple `insert(x)` calls
Warm-up: Perform BST Insertions

Draw the tree that results from the following sequence of insertions.

MyBST<String> t = new MyBST<String>();
t.insert("Mario");
t.insert("Goomba");
t.insert("Luigi");
t.insert("Toad");
t.insert("Wario");
t.insert("Princess");
t.insert("Bowser");
t.insert("Chain Chomp");
Insertion: Similar to \texttt{find(x)}

- May need to change a left or right pointers, redefine root
- No duplication, define a TreeSet, exception on duplicate insert

\textbf{Define Recursive Insert}

class BinarySearchTree\langle T \rangle \{
 Node\langle T \rangle root=null; int size=0;
 public void insert(T x){
 root = insert(x, root);
 this.size++;
 }
 private static Node\langle T \rangle insert(T x, Node\langle T \rangle t){
 // DEFINE ME
 }
}

\textbf{Define Iterative Insert if You’re Brave}

public void insert(T x){
 // DEFINE ME
}
Recursive `insert(x, t)`

From `weiss/nonstandard/BinarySearchTree.java`

class BinarySearchTree<T> {
 Node<T> root;
 public void insert(T x) {
 root = insert(x, root);
 }
 private static Node<T> insert(T x, Node<T> t) {
 if (t == null)
 t = new Node<T>(x);
 else if (x.compareTo(t.data) < 0)
 t.left = insert(x, t.left);
 else if (x.compareTo(t.data) > 0)
 t.right = insert(x, t.right);
 else
 throw new DuplicateItemException(x.toString());
 return t;
 }
}
Compare: Iterative `insert(x, t)`

```java
class BinarySearchTree<T> {
    Node<T> root;
    public void insert( T x ){
        if(this.root == null){ // New root?
            this.root = new Node<T>(x); // Yes
            return; //
        } //
        Node<T> t = this.root; // Root exists
        while(true){ // Traverse tree
            int diff = x.compareTo(t.data); // Traverse tree
            if(diff == 0){ // Check duplicate
                throw new DuplicateItemException( x.toString( ) );
            }
            if(diff < 0){ // Go left
                if(t.left == null){ // Found insertion point?
                    t.left = new Node<T>(x); // Yes
                    return; //
                } //
                else{ // No: Go farther left
                    t = t.left;
                }
            } //
            else{ // Go right
                if(t.right == null){ // Found insertion point?
                    t.right = new Node<T>(x); // Yes
                    return; //
                } //
                else{ // No: Go farther left
                    t = t.right;
                }
            }
        }
    }
}
```
Binary Search Tree remove(x)

// Public method, eliminate x if present in tree
public void remove(T x);

// Recursive helper method
private Node<T> remove(T x, Node<T> t);

- Get rid of a node with data x in a binary tree; throw exception if not present (or ignore request)
- More involved than find/insert
- Preserve Tree Structure
- Recursion greatly eases implementation
Prelims

Consider Mario Tree

- Describe which cases exist `tree.remove(x)`?
- Which of these do you anticipate being easy/hard to code for?
Cases for `t.remove(x)`

1. `x` not in tree
 - Leave tree as is or raise an exception
2. `x` at a node with no children
 - Get rid of node containing `x`
3. `x` at a node with 1 child
 - "Pass over" node containing `x`
4. `x` at a node with 2 children
 - Find a `next` node in sorting order
 - Replace `x` with next nodes data
 - Remove next node
 - Next is minimum of right subtree
Exercise: Useful Helper Methods

class BST<T> {
 private Node<T> root;

 // Public facing method, find minimum element and return it
 public T findMin(){ return this.findMin(this.root); }

 // Private helper method return the smallest element in the
 // tree rooted at t
 private T findMin(Node<T> t){
 // DEFINE ME
 }

 // Public facing method, eliminate the smallest data in tree
 public void removeMin(){ this.root = removeMin(this.root); }

