CS 310: Tree Rotations and AVL Trees

Chris Kauffman

Week 12-2
Logistics

Reading

- Weiss Ch 19.1-3 BSTs
- Weiss Ch 19.4: AVL Trees

HW3

- Due Thu 11/17
- Questions

Today’s Menu

- Tree Rotations: Balancing via pointer manipulation
- AVL Trees
Practice/Demo Sites

- jGrasp is so-so for seeing tree operations
- Play with Blanced Binary Search Trees online using the following applets (titles hyperlinked)

Qmatica: Pretty AVL

- Standard BSTs
 - Manual Rotation
 - Great Practice
- AVL Trees
- Undo/Redo to rewatch
- Step by step logging

Adjustable Demo (broken)

- Standard BSTs
- All three Balanced
 - AVL, Red black, Splay
- Slow down, pause, show balance factors

Scaling AVL (broken)

- AVL Tree only
- Scaling view for large trees
Why Worry About Insertion and Removal?

Q: Why worry about insert/remove messing with the tree? What affect can it have on the performance of future ops on the tree?

Q: What property of a tree dictates the runtime complexity of its operations?
Balancing Trees

- add/remove/find complexity $O(\text{height}(t))$
- Degenerate tree has height N: a linked list
- Prevent this by re-balancing on insert/remove
- Several kinds of trees do this
 - **AVL**: left/right subtree height differ by max 1
 - **Red-black**: preserve 4 red/black node properties
 - **AA**: red-black tree + all left nodes black
 - **Splay**: amortized bound on ops, very different
The AVL Tree

The AVL tree is named after its two Soviet inventors, Georgy Adelson-Velsky and E. M. Landis, who published it in their 1962 paper "An algorithm for the organization of information".

– Wikip: AVL Tree

- A self-balancing tree
- Operations
- Proof of logarithmic height
AVL Balance Property

T is an AVL tree if and only if

1. T.left and T.right differ in height by at most 1
2. AND T.left and T.right are AVL trees
Answers

A tree is an AVL tree if and only if
- T.left and T.right differ in height by at most 1
- AND T.left and T.right are AVL trees

1. Not AVL
 - Left 0, Right 1

2. AVL
 - Left 2, Right 0

3. Not AVL
 - Left 2, Right 4

4. AVL
 - Left 2, Right 4

5. Not AVL
 - Left 2, Right 4

6. AVL
 - Left 2, Right 4

7. Not AVL
 - Left 2, Right 4

8. AVL
 - Left 2, Right 4

80 not AVL

95 not AVL
Nodes and Balancing in AVL Trees

Track *Balance Factor* of trees

- balance =
 height(t.left) -
 height(t.right);
- Must be -1, 0, or +1 for AVL
- If -2 or +2, must fix

Don’t explicitly calculate `height`

- Adjust balance factor on insert/delete
- Recurse down to add/remove node
- Unwind recursion up to adjust balance of ancestors
- When unbalanced, *rotate* to adjust heights
- Single or Double rotation can *always* adjust heights by 1
Rotations

Re-balancing usually involves

- Drill down during insert/remove
- Follow path back up to make adjustments
- Adjustments even out height of subtrees
- Adjustments are usually rotations
- Rotation changes structure of tree without affecting ordering
Single Rotation Basics

Right Rotation
Rotation node becomes the right subtree

![Diagram of Right Rotation](image1)

(a) Before rotation
(b) After rotation

Left Rotation
Rotation node becomes the left subtree

![Diagram of Left Rotation](image2)

(a) After rotation
(b) Before rotation
Fixing an Insertion with a Single Rotation

Insert 1, perform rotation to balance heights
 - Right rotation at 8

(a) Before rotation
(b) After rotation
Single Rotation Practice

Problem 1

- 40 was just inserted
- Rebalance tree rooted at 16
- Left-rotate 16

Problem 2

- 85 is being removed
- Rebalance tree rooted at 57
- Right rotate 57
Single Rotations Aren’t Enough

Can we fix the following with a single rotation?

(a) Before rotation

(b) After rotation
Example: Can’t fix this with single rotation
Double Rotation Overview

Left-Right
- Left Rotate at k_1
- Right-rotate at k_3

![Diagram: Left-Right Rotation](image)

Right-Left
- Right Rotate at k_3
- Left Rotate at k_2

![Diagram: Right-Left Rotation](image)
Fixing an Insertion with a Double Rotation

Insert 5, perform two rotations to balance heights
- Problem is at 8: left height 3, right height 1
- Left rotate 4 (height imbalance remains)
- Right rotate 8 (height imbalance fixed)
Double Rotation Practice

Problem 3

» 35 was just inserted
» Rebalance the tree rooted at 36
» Use two rotations, at 33 and 36
» 36 should move
class Node<T>{
 Node<T> left, right;
 T data;
 int height;
}

Write the following codes for single/double rotations:

// Single Right rotation
// t becomes right child, t.left becomes new root which is returned
Node<T> rightRotate(Node<T> t) { ... }

// Left-Right Double Rotation:
// left-rotate t.left, then right-rotate t
Node<T> leftRightRotate(Node<T> t){ ... }
Example Rotation Codes

// Single Right rotation
Node<T> rightRotate(Node<T> t) {
 Node<T> newRoot = t.left;
 t.left = newRoot.right;
 newRoot.right = t;
 t.height = Math.max(t.left.height,
 t.right.height)+1;
 newRoot.height = Math.max(newRoot.left.height,
 newRoot.right.height)+1;
 return newRoot;
}

// Left-Right Double Rotation:
// left-rotate t.left, then right-rotate t
Node<T> leftRightRotate(Node<T> t){
 t.left = leftRotate(t.left);
 return rightRotate(t);
}

Computational complexities of these methods?
Rotations in During Insertion

- Insertion works by first recursively inserting new data as a leaf.
- Tree is "unstitched" - waiting to assign left/right branches of intermediate nodes to answers from recursive calls.
- Before returning, check height differences and perform rotations if needed.
- Allows left/right branches to change the nodes to which they point.
Double or Single Rotations?

