CS 310: Red-Black trees

Chris Kauffman

Week 14-1
Logistics

Wait, what? We’re almost done?

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>11/21</td>
<td>AVL Trees, Red-Black, HW4</td>
</tr>
<tr>
<td>Wed</td>
<td>11/23</td>
<td>No class - Turkey Time!</td>
</tr>
<tr>
<td>Mon</td>
<td>11/28</td>
<td>Red-Black, B-trees, PQs</td>
</tr>
<tr>
<td>Wed</td>
<td>11/30</td>
<td>PQs, Binary Heaps</td>
</tr>
<tr>
<td>Mon</td>
<td>12/5</td>
<td>Heap sort</td>
</tr>
<tr>
<td>Wed</td>
<td>12/7</td>
<td>Review</td>
</tr>
<tr>
<td>Fri</td>
<td>12/9</td>
<td>HW4 Due</td>
</tr>
</tbody>
</table>

Reading Weiss

- Ch 19.5: Red-Black Trees
- Ch 19.7: TreeSet and TreeMap
- Ch 21: Priority Queue/Binary Heap
- Ch 6.9: Priority Queue Interface
Last Time

- What’s an AVL tree?
- What properties does it maintain?
- What operations does it support?
- Are those operations efficient?
- How do you prove it?
In a 1978 paper "A Dichromatic Framework for Balanced Trees", Leonidas J. Guibas and Robert Sedgewick derived red-black tree from symmetric binary B-tree. The color "red" was chosen because it was the best-looking color produced by the color laser printer. . .

- [Wikipedia: Red-black tree](https://en.wikipedia.org/wiki/Red%E2%80%93black_tree)
Red-Black Tree

A Binary Search Tree with 4 additional properties

1. Every node is red or black
2. The root is black
3. If a node is red, its children are black
4. Every path from root to null has the same number of black nodes

Frequently drawn/reasoned about with null colored black
A Sample RB Tree (?)

- Is this a red-black tree?
- Discounting color, is it an AVL tree?
Immediate Implications for Height Difference

Red-black properties

1. Every node is red or black
2. The root is black
3. If a node is red, its children are black
4. Every path from root to null has the same number of black nodes

Question

From root to a null in the left subtree of a red-black tree, 8 black nodes are crossed (don’t count the null at bottom)

▶ What is the max/min height of the left subtree?
▶ What is the max/min height of the right subtree?
▶ What is the max/min height of the whole tree?
▶ What is the maximum difference between left/right subtrees?
Lemma: A subtree rooted at node v has at least $2^{bh(v)} - 1$ internal nodes where $bh(v)$ is the number of black nodes from v to a leaf.

Proof: By induction on height and $bh(v)$.

Corollary: Height of tree $height(t)$ is at worst $2 \times bh(t)$, so that

$$size(t) \geq 2^{\frac{height(t)}{2}} - 1$$

and thus

$$2 \log_2(size(t)) \geq height(t)$$

As usual, Wikipedia has good info (in this case more detail than Weiss).
Preserving Red Black Properties

Basics

- Insert data as in standard binary trees as a node initially
- If two consecutive reds result, fix it
- Gets complicated fast

Insertion Strategy 1: Down-Up (bottom-up)

- Implement recursively
- Insert red at a leaf
- Easy for black parents
- Trouble is with red parents
- Unwind back up fixing any red-red occurrences
- Fixes can be done with combination of recoloring and single/double rotations
- Lots of cases
Examples: Leaves Easy

- Insert 25 and 68: **black** parent, easy
Examples: Rotate and Recolor

Insert 3 red

- right rotation at 10, recolor 5 \textbf{black} 10 \textbf{red}

Why not skip rotation, recolor 3 \textbf{red} 5 \textbf{black} 10 \textbf{red} ?

- INCORRECT: Problem with \textbf{black null} child of 10
Examples: Uncles Matter

Insert 82 red

- Recolor parent 80 black
- Recolor grandparent 85 red
- Recolor uncle 90 black
Problems with Red Subtree Roots

If a fix (recolor+rotation) makes a subtree root red, then we may have created two consecutive red nodes

- Insertion parent was red
- Insertion grandparent must be black
- New root is at grandparent position
- Insertion great-grandparent may be red

If this happens

- Must detect and percolate up performing additional fixes
- Can always change the root to black for a final fix
- Strategy 1 requires down to insert, up to fix via rotation/recoloring
Examples: Must Percolate Fixes Up

Insert 45 red

- Recoloring alone won’t work
- Must also rotate right 70
- Lots of recoloring also but involves trip back up the tree
Insertion Strategy 2: Down only (top-down insertion)

- During single down pass, use recoloring and rotation to ensure red-insert will succeed
- Example case above: recognize for node X, Red Uncle S may cause problems for lower insertion
- Rotate and recolor; preserve black path count, ensure X does not have a Red Uncle
Fix: Guarantee Uncle is not red

- On the way down: check black node X
- If both children are red, change children to black and change X to red
- If parent of X is red, use a single/double rotation and recoloring to fix, then continue down
- Ensures after red insertion, only recoloring + single/double rotation is required, no percolation back up
Example of Strategy 2: Down Only

Insert 45

At 50 Red, 2 Black Children, Color Flip

50 & 60 Red: Rotate Right 70 + Recolor

Ensures Insert 45 Red works
weiss/nonstandard/RedBlackTree.java
- Down only insertion
- 300ish lines of code
- Deletion not implemented (a fun activity if you’re bored)
AVL Tree v Red Black Tree

AVL
- (+) Conceptually simpler
- (+) Stricter height bound: fast lookup
- (-) Stricter height bound: more rotations on insert/delete
- (-) Simplest implementation is recursive: down/up

Red Black
- (-) More details/cases
- (-) Implementation is nontrivial
- (-) Looser height bound: slower lookup
- (+) Looser height bound: faster insert/delete
- (+) Tricks can yield iterative down-only implementation
Balanced BSTs keep contents in order and provided guarantee $O(\log N)$ find/add/remove

Reproduce them in sorted order via an in-order traversal

In Java, get a `tree.iterator()` and walk it through data

Can also visit sorted subsets of data by locating a record in $O(\log N)$ time then proceeding with an in-order traversal from there.

In Java, `TreeSet<T>` provides `tailSet(T start)` to get a subset "view" of the the set
Example: Subsets of Mario Tree

- Consider attempting to locate all records which start with the letter "P"
- Naive strategy?
- Computationally efficient strategy?
Welcome to DrJava.

```java
> import java.util.*;
> TreeSet<String> t = new TreeSet<String>();
> String [] data = {"Mario","Goomba",...};
> for(String s : data){ t.add(s); }
> t    // All of t
[Bob-omb, Bowser, Chain Chomp, Donkey Kong, Goomba, Koopa, Luigi, Mario, Peach, Pokey, Princess, Thwomp, Toad, Wario]

> t.tailSet("P") // A "view" of the set starting from P
[Peach, Pokey, Princess, Thwomp, Toad, Wario]

> Iterator<String> it = t.tailSet("P").iterator();
> it.next()
"Peach"    // Starts with P
> it.next()
"Pokey"    // Starts with P
> it.next()
"Princess" // Starts with P
> it.next()
"Thwomp"   // No more P records
```