 // Recursive helper; remove the node with the smallest data
 // in it in the tree rooted at t. The node returned is used
 // to alter the structure of the tree.
 private Node<T> removeMin(Node<T> t){
 // DEFINE ME
 }
}
Warm-up Questions

1. What is the Binary Search Tree property?
2. Are all trees binary trees? Do all binary trees have the BST property? (give counter-examples)
3. Where is the biggest data element in a BST? The smallest?
4. What are the runtime complexities of BST tree.find(x) and tree.insert(x)?
5. Which kinds of nodes are easy to remove from BSTs? Which kinds are more difficult?
6. What is a useful strategy for removing difficult nodes?
Children Cases for `remove(t, x)`

One Child: Remove 5

1. Find node t with data x
2. Replace with only child

Two Children: Remove 2

1. Find node t with data x
2. Find min node of t.right: min must have 0/1 child
3. Replace t.data with min.data
4. Remove min
Recursive Implementation: Think Locally

Lesson from insert()
- Recall in insert(x, t), did stuff like
 - t.right = insert(x, t.right);
 // a new/existing node is returned by insert()
- Take the same approach for remove(x, t)
- Assume these helpers are Available
 - T findMin(Node<T> t);
 - Node<T> removeMin(Node<T> t)

Implement Recursive remove(x, t)
- How to know if t is the node?
- What to do if t isn’t the node?
- If t is the node, are there separate cases for action?
Cases for recursive `remove()`

1. ☐ `t` is null
 - Throw an exception
     ```java
     throw new ItemNotFoundException();
     ```
 - Or do nothing to the tree
     ```java
     return null;
     ```
2. ☐ `x` less than `t.data` (recurse left)
   ```java
   t.left = remove(t.left, x);
   ```
3. ☐ `x` greater than `t.data` (recurse right)
   ```java
   t.right = remove(t.right, x);
   ```
4. ☐ `x` equals `t.data` (remove `t`)
 - `t` has 0 children, get rid of `t`
 - `t` has 1 child, pass over `t`
 - `t` has 2 children, replace with next/prev
Case 4: \(x \) equals \(t.data \) (remove \(t \))

Helper methods defined elsewhere

\[T \text{ findMin}(\text{Node}<T> \ t); \quad \text{Node}<T> \text{ removeMin}(\text{Node}<T> \ t) \]

- \(t \) has 0 children, get rid of \(t \)

 return null;

- \(t \) has 1 child, pass over \(t \)

 \((t.left!=null)? \text{return } t\.left : \text{return } t\.right;\)

- \(t \) has 2 children, replace with \textbf{next} or \textbf{prev}

 \(t\.data = \text{findMin}(t\.right); \)

 \(t\.right = \text{removeMin}(t\.right); \)

 \(\text{return } t; \)

- How are \text{findMin}(t) and \text{removeMin}(t) implemented?

 - Where is the minimum node in a tree?

 - How many children does it have?
private Node<T> remove(T x, Node<T> t) {
 if (t == null)
 throw new ItemNotFoundException(x.toString());
 if (x.compareTo(t.data) < 0)
 t.left = remove(x, t.left);
 else if (x.compareTo(t.data) > 0)
 t.right = remove(x, t.right);
 // Found at this node
 else if (t.left != null && t.right != null) {
 // Two children
 t.data = findMin(t.right);
 t.right = removeMin(t.right);
 }
 else
 // One child or no children
 t = (t.left != null) ? t.left : t.right;
 return t;
}
So Far

Binary Search Trees

- Defined `find() / insert() / remove()`
- Helpers: `findMin() / findMax() / removeMin() / removeMax()`
- All ops runtime complexity $O(Height)$
- Discuss balancing trees to ensure that $Height \approx \log(\text{Size})$

Next Time

- Balanced BSTs: AVL and Red-Black Trees
- Reading: Weiss Ch. 19.4-5