- Insert / remove code needs to determine rotations required
- Can simplify this into 4 cases

Tree T has left/right imbalance after $\text{insert}(x)$ / $\text{remove}(x)$

Zig-Zig
$T.$left $> T.$right$+1$ and
$T.$left.left $> T.$left.right
Single Right Rotation at T

Zag-Zag
$T.$right $> T.$left$+1$
$T.$right.right $> T.$right.left
Single Left Rotation at T

Zig-ZAG
$T.$left $> T.$right$+1$ and
$T.$left.right $> T.$left.left
Double Rotation: left on $T.$left, right on T

Zag-Zig
$T.$right $> T.$left$+1$ and
$T.$right.left $> T.$right.right
Double Rotation: right on $T.$right, left on T
Excerpt of Insertion Code

From old version of Weiss AvlTree.java, in this week’s codepack

- Identify subtree height differences to determine rotations
- Useful in removal as well

```java
private AvlNode insert( Comparable x, AvlNode t ){
    if( t == null ){ // Found the spot to insert
        t = new AvlNode( x, null, null ); // return new node with data
    }
    else if( x.compareTo( t.element ) < 0 ) { // Head left
        t.left = insert( x, t.left ); // Recursively insert
    } else{ // Head right
        t.right = insert( x, t.right ); // Recursively insert
    }
    if(height(t.left) - height(t.right) == 2){ // t.left deeper than t.right
        if(height(t.left.left) > t.left.right) { // outer tree unbalanced
            t = rightRotate( t ); // single rotation
        } else { // x went left-right:
            t = leftRightRotate( t ); // double rotation
        }
    }
    else{ ... } // Symmetric cases for t.right deeper than t.left
    return t;
}
```
Rebalance This AVL Tree

- Inserted 51
- Which node is unbalanced?
- Which rotation(s) required to fix?
Rebalancing Answer

Insert 51

35 Unbalanced, inserted right-left

Right rotate 57

Left rotate 35
Does This Accomplish our Goal?

- **Proposition**: Maintaining the AVL Balance Property during insert/remove will yield a tree with \(N \) nodes and height \(O(\log N) \)
- **Prove it**: What do AVL trees have to do with rabbits?
AVL Properties Give $\log(N)$ height

Lemma (little theorem) *(Thm 19.3 in Weiss, pg 708, adapted)*
An AVL Tree of height H has at least $F_{H+2} - 1$ nodes where F_i is the ith Fibonacci number.

Definitions

- F_i: ith Fibonacci number $(0,1,1,2,3,5,8,13,\ldots)$
- S: size of a tree
- H: height *(assume roots have height 1)*
- S_H as smallest size AVL Tree with height H

Proof by Induction: Base Cases True

<table>
<thead>
<tr>
<th>Tree</th>
<th>height</th>
<th>Min Size</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>$H = 0$</td>
<td>S_0</td>
<td>$F_{(0+2)} - 1 = 1 - 1 = 0$</td>
</tr>
<tr>
<td>root</td>
<td>$H = 1$</td>
<td>S_1</td>
<td>$F_{(1+2)} - 1 = 2 - 1 = 1$</td>
</tr>
<tr>
<td>root+(left or right)</td>
<td>$H = 2$</td>
<td>S_2</td>
<td>$F_{(2+2)} - 1 = 3 - 1 = 2$</td>
</tr>
</tbody>
</table>
Consider an Arbitrary AVL tree T

- T has height H
- S_H smallest size for tree T
- Show that the smallest size $S_H = F_{H+2} - 1$
- Assume equation true for smaller trees
 - Left/Right are smaller AVL trees
 - Left/Right differ in height by at most 1
Induction Part 2

- T has height H
- Assume for height $h < H$, smallest size of T is $S_h = F_{h+2} - 1$
- Suppose Left is 1 higher than Right
- Left Height: $h = H - 1$
- Left Size:
 \[F_{(H-1)+2} - 1 = F_{H+1} - 1 \]
- Right Height: $h = H - 2$
- Right Size:
 \[F_{(H-2)+2} - 1 = F_H - 1 \]

\[
S_H = \text{size(Left)} + \text{size(Right)} + 1 \\
= (F_{H+1} - 1) + (F_H - 1) + 1 \\
= F_{H+1} + F_H - 1 \\
= F_{H+2} - 1 \quad \blacksquare
\]
AVL Tree of with height H has at least $F_{H+2} - 1$ nodes.

- How does F_H grow wrt H?
- Exponentially:
 $$F_H \approx \phi^H = 1.618^H$$
- ϕ: The Golden Ratio
- So, $\log(F_H) \approx H \log(\phi)$
- Or, $\log(N) \approx \text{height} \times \phi$
- Or,
 $$\log(\text{size}) \approx \text{height} \times \text{constant}